JPH03291131A - Method for continuously casting hollow cast billet - Google Patents

Method for continuously casting hollow cast billet

Info

Publication number
JPH03291131A
JPH03291131A JP9312690A JP9312690A JPH03291131A JP H03291131 A JPH03291131 A JP H03291131A JP 9312690 A JP9312690 A JP 9312690A JP 9312690 A JP9312690 A JP 9312690A JP H03291131 A JPH03291131 A JP H03291131A
Authority
JP
Japan
Prior art keywords
mold
columnar core
cast billet
molten steel
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9312690A
Other languages
Japanese (ja)
Other versions
JP2851909B2 (en
Inventor
Hiroshi Harada
寛 原田
Eiichi Takeuchi
栄一 竹内
Takehiko Fuji
健彦 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9312690A priority Critical patent/JP2851909B2/en
Publication of JPH03291131A publication Critical patent/JPH03291131A/en
Application granted granted Critical
Publication of JP2851909B2 publication Critical patent/JP2851909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To make a cast billet without oscillation mark by heating molten metal in a pouring basin part, holding liquids temp. or higher and casting a hollow cast billet while executing high frequency oscillation in diameter direction of a columnar core. CONSTITUTION:The molten steel M is charged to the pouring basin part 11 and heated by an induction heating device 33 and held to the liquids temp. or higher of the molten steel M. The pouring basin part 11, non-cooling mold 15 and cooling mold 18 are vertically oscillated and also the columnar core 24 is oscillated under high frequency in the diameter direction by a high frequency oscillating device 36. Cooling water is poured to the columnar core 24 through a water introducing pipe 27, and an inner cylinder 19 in a cooling mold 18 is cooled by the outer cylinder 20. The molten steel M is drawn as a cast billet P. As the molten steel M is held to the liquids temp. or higher, the solidification is started below the molten steel surface and the mark on the outer peripheral surface of cast billet P is not formed. As the high frequency oscillation is given to the columnar core 24, flowing-in of powder is uniformized and the mark on inner face of the cast billet P is not developed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、中空鋳片の連続鋳造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a continuous casting method for hollow slabs.

この発明は、比較的薄肉の鋼管などの製造に利用される
This invention is utilized for manufacturing relatively thin-walled steel pipes.

[従来の技術] 連続鋳造により最終製品管に近い中空鋳片を得ることか
できれば、高合金のような圧延加工不良材を始めとする
各種材質の金属管製造に大幅なコストタ”ランを期待す
ることができる。
[Conventional technology] If it is possible to obtain hollow slabs that are similar to final product pipes through continuous casting, we can expect a significant cost increase in the production of metal pipes made of various materials, including poorly rolled materials such as high alloys. be able to.

このような中空鋳片を連続鋳造する方法は、従来より広
く検討されてきており、また種々の方法が提案されてい
る。
Methods for continuously casting such hollow slabs have been widely studied, and various methods have been proposed.

これらの方法の一つに、上方に向って広かるように開口
する湯溜りを貫通して鋳型に至るまて柱状中子を挿入し
て鋳型と柱状中子との間に環状の空間を形成し、湯溜り
に溶融金属を注入しながら鋳型から中空鋳片を引き抜き
、中空鋳片を連続鋳造する方法がある。湯溜りを上方に
向って広かるように開口する形状としているのは、注入
された溶融金属の湯面変動の影響を小さくするとともに
、タンデイツシュなどから湯溜りへの湯の供給を容易に
するためである。鋳型は湯溜りの下方に配置されている
。柱状中子は内部より冷却される。また、鋳片と鋳型お
よび柱状中子との焼付き防止、あるいは鋳片の引抜き抵
抗を小さくするために、鋳型および柱状中子は上下に振
動される。
One of these methods is to insert a columnar core all the way to the mold through a pool that opens upwards to form an annular space between the mold and the columnar core. However, there is a method of continuously casting hollow slabs by pulling out the hollow slabs from the mold while pouring molten metal into a tundish. The reason why the hot water pool is shaped so that it opens upwards is to reduce the effect of fluctuations in the level of the injected molten metal, and also to make it easier to supply hot water from the tundish etc. to the hot water pool. It is. The mold is placed below the basin. The columnar core is cooled from inside. In addition, the mold and the columnar core are vibrated up and down in order to prevent seizure between the slab and the mold and the columnar core, or to reduce the pulling resistance of the slab.

このような方法に属するものとして、たとえば特開平1
−150433号公報あるいは特開平1−150434
号公報の中空鋳片連続鋳造用モールド装置て開示された
方法がある。
For example, as a method belonging to this type of method,
-150433 publication or JP-A-1-150434
There is a method disclosed in a mold apparatus for continuous casting of hollow slabs in Japanese Patent Publication No.

[発明が解決しようとする課題] 上記従来の中空鋳片の連続鋳造方法には、次のような問
題かあった。
[Problems to be Solved by the Invention] The conventional continuous casting method for hollow slabs has the following problems.

すなわち、中空鋳片の引抜き速度は比較的遅いので、湯
溜りに供給された溶融金属はある程度の時間湯溜りに留
まることになる。また、湯溜りは上方に向って広がるよ
うに開口する形状をしているので、溶湯表面からの放熱
量が大きく、湯溜り内の溶湯の温度が降下しやすい。こ
のため、湯溜りで溶融金属が凝固してしまい (ホット
マスの生成)、これは下方に引き抜かれることなく留ま
るため、操業上支障を来す。また、上記従来の装置では
湯溜り下にブレークリングを用い、凝固開始点の一定化
ならびに凝固開始点を湯面下に位置づけることによりオ
シレーションマークの低減が図られている。しかし、ブ
レークリングを用いることにより、コールドシャットク
ラックならびにホットティアが生じ、鋳片表面性状の欠
陥は解決されない。また、ブレークリンク゛を用いるこ
とにより、鋳片の肉厚の最低値に制限が生して好ましく
ない。
That is, since the drawing speed of the hollow slab is relatively slow, the molten metal supplied to the pool remains in the pool for a certain period of time. In addition, since the pool has a shape that opens upward and expands, the amount of heat radiated from the surface of the molten metal is large, and the temperature of the molten metal in the pool tends to drop. As a result, the molten metal solidifies in the pool (creating hot mass), and this remains without being drawn downward, causing operational problems. In addition, in the above-mentioned conventional apparatus, a break ring is used below the water pool to stabilize the solidification start point and to position the solidification start point below the surface of the hot water, thereby reducing oscillation marks. However, by using a break ring, cold shut cracks and hot tears occur, and defects in the surface texture of the slab are not resolved. Furthermore, the use of a break link imposes a limit on the minimum thickness of the slab, which is undesirable.

中空鋳片の場合、内面の手入れか困難であるため、後処
理不要な内面性状良好な鋳片の鋳造が必要となる。
In the case of hollow slabs, it is difficult to care for the inner surface, so it is necessary to cast slabs with good inner surface properties that do not require post-treatment.

そこでこの発明は、内外表面共裏面欠陥を防止すること
ができる中空鋳片の連続鋳造方法を提供しようとするも
のである。
Therefore, the present invention aims to provide a continuous casting method for hollow slabs that can prevent defects on both the inner and outer surfaces and the back surface.

[8題を解決するための手段] この発明の中空鋳片の連続鋳造方法は、上方に向って広
がるように開口する湯溜りを貫通して鋳型内に至るまで
柱状中子を挿入して鋳型と柱状中子との間に環状の空間
を形成し、湯溜りから鋳型に溶融金属を供給しながら鋳
型から中空鋳片を引き抜く中空鋳片の連続鋳造方法にお
いて、前記湯溜り内の溶融金属を加熱して溶融金属の液
相線温度以上に保持した状態で、前記柱状中子をこれの
径方向に高周波振動させながら中空鋳片を鋳造する。
[Means for Solving Eight Problems] The continuous casting method for hollow slabs of the present invention involves inserting a columnar core into the mold by penetrating a trough that opens upward and forming the mold. In a continuous casting method for hollow slabs, an annular space is formed between the molten metal and a columnar core, and the molten slab is pulled out from the mold while supplying molten metal from the sump to the mold. A hollow slab is cast while the columnar core is heated and maintained at a temperature higher than the liquidus temperature of the molten metal while being vibrated at high frequency in the radial direction of the columnar core.

中空鋳片の断面形状は、円形に限られるものではなく、
長円形、角形などであってもよい。
The cross-sectional shape of hollow slabs is not limited to circular shapes;
It may be oval, square, etc.

柱状中子の外壁と鋳片間の摩擦の低減を中子のオシレー
ションとパウダーの潤滑にて図る際、オシレーションマ
ークならびに、パウダーの不均一流入により縦割れ等の
欠陥が生しやすい。そのため、オシレーションマークの
抑制ならびにパウダーの均一流入を図るため、柱状中子
の径方向に高周波振動を加える。振動方向は、周方向で
あってもよい。
When trying to reduce the friction between the outer wall of a columnar core and the slab by oscillating the core and lubricating it with powder, defects such as vertical cracks are likely to occur due to oscillation marks and uneven inflow of powder. Therefore, in order to suppress oscillation marks and ensure uniform inflow of powder, high-frequency vibrations are applied in the radial direction of the columnar core. The vibration direction may be a circumferential direction.

柱状中子の振動の振幅は1μm以上、周波数は1kHz
以上であることが好ましい。加振装置としては通常の装
置、たとえば電歪型または磁歪型の振動子および高周波
発生電源とからなる装置が用いられる。
The amplitude of the vibration of the columnar core is 1 μm or more, and the frequency is 1 kHz.
It is preferable that it is above. As the vibration excitation device, a conventional device, for example, a device consisting of an electrostrictive or magnetostrictive vibrator and a high frequency generation power source is used.

なお、湯溜りを構成する耐火材は、湯溜りを誘導加熱す
るために導電性を要し、また湯溜りの壁厚を薄くし、加
熱誘導コイルを湯溜り内の溶融金属にできるたけ近づけ
るために高強度であることが望ましい。このような耐火
材として、アルミナグラファイトなどを用いることかで
きる。
The refractory material that makes up the hot water pool needs to be conductive in order to heat the hot water pool by induction, and in order to reduce the wall thickness of the hot water pool and bring the heating induction coil as close as possible to the molten metal in the hot water pool. It is desirable that the material has high strength. As such a refractory material, alumina graphite or the like may be used.

湯溜りの出側から冷却鋳型に至る間の内径は、鋳片の外
径と同径にすることが好ましい。この点、従来の連続鋳
造装置では湯溜りと冷却鋳型とを結ぶ湯道に内径方向に
突出するブレークリンクなどが配置されている。ブレー
クリングを用いることにより、凝固開始点の一定化なら
びに湯面下に位置づけることによりオシレーションマー
クの低減は図られるが、コールドシャットクラックなら
びにホットティアを生じ、鋳片表面性状の欠陥は解決さ
れない。これに対し、この発明では湯溜りおよび溶融金
属をこれの液相線温度以上に加熱することにより、湯溜
りでの凝固を防止するとともに、凝固開始点を湯面下に
かつ非冷却鋳型内に制御することにより鋳片表面性状の
改善を図っている。
It is preferable that the inner diameter from the outlet side of the sump to the cooling mold be the same as the outer diameter of the slab. In this regard, in conventional continuous casting equipment, a break link or the like that projects in the inner diameter direction is arranged in the runner connecting the molten metal pool and the cooling mold. By using a break ring, it is possible to stabilize the solidification start point and reduce oscillation marks by positioning it below the molten metal surface, but it causes cold shut cracks and hot tears, and defects in the surface texture of the slab cannot be resolved. In contrast, in this invention, by heating the pool and molten metal above their liquidus temperature, solidification in the pool is prevented, and the solidification start point is placed below the surface of the metal and in the uncooled mold. Through this control, the surface quality of the slab is improved.

鋳片の凝固収縮に応して、柱状中子は下方に向って先細
りとすることが好ましい。先細りのテーパーの大きさは
0.5〜1.0を程度である。これにより、柱状中子か
らの鋳片の分離かよくなり、凝固殻の割れ、スティッキ
ングあるいはブリートの発生が防止される。柱状中子は
良熱伝導性の材料、たとえば銅、カーボン、炭化けい素
などが用いられる。また、銅の表面に炭化けい素などの
耐熱材料をコーティングしてもよい。
The columnar core is preferably tapered downward in response to solidification shrinkage of the slab. The size of the taper is approximately 0.5 to 1.0. This improves separation of the slab from the columnar core and prevents cracking, sticking, or bleat of the solidified shell. The columnar core is made of a material with good thermal conductivity, such as copper, carbon, silicon carbide, etc. Alternatively, the surface of copper may be coated with a heat-resistant material such as silicon carbide.

[作用] 湯溜りおよび溶融金属は加熱により溶融金属の液相18
m度以上に保持されるので、場面よりも下方から凝固か
始まる。溶融金属を加熱して所要温度に積極的に保持す
るので、凝固開始点の制御は容易である。上方に向って
広がるように開口している、容積の大きな湯溜りで溶融
金属を加熱するので、湯溜り内の溶融金属の熱容量は大
きい。したがって、湯溜り内の溶融金属の温度変化は少
なく、溶融金属を所要温度に保持しやすい。
[Function] The puddle and the molten metal are heated to form a liquid phase 18 of the molten metal.
Since the temperature is maintained above m degrees, solidification starts from below the surface. Since the molten metal is heated and actively maintained at the required temperature, the point at which solidification begins is easily controlled. Since the molten metal is heated in a large-volume pool that opens upwards, the heat capacity of the molten metal in the pool is large. Therefore, there is little change in the temperature of the molten metal in the pool, and it is easy to maintain the molten metal at a required temperature.

また、柱状中子がこれの径方向に高周波振動している状
態て鋳造が行われるのでバラタ−流入が均一となり、オ
シレーションマークの無い縦割れ等の表面欠陥の無い鋳
片の鋳造が可能となる。
In addition, since casting is performed with the columnar core vibrating at high frequency in the radial direction, the balata inflow is uniform, making it possible to cast slabs without oscillation marks and surface defects such as vertical cracks. Become.

[実施例] 連続鋳造装置は、主として湯溜り11.非冷却鋳型15
、冷却鋳型18.柱状中子24、および誘導加熱装置3
3から構成されている。
[Example] The continuous casting apparatus mainly consists of a tundish 11. Non-cooled mold 15
, cooling mold 18. Columnar core 24 and induction heating device 3
It consists of 3.

湯溜り11は上方に向って広がるように開口しており、
アルミナク′ラファイトて作られている。湯溜り11の
容量は、8000cm3である。
The hot water reservoir 11 is opened so as to expand upward,
It is made from aluminac-graphite. The capacity of the hot water reservoir 11 is 8000 cm3.

非冷却鋳型15は円筒状をしており、湯溜り11と一体
に形成されている。非冷却鋳型I5の内径は、中空鋳片
Pの外径つまり冷却鋳型18の内径に等しい。
The uncooled mold 15 has a cylindrical shape and is formed integrally with the tundish 11. The inner diameter of the non-cooled mold I5 is equal to the outer diameter of the hollow slab P, that is, the inner diameter of the cooling mold 18.

冷却鋳型18は、溶@Mに接するクラファイト製の内筒
19と銅製の外筒20よりなっている。内筒19の上端
が非冷却鋳型15の下端に接続されている。
The cooling mold 18 consists of an inner cylinder 19 made of graphite and an outer cylinder 20 made of copper, which are in contact with the melt @M. The upper end of the inner cylinder 19 is connected to the lower end of the non-cooled mold 15.

また、非冷却鋳型15と内筒との接続位置は、外筒20
の上端より少くとも loaoo以上下側に位置させて
いる。これは、凝固開始位置を必ず接続位置よりも上方
に位置づけ、接続部への溶鋼Mの侵入を防止するためで
ある。
Further, the connection position between the non-cooled mold 15 and the inner cylinder is the outer cylinder 20.
It is located at least loaoo below the upper end of the . This is to ensure that the solidification start position is located above the connection position and to prevent molten steel M from entering the connection area.

柱状中子24の本体25は銅製の底付円筒よりなってお
り、本体25は長さが1mであり、溶鋼メニスカス位置
における外径が100111I11である。また、下端
に向って先細りとなるように 0.496の一定のテー
パーが付けられている。本体25は湯溜り11および非
冷却鋳型15を貫通して冷却鋳型18内に挿入されてい
る。本体25には、2重管を形成するように内部には導
水管27が挿入されている。導水管27の頂部には冷却
水供給管29が、また本体25の頂部のカバ30−には
冷却水排出管31がそれぞれ接続されている。冷却水は
導水管27を通り下降して本体25下部に至り、ついで
本体25と導水管27の間を通って上昇する。冷却水は
上昇する際に本体25を冷却する。したがって、本体2
5は下部になるほど強く冷却される。また、本体25は
加振装置36により高周波振動が与えられる。
The main body 25 of the columnar core 24 is made of a cylinder with a bottom made of copper, has a length of 1 m, and has an outer diameter of 100111I11 at the molten steel meniscus position. It also has a constant taper of 0.496 so that it tapers toward the bottom end. The main body 25 passes through the sump 11 and the uncooled mold 15 and is inserted into the cooled mold 18 . A water guide pipe 27 is inserted into the main body 25 so as to form a double pipe. A cooling water supply pipe 29 is connected to the top of the water conduit 27, and a cooling water discharge pipe 31 is connected to the cover 30- at the top of the main body 25. The cooling water passes down through the water conduit 27 and reaches the lower part of the main body 25, and then passes between the main body 25 and the water conduit 27 and rises. The cooling water cools the main body 25 as it rises. Therefore, main body 2
5 is cooled more strongly as it gets lower. Further, the main body 25 is given high frequency vibration by a vibrator 36 .

誘導加熱装置33は、加熱コイル34が湯溜り11の外
形に沿うように配置されている。加熱コイル34には、
定格出力200kw、 1.2kHzの高周波電源 (
図示しない)が接続されている。
The induction heating device 33 is arranged such that the heating coil 34 follows the outer shape of the hot water reservoir 11 . The heating coil 34 includes
High frequency power supply with rated output of 200kw and 1.2kHz (
(not shown) are connected.

加振装置36は、本体25の頂部に周方向に等間隔に取
り付けられた四本の振動子37とこれに高周波電流を供
給する高周波発生電源38からなる。振幅の谷底値をで
きるだけ犬きくするため、異なる周波数にて高周波振動
が加えられる。
The vibration device 36 includes four vibrators 37 attached to the top of the main body 25 at equal intervals in the circumferential direction, and a high-frequency generating power source 38 that supplies high-frequency current to the vibrators 37. High-frequency vibrations are applied at different frequencies in order to make the trough of the amplitude as sharp as possible.

タンデイツシュ (図示しない)の底部に接続された浸
漬ノズル41が、湯溜り11に挿入されている。
An immersion nozzle 41 connected to the bottom of a tundish (not shown) is inserted into the sump 11.

上記湯溜り11.非冷却鋳型】5、および冷却鋳型18
は、加振装置 (図示しない)により上下振動が与えら
れる。
The above hot water pool 11. Non-cooled mold】5, and cooled mold 18
is given vertical vibration by a vibrating device (not shown).

ここで、以上のように構成された装置により、管状鋼鋳
片を連続鋳造する方法について説明する。鋳造した中空
鋳片Pは、内径100mm、外径160m+n(肉厚3
0111111)および180mm (肉厚40mm)
の2サイズであって、材質は高炭素鋼(炭素濃度0.5
t)であった。
Here, a method for continuously casting tubular steel slabs using the apparatus configured as described above will be described. The cast hollow slab P has an inner diameter of 100 mm, an outer diameter of 160 m+n (wall thickness 3
0111111) and 180mm (wall thickness 40mm)
The material is high carbon steel (carbon concentration 0.5
t).

まず、鋳造開始前に湯溜り11を加熱コイル34によ1
1溶鋼Mの液相線温度以Fに加熱した。この状態を保持
しながら、湯溜り+1.非冷却鋳型I5およこ<冷却鋳
型18内に柱状中子24を上方より挿入し、セ・Iトし
た。
First, before starting casting, the hot water pool 11 is heated by the heating coil 34.
1 The molten steel M was heated to a temperature below the liquidus temperature. While maintaining this state, the water pool +1. The columnar core 24 was inserted into the non-cooled mold I5 from above into the cooled mold 18 and set.

一゛いて タンデイツシュ (図示しない)から漫ンl
″jlズル41を介L2、溶′iI4Mを湯溜り11に
供給した5、注湯開始から20秒経過し2かのちに湯溜
り11゜非冷却鋳型15、および冷却鋳型】8を上下に
振動振動させると1も「、柱状中子24をこれの径方向
に振動させた5、湯溜り11などの上下振動は、振幅が
±4yan ?あり 振動数はI 00cpmであった
。また5柱状中子24の振動条件は、相対する2木の振
動子は18.5kHzにて加振ざむ、他2本は18〜1
8.5kHz18 、5kHz〜!!1kHzの間で振
幅が最大となるように訳、!整されt:、1捩幅は 2
咄であ−た。30秒後に鋳片P (1”)引t、bきを
開始した、鋳片Pの引抜きはビンチロ・−ノ1.(図示
しない)により1.引抜き速度は0.4m/mi+1で
あった。鋳造中、湯溜り11および湯溜り内の溶鋼Mを
加熱コイル34により、溶鋼Mの液相糾温度以!−C加
熱保持した。凝固殻a、bの形成開始位置は鋳片内径側
では湯面下Omρであり、また外径側では非冷却鋳型1
5内に制御することができ、非冷却鋳型15と冷却鋳型
18との接合部l\の溶鋼Mの侵入「よるトラブルi<
 (鋳造する1′:′とかできた。
From one day to the next day (not shown)
5. 20 seconds have elapsed since the start of pouring, and after 20 seconds, the molten metal 11°, the uncooled mold 15, and the cooling mold 8 are vibrated up and down. When vibrated, the vertical vibration of the columnar core 24 was vibrated in the radial direction of the columnar core 24, and the vertical vibration of the pool 11 had an amplitude of ±4yan?The frequency was I00 cpm. The vibration conditions for the child 24 are that the two opposing wooden oscillators are vibrated at 18.5kHz, and the other two are oscillated at 18.5kHz.
8.5kHz18, 5kHz~! ! Translated so that the amplitude is maximum between 1kHz! Adjusted t:, 1 twist width is 2
It was a song. After 30 seconds, drawing of the slab P (1") was started. The slab P was pulled out by Vincillo-No. 1 (not shown). The pulling speed was 0.4 m/mi+1. During casting, the molten steel M in the molten metal pool 11 and the molten steel M in the molten metal pool was heated and maintained by the heating coil 34 below the liquidus temperature of the molten steel M by -C. Omρ below the surface, and non-cooled mold 1 on the outer diameter side
Troubles due to intrusion of molten steel M at the joint l\ between the non-cooled mold 15 and the cooled mold 18 can be controlled within 5 degrees.
(I was able to cast 1':'.

一■−記のようにL″r得られt〜鋳片は、2サイズと
も外表面性状についてはいずれもオシレーシジレマーク
の発生がみられず、良好であった。また、内表面性状ム
7ついては いずiも鋳片Oト□、rブ部分およびボト
ム部分l」5例で゛は割れなどはごめられなかった。ま
た、鋳片肉厚は、周方向および鋳造方向とも1.、− 
t 1円mσ)範囲内で一杆てあった。
As shown in 1-2, the L″r obtained slabs had good external surface properties with no oscillation marks observed in both sizes. As for No. 7, no cracks were found in the slabs O, T, R, and bottom section in 5 cases. Also, the thickness of the slab is 1.2 mm in both the circumferential direction and the casting direction. ,−
t was within the range of 1 yen mσ).

[発明O効果] この発明によれば、湯溜りおよび湯溜り内の溶融金属を
加熱し、て溶融金属の液相線温度以上に積極的C保持す
るので、溶湯表面よりもT方から凝固が始まる、7した
がって、鋳型の上下振動により発生する鋳片外周’ff
j、 、7y)オシ1.ノーシ3ンマー、りの形成を抑
えることができ、表面性状良好な中空鋳片の連続鋳造が
可能)−f 、、た、こねにより、鋳片表面の後処理か
不要となった。また、柱状中子をこれの径方向に高周波
振動を与えるので、パウダー流入量か均一となり、オシ
L/−ジョンマークの無くかつ縦割れ等の表面欠陥の無
い鋳片の鋳造が可能となる0、
[Effect of invention O] According to this invention, the pool and the molten metal in the pool are heated and the C is actively maintained above the liquidus temperature of the molten metal, so that solidification occurs from the T direction rather than the surface of the molten metal. 7 Therefore, the outer circumference of the slab generated by the vertical vibration of the mold 'ff
j, ,7y) Oshi1. It is possible to suppress the formation of no-shimmer and glue, and it is possible to continuously cast hollow slabs with good surface quality.) By kneading, post-treatment of the slab surface is no longer necessary. In addition, since high-frequency vibration is applied to the columnar core in the radial direction, the amount of powder flowing in is uniform, making it possible to cast slabs without oscillation marks and surface defects such as vertical cracks. ,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法を実施する装置の一例を示すも
のであって、管状鋼鋳片の連続鋳造装置の縦断面図であ
る。 11・・・湯溜り、15−・非冷却鋳型、18・・・冷
却鋳型、24・・・柱状中子、27・・・導水管、33
・・・誘導加熱装置、34・・・誘導加熱コイル、36
−・・加振装置、41・・・浸漬ノズル、M・・・溶鋼
2 P・・・中空鋳片、a、b・・・凝固殻4、
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention, and is a longitudinal sectional view of a continuous casting apparatus for tubular steel slabs. DESCRIPTION OF SYMBOLS 11... Reservoir, 15-- Uncooled mold, 18... Cooled mold, 24... Columnar core, 27... Water pipe, 33
... induction heating device, 34 ... induction heating coil, 36
-... Vibration device, 41... Immersion nozzle, M... Molten steel 2 P... Hollow slab, a, b... Solidified shell 4,

Claims (1)

【特許請求の範囲】[Claims] 1、上方に向って広がるように開口する湯溜りを貫通し
て鋳型内に至るまで柱状中子を挿入して鋳型と柱状中子
との間に環状の空間を形成し、湯溜りから鋳型に溶融金
属を供給しながら鋳型から中空鋳片を引き抜く中空鋳片
の連続鋳造方法において、前記湯溜りおよび湯溜り内の
溶融金属を加熱して溶融金属の液相線温度以上に保持し
た状態で、前記柱状中子をこれの径方向に高周波振動さ
せながら中空鋳片を鋳造することを特徴とする中空鋳片
の連続鋳造方法。
1. A columnar core is inserted into the mold by penetrating the pool that opens upward, forming an annular space between the mold and the columnar core, and inserting the core from the pool into the mold. In a continuous casting method for hollow slabs in which the hollow slab is pulled out from the mold while supplying molten metal, the tundish and the molten metal in the tundish are heated and maintained above the liquidus temperature of the molten metal, A continuous casting method for a hollow slab, characterized in that the hollow slab is cast while the columnar core is vibrated at high frequency in the radial direction thereof.
JP9312690A 1990-04-10 1990-04-10 Continuous casting method of hollow slab Expired - Lifetime JP2851909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9312690A JP2851909B2 (en) 1990-04-10 1990-04-10 Continuous casting method of hollow slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9312690A JP2851909B2 (en) 1990-04-10 1990-04-10 Continuous casting method of hollow slab

Publications (2)

Publication Number Publication Date
JPH03291131A true JPH03291131A (en) 1991-12-20
JP2851909B2 JP2851909B2 (en) 1999-01-27

Family

ID=14073828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9312690A Expired - Lifetime JP2851909B2 (en) 1990-04-10 1990-04-10 Continuous casting method of hollow slab

Country Status (1)

Country Link
JP (1) JP2851909B2 (en)

Also Published As

Publication number Publication date
JP2851909B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
JP2851909B2 (en) Continuous casting method of hollow slab
JPH03291132A (en) Apparatus for continuously casting hollow cast billet
JP2003266151A (en) Continuous casting apparatus and its method
JP3068153B2 (en) Continuous casting equipment for hollow slabs
JPS5931415B2 (en) Hollow tube manufacturing method and device
JPH03294045A (en) Apparatus for continuously casting hollow cast billet
JP2978207B2 (en) Continuous casting equipment for hollow slabs
US6520246B2 (en) Method and device for continuous casting of molten materials
JP2555768B2 (en) Continuous metal casting apparatus and casting method
JPS61266155A (en) Method and apparatus for continuous casting of clad ingot
JPH03294057A (en) Apparatus for continuously casting hollow cast billet
JPH09164465A (en) Method and device for vertical die cast
JPH0475110B2 (en)
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
JPH08141705A (en) Cold wall induction melting continuous casting apparatus
JPS5853354A (en) Continuous casting method for steel
JPS63188451A (en) Vertical type continuous casting apparatus
JPS58212842A (en) Continuous casting method of thin metallic plate
JPS6213243A (en) Continuous casting method with heated casting mold
JPS6289549A (en) Continuous casting method for hollow billet
JPH0890172A (en) Production of small lot of cast slab in continuous casting
JPS59113156A (en) Manufacture of lead free-cutting steel
JPS58212843A (en) Continuous casting method of thin metallic plate
JPH04178242A (en) Method and device for casting pipe continuously
JPS58187247A (en) Continuous casting method of thin metallic plate