JPH03285321A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH03285321A
JPH03285321A JP8792690A JP8792690A JPH03285321A JP H03285321 A JPH03285321 A JP H03285321A JP 8792690 A JP8792690 A JP 8792690A JP 8792690 A JP8792690 A JP 8792690A JP H03285321 A JPH03285321 A JP H03285321A
Authority
JP
Japan
Prior art keywords
anode
film
dielectric film
electrolyte
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8792690A
Other languages
Japanese (ja)
Inventor
Masao Fukuyama
正雄 福山
Toshikuni Kojima
小島 利邦
Soji Tsuchiya
土屋 宗次
Yasuo Kudo
康夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8792690A priority Critical patent/JPH03285321A/en
Publication of JPH03285321A publication Critical patent/JPH03285321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To minimize the leakage current while raising the withstand voltage by a method wherein a dielectric film formed by anode-oxidizing an anode valve metal in sulfuric acid solution is provided. CONSTITUTION:A formation film to be a dielectric film 3 is formed by anode- oxidizing the surface of a valve metallic foil 2 with anode lead; next, a manganese oxide layer 4 is formed on the film 3; the film 3 with the manganese oxide layer 4 laminated thereon is immersed in an electrolyte solution containing a polymerous monomer and holding electrolyte to lamination-form an electrolytic polymerizing conductive high molecular film 5. Next, after lamination-forming a graphite layer 6 and a silver paste layer 7 using carbon paste, a cathode lead 8 is soldered 9 to complete the title solid electrolytic capacitor. In such a constitution, it is recommended to use polypyrrole or polythiophene for the solid electrolyte while aluminum for the anode valve metal.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電解質として固体電解質を用いた固体KMコン
デンサに関するものでアル。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a solid KM capacitor using a solid electrolyte as an electrolyte.

従来の技術 近年、電気機器のデジタル化にともない、そこで使用さ
れるコンデンサは小型大容量で高周波領域においてのイ
ンピーダンスが低いものが要求されている。このような
中、導電性固体を電解質として用いた固体電解コンデン
サの開発が盛んである。
2. Description of the Related Art In recent years, with the digitalization of electrical equipment, capacitors used therein are required to be small, large in capacity, and have low impedance in a high frequency range. Under these circumstances, solid electrolytic capacitors using conductive solids as electrolytes are being actively developed.

従来、固体電解質としては二酸化マンガンが用いられて
きたが、二酸化マンガンの抵抗が高いために高周波領域
で十分低いインピーダンスを得ることはできなかった。
Conventionally, manganese dioxide has been used as a solid electrolyte, but due to the high resistance of manganese dioxide, it has not been possible to obtain sufficiently low impedance in the high frequency range.

これに対し、導電性が高く陽極酸化性の優れた有機半導
体、7.7.8.8゜デトラノアノキノジメタンコンブ
レノクス塩(以下TCNQ塩と略す)を固体電解質とし
て用いることが提案されている(特開昭56−1077
7号公報)。このよりなTCNQ塩を用いた固体電解コ
ンデンサでは、周波数特性及び温度特性が著しく改善さ
れ低い漏れ電流特性も達成されている。さらに最近では
、ビロール、チオフェンなどの複素環式化合物上ツマ−
を支持電解質を用いて電解重合することにより、支持電
解質のアニオンをドーパントとして含む高導電性高分子
を陽極体上に形成し、これを電解質として用いる固体電
解コンデンサが提案されている(特開昭60−371]
/1号公報)。また、導電性高分子の電解型合力法とじ
ては誘電体皮膜上に金属または導電性を有する金属化合
物を付着させた後、重合開始電極を前記金属または金属
酸化物に近接させ電解重合により導電性高分子を形成す
る固体電解コンデンサの製造方法が提案されている(特
開昭64−32619号公報あ発明が解決しようとする
課題 しかしながら、固体電解質は陽極酸化性が液体電解質よ
り劣り誘電体皮膜の修復能力が低いため、固体電解質を
用いて作製したコンデンサの耐電圧は一般に液体電解質
を用いた場合に比べかなり低くなってしまうという欠点
がある。このため、固体電解質で誘電体皮膜を被覆する
前に良質な誘電体皮膜を形成しておく必要がある。なお
、電解重合で形成した導電性高分子を固体電解してとし
て使う場合には、電解重合中に酸化皮膜が腐食されるこ
とがあり良質な誘電体皮膜を形成しておく必要性が特に
大きい。さらに、陽極弁金属の端面などは他の部分と同
様な良質な誘電体皮膜を形成することか困難であり、こ
のような部分が弱点となりコンデンサの漏れ電流を大き
くし耐圧を低下させてしまうという欠点がある。
In response, it has been proposed to use 7.7.8.8° detranoanoquinodimethane comblenox salt (hereinafter abbreviated as TCNQ salt), an organic semiconductor with high conductivity and excellent anodic oxidability, as a solid electrolyte. (Unexamined Japanese Patent Publication No. 56-1077)
Publication No. 7). A solid electrolytic capacitor using this solid TCNQ salt has significantly improved frequency characteristics and temperature characteristics, and has also achieved low leakage current characteristics. More recently, virol, thiophene, and other compounds have been studied.
A solid electrolytic capacitor has been proposed in which a highly conductive polymer containing the anion of the supporting electrolyte as a dopant is formed on the anode body by electrolytically polymerizing it using a supporting electrolyte, and this is used as the electrolyte (Japanese Patent Application Laid-Open No. 60-371]
/No.1 Publication). In addition, in the electrolytic resultant method for conductive polymers, a metal or a conductive metal compound is deposited on a dielectric film, and then a polymerization initiating electrode is brought close to the metal or metal oxide to conduct electrolytic polymerization. A method for manufacturing a solid electrolytic capacitor in which a liquid electrolyte is formed has been proposed (Japanese Unexamined Patent Publication No. Sho 64-32619. Problems to be Solved by the Invention) However, solid electrolytes have inferior anodic oxidation properties compared to liquid electrolytes, and a dielectric film cannot be formed. Due to the low repair ability of solid electrolytes, the withstand voltage of capacitors made using solid electrolytes is generally much lower than when using liquid electrolytes.For this reason, the dielectric film is coated with a solid electrolyte. It is necessary to form a high-quality dielectric film beforehand.If a conductive polymer formed by electrolytic polymerization is used as a solid electrolyte, the oxide film may be corroded during electrolytic polymerization. It is particularly important to form a high-quality dielectric film on the end face of the anode valve metal.Furthermore, it is difficult to form a high-quality dielectric film on the end face of the anode valve metal. This has the disadvantage of increasing the leakage current of the capacitor and lowering the withstand voltage.

本発明では、上記の課題を解決し耐電圧の高い固体電解
コンデンサを提供することを目的としている。
The present invention aims to solve the above problems and provide a solid electrolytic capacitor with high withstand voltage.

課題を解決するための手段 この目的を達成するために本発明の固体電解コンデンサ
では、硫酸溶液中で陽極弁金属を陽極酸化して形成した
誘電体皮膜を設けることを特徴としている。
Means for Solving the Problems In order to achieve this object, the solid electrolytic capacitor of the present invention is characterized in that it is provided with a dielectric film formed by anodizing the anode valve metal in a sulfuric acid solution.

作    用 本発明では、硫酸溶液中で陽極弁金属を陽極酸化して形
成した誘電体皮膜を設けることを特徴としている。硫酸
溶液は強酸であるため陽極弁金属上の不純物を溶解し欠
陥の原因となるものを取り除く作用がある。そのため、
陽極弁金属上に良質な誘電体皮膜を均一に作製すること
が可能となる。
Function The present invention is characterized by providing a dielectric film formed by anodizing the anode valve metal in a sulfuric acid solution. Since the sulfuric acid solution is a strong acid, it has the effect of dissolving impurities on the anode valve metal and removing those that cause defects. Therefore,
It becomes possible to uniformly produce a high quality dielectric film on the anode valve metal.

さらに、硫酸溶液中で陽極酸化して形成する誘電体皮膜
は電圧を印加する限り成長するため、端面のように誘電
体皮膜が形成しにくいところにも良質な誘電体皮膜を被
覆することが可能となる。なお、硫酸溶液中で陽極酸化
して誘電体皮膜を形成した後に中性の化成液中で陽極酸
化することにより、硫酸溶液中で陽極酸化して形成した
誘電体皮膜を設ける効果が大きくなることも明らかKな
った。
Furthermore, since the dielectric film formed by anodic oxidation in a sulfuric acid solution grows as long as voltage is applied, it is possible to coat areas where it is difficult to form a dielectric film, such as end faces, with a high-quality dielectric film. becomes. Note that by anodizing in a sulfuric acid solution to form a dielectric film and then anodizing in a neutral chemical solution, the effect of forming the dielectric film formed by anodizing in a sulfuric acid solution will be greater. It was clearly K.

以上のことより、良質な誘電体皮膜で陽極金属全面を被
覆することができ固体電解質を用いても、漏れ電流が小
さく耐電圧の高い優れたコンデンサを作製することが可
能となる。
From the above, it is possible to cover the entire surface of the anode metal with a high-quality dielectric film, and even with the use of a solid electrolyte, it is possible to manufacture an excellent capacitor with low leakage current and high withstand voltage.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

この発明では、具体的には、以下のようにして固体電解
コンデンサを作る。
Specifically, in this invention, a solid electrolytic capacitor is manufactured as follows.

まず、図において陽極リード1付の弁金属筋2表面に硫
酸溶液を用いた陽極酸化を施すことにより、第1図にみ
るように、誘電体皮膜3である化成膜を形成し、ついで
、同皮膜3にマンガン酸化物層4を積層しておいてから
、重合性上ツマ−と支持電解質を含む電解液中に浸漬し
、マンガン酸化物層4の表面に電解重合導電性高分子膜
5を積層形成する。
First, as shown in FIG. 1, the surface of the valve metal wire 2 with the anode lead 1 is anodized using a sulfuric acid solution to form a chemical film, which is the dielectric film 3, and then, After a manganese oxide layer 4 is laminated on the same film 3, it is immersed in an electrolytic solution containing a polymerizable upper layer and a supporting electrolyte, and an electropolymerized conductive polymer film 5 is placed on the surface of the manganese oxide layer 4. Laminated and formed.

電解重合導電性高分子膜5を積層形成し、ついで、カー
ボンペーストによるグラファイト層(他力の電極)6、
銀ペースト層(他力の電極)7を積層形成してから、陰
極リード8を半田9で付ければ、固体電解コンデンサの
完成である。なお、弁金属筋2が一力の電極であること
はいう1でもない。
An electropolymerized conductive polymer film 5 is laminated, and then a graphite layer (an external electrode) 6 of carbon paste is formed.
After laminating a silver paste layer (an external electrode) 7, a cathode lead 8 is attached with solder 9, and the solid electrolytic capacitor is completed. In addition, it is not the case that the valve metal muscle 2 is a single force electrode.

次に本発明の実施例を更に詳しく述べる。Next, embodiments of the present invention will be described in more detail.

(実施例]) かしめにより陽極リードをつけた7XIOn+n+  
のアノシミニウノA l: ノ千ド箔を15%硫酸水容
液を用い室温で2 mA / ]コの割合で定電流を印
加して陽極酸化により誘電体皮膜を形成させた。次に、
3チアジピン酸アンモニウム水溶液を用い約70て゛で
70 V印加して陽極酸化により誘電体皮膜を形成させ
た。その後、硝酸マンガン30%水溶液に浸し自然乾燥
させた後200℃で30分加熱して熱分解二酸化マンガ
ンを付着させた。次にこの陽極箔をビロール(05M)
、)リイソブロビルナフタレンスルホン酸ナトリウム(
0,1M )と水からなる電解液に浸し、ポリピロール
で被覆した重合開始電極を陽極箔と接触させた後に、重
合開始電極に2mA/1コの割合で定電流を30分間印
加してポリピロール電解重合膜を陽極箔上に形成させた
。水を用いて洗浄し乾燥後、電解重合膜上にカーボンペ
ーストと銀ペーストを順次塗布して陰極リードを取り出
してコンデンサを10個作製した。
(Example) 7XIOn+n+ with anode lead attached by caulking
Anoshimini Uno Al: Nosendo foil was anodized to form a dielectric film by applying a constant current at a rate of 2 mA/] at room temperature using a 15% sulfuric acid aqueous solution. next,
A dielectric film was formed by anodic oxidation using an aqueous solution of ammonium 3-thiadipate and applying 70 V at about 70°C. Thereafter, it was immersed in a 30% aqueous solution of manganese nitrate, air-dried, and then heated at 200° C. for 30 minutes to adhere pyrolytic manganese dioxide. Next, apply this anode foil to Viroll (05M).
,) Sodium lyisobrobynaphthalene sulfonate (
A polymerization initiating electrode coated with polypyrrole and immersed in an electrolytic solution consisting of 0.1 M) and water is brought into contact with an anode foil, and then a constant current of 2 mA/1 is applied to the polymerization initiating electrode for 30 minutes to perform polypyrrole electrolysis. A polymeric film was formed on the anode foil. After washing with water and drying, carbon paste and silver paste were sequentially applied onto the electropolymerized membrane, the cathode leads were taken out, and 10 capacitors were fabricated.

20Vでエージングを行った後の、耐電圧の平均値は4
47vであった。比較のため、硫酸水溶液による化成を
行わない以外は上記と同じ条件でコンデンサを10個作
製した。この場合の耐電圧は37.2V であり、本発
明によるコンデンサが優れていることが明かになった。
After aging at 20V, the average value of withstand voltage is 4
It was 47v. For comparison, 10 capacitors were fabricated under the same conditions as above, except that chemical formation using an aqueous sulfuric acid solution was not performed. The withstand voltage in this case was 37.2V, which revealed that the capacitor according to the present invention was excellent.

なお、120H2における容量、16V2分印加後の漏
れ電流の平均値は硫酸水溶液による化成の有無によらず
約5.5μF、005μAであり、硫酸水溶液による化
成が容量や漏れ電流の値に影響しないことも明らかにな
った。
In addition, the average value of the capacitance at 120H2 and the leakage current after applying 16V for 2 minutes is approximately 5.5 μF and 0.05 μA regardless of the presence or absence of formation with the sulfuric acid aqueous solution, indicating that formation with the sulfuric acid aqueous solution does not affect the capacity or leakage current value. was also revealed.

(実施例2) トリイソプロピルナフタレンスルホン酸ナトリウムに代
えてn−ブチルリン酸エステルを用いた以外は実施例1
と同様にしてコンデンサを作製した。20 Vでエージ
ングを行った後の耐電圧の平均値は501■であった。
(Example 2) Example 1 except that n-butyl phosphate was used in place of sodium triisopropylnaphthalene sulfonate.
A capacitor was fabricated in the same manner. The average value of the withstand voltage after aging at 20 V was 501 ■.

比較のために、硫酸水溶液による化成を行わない以外は
上記と同じ条件でコンデンサを10個作製した。この場
合の、耐電圧の平均値Fi、40.4Vであり、 本発
明によるコンデンサが優れていることが明かになった。
For comparison, 10 capacitors were fabricated under the same conditions as above, except that chemical formation using an aqueous sulfuric acid solution was not performed. In this case, the average value of withstand voltage Fi was 40.4V, which revealed that the capacitor according to the present invention is excellent.

壕だ、硫酸水溶液による化成の有無によってコンデンサ
の容量や漏れ電流の値は影響されないことも確認された
It was also confirmed that the capacitance and leakage current values of the capacitor were not affected by the presence or absence of chemical formation using an aqueous sulfuric acid solution.

(実施例3) ビロール(0,5M)、)リイソブロビルナフタレンス
ルホン酸ナトリウム(0,1M )と水からなる電解液
に代えて、チオフェン(0,5M )、テトラブチルア
ンモニウムバラトルエン酸ナトリウム(0,1M )と
アセトニトリルとからなる電解液を用いた以外は実施例
1と同様にしてコンデンサを作製した。20 Vでエー
ジングを行った後の耐電圧の平均値tri 45.7 
Vであった。比較のために、硫酸水溶液による化成を行
わない以外は上記と同じ条件でコンデンサを10個作製
した。この場合の、耐電圧の平均値は375vであり、
 本発明によるコンデンサが優れていることが明かにな
った。
(Example 3) Thiophene (0.5M), tetrabutylammonium sodium balatoluenate ( A capacitor was produced in the same manner as in Example 1 except that an electrolytic solution consisting of 0.1 M) and acetonitrile was used. Average value of withstand voltage after aging at 20 V tri 45.7
It was V. For comparison, 10 capacitors were fabricated under the same conditions as above, except that chemical formation using an aqueous sulfuric acid solution was not performed. In this case, the average value of withstand voltage is 375v,
It has become clear that the capacitor according to the invention is superior.

また、硫酸水溶液による化成の有無によってコンデンサ
の容量や漏れ電流の値は影響されないことも確認された
It was also confirmed that the capacitance and leakage current value of the capacitor were not affected by the presence or absence of chemical formation using an aqueous sulfuric acid solution.

なお、本発明の特徴は硫酸溶液中で湯漬弁金属を陽極酸
化して形成した誘電体皮膜を設けることであり、その前
後に他の方法で化成を行ってもその効果はあり、本発明
はこのことによって限定されない。
Note that the feature of the present invention is to provide a dielectric film formed by anodizing the immersion valve metal in a sulfuric acid solution, and the effect can be obtained even if chemical formation is performed by other methods before or after the anodization. It is not limited by this.

なお、実施例では電解質としてトリイソプロピルナフタ
レンスルホン酸ナトリウム、n−ブチルリン酸エステル
及びテトラブチルアンモニウムバラトルエン酸ナトリウ
ムを用いた場合についてのみ述べたが、その他のもので
も良く、また支持電解質を混合して用いることもでき1
本発明は支持電解質の種類によって限定されない。さら
に、固体電解質を複合化するために重合電解液に添加物
を入れてもよく、このことによって本発明は限定されな
い。
In addition, in the examples, only the case where sodium triisopropylnaphthalene sulfonate, n-butyl phosphate ester, and sodium tetrabutylammonium balatoluenate were used as the electrolyte was described, but other materials may be used, and supporting electrolytes may also be mixed. You can also use 1
The invention is not limited by the type of supporting electrolyte. Additionally, additives may be added to the polymerized electrolyte to compose the solid electrolyte, and the invention is not limited thereby.

発明の効果 以上のように本発明では、硫酸溶液中で陽極弁金属を陽
極酸化して形成した誘電体皮膜を設けることにより、漏
れ電流が小さく耐電圧が高いコンデンサを実現できると
いう利点を有する。
Effects of the Invention As described above, the present invention has the advantage that by providing a dielectric film formed by anodizing the anode valve metal in a sulfuric acid solution, a capacitor with low leakage current and high withstand voltage can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の一実施例における固体電解コンデンサの
断面図である。 】 陽極リード、2・・弁金属箔、3・・・誘電体皮膜
、4 ・マンガン酸化物層、5・・・電解重合導電性高
分子膜、6 グラファイト層、7 銀ペースト層、8 
陰極リード、9・−半田。
The figure is a sectional view of a solid electrolytic capacitor in one embodiment of the present invention. ] Anode lead, 2... Valve metal foil, 3... Dielectric film, 4 - Manganese oxide layer, 5... Electropolymerized conductive polymer film, 6 Graphite layer, 7 Silver paste layer, 8
Cathode lead, 9 - solder.

Claims (3)

【特許請求の範囲】[Claims] (1)陽極弁金属上に硫酸化成皮膜を介して設けられた
固体電解質を具備することを特徴とする固体電解コンデ
ンサ。
(1) A solid electrolytic capacitor characterized by comprising a solid electrolyte provided on an anode valve metal via a sulfuric acid conversion film.
(2)固体電解質がポリピロールまたはポリチオフェン
である請求項1記載の固体電解コンデンサ。
(2) The solid electrolytic capacitor according to claim 1, wherein the solid electrolyte is polypyrrole or polythiophene.
(3)陽極弁金属としてアルミニウムを用いた請求項1
記載の固体電解コンデンサ。
(3) Claim 1 in which aluminum is used as the anode valve metal
The solid electrolytic capacitor described.
JP8792690A 1990-04-02 1990-04-02 Solid electrolytic capacitor Pending JPH03285321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8792690A JPH03285321A (en) 1990-04-02 1990-04-02 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8792690A JPH03285321A (en) 1990-04-02 1990-04-02 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03285321A true JPH03285321A (en) 1991-12-16

Family

ID=13928526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8792690A Pending JPH03285321A (en) 1990-04-02 1990-04-02 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03285321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729428A (en) * 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US6072694A (en) * 1998-09-30 2000-06-06 Kemet Electronics Corporation Electrolytic capacitor with improved leakage and dissipation factor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729428A (en) * 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US6072694A (en) * 1998-09-30 2000-06-06 Kemet Electronics Corporation Electrolytic capacitor with improved leakage and dissipation factor
US6191013B1 (en) 1998-09-30 2001-02-20 Kemet Electronics Corporation Process for improving leakage and dissipation factor of solid electrolytic capacitors employing conductive polymer cathodes

Similar Documents

Publication Publication Date Title
JP2765453B2 (en) Method for manufacturing solid electrolytic capacitor
US5189770A (en) Method of making solid electrolyte capacitor
KR100365370B1 (en) Method for producing a solid electrolytic capacitor
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP3362600B2 (en) Manufacturing method of capacitor
JPH03285321A (en) Solid electrolytic capacitor
JP3864651B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0563009B2 (en)
JPH0442912A (en) Manufacture of solid electrolytic capacitor
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JP2775762B2 (en) Solid electrolytic capacitors
JPH05234826A (en) Manufacture of capacitor
JPH0274016A (en) Solid electrolytic condenser
JP2906473B2 (en) Method for manufacturing solid electrolytic capacitor
JPH10321474A (en) Solid electrolytic capacitor and its manufacture
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0453117A (en) Solid electrolytic capacitor and its manufacture
JP2001102256A (en) Method for manufacturing solid electrolytic capacitor
JPH0521296A (en) Manufacture of solid electrolytic capacitor
JPH02298011A (en) Solid electrolytic capacitor