JPH03282149A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH03282149A
JPH03282149A JP2084444A JP8444490A JPH03282149A JP H03282149 A JPH03282149 A JP H03282149A JP 2084444 A JP2084444 A JP 2084444A JP 8444490 A JP8444490 A JP 8444490A JP H03282149 A JPH03282149 A JP H03282149A
Authority
JP
Japan
Prior art keywords
heat storage
heat
time
heat accumulating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2084444A
Other languages
Japanese (ja)
Inventor
Yofumi Tezuka
手塚 與文
Yoshiaki Tanimura
佳昭 谷村
Hideaki Nagatomo
秀明 永友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2084444A priority Critical patent/JPH03282149A/en
Priority to DE69109532T priority patent/DE69109532T2/en
Priority to EP91302782A priority patent/EP0449641B1/en
Priority to US07/677,428 priority patent/US5165250A/en
Publication of JPH03282149A publication Critical patent/JPH03282149A/en
Priority to HK98105504A priority patent/HK1006328A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To utilize heat of a heat accumulation device and to make a fast production of hot air when a heating operation is started by a method wherein a heat accumulating operation time is compared with a predetermined time and a heat accumulating non-operated time for a next time is determined in response to a value of the time. CONSTITUTION:During a heat accumulating operation, a temperature T of a heat accumulating pipe of a heat accumulating or heat discharging heat exchanger 7 is detected by a temperature sensor 20 and when the pipe temperature T reaches a predetermined temperature To more than a phase variation temperature of the heat accumulation material, the heat accumulating operation is stopped and concurrently a timer 21 is started to operate in order to measure a heat accumulating operation stop time (t). As a predetermined initial time (to) elapses, the heat accumulating operation is started again and concurrently the timer 21 is started in order to measure a heat accumulating operation time. In case that the heat accumulating operation time (t) is longer than (tM) in comparison with the heat accumulating operation time (tM) set in advance, a heat accumulating non-operated time (to) for the next time operation is shortened. In turn, if it is shorter than (tM), the heat accumulating non- operation time (to) for the next time is made long.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、冷凍サイクル内に蓄熱器を設けたヒートポ
ンプ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat pump device in which a heat storage device is provided within a refrigeration cycle.

・〔従来の技術〕 第5図は従来のと一トポンプ装置を示したものて、例え
ば、特開昭63−1357.53号公報にボされている
ものである。この装置は、冷凍サイクル内に蓄熱槽を設
け、夜間、蓄熱槽に貯えられた熱を暖房の立上がり時に
利用して高暖房能力を出すようにしたものである。
- [Prior Art] Fig. 5 shows a conventional toto pump device, which is disclosed in, for example, Japanese Patent Application Laid-open No. 1357.53/1983. This device has a heat storage tank installed in the refrigeration cycle, and uses the heat stored in the heat storage tank at night when heating starts up to provide high heating capacity.

図において、101はコンプレッサ、102は四方弁で
ある。この四方弁102には、室外側熱交換器103、
膨張機構としての膨張弁104、蓄熱槽105および室
内側熱交換器106が順次接続され、これらの要素が基
本的ヒートポンプ冷凍サイクルを構成している。さらに
、前記蓄熱槽105と室内側熱交換器106との間には
第1電磁弁107と立上がり用膨張弁108が並列に設
けられている。また、前記膨張弁104には第1と第2
のバスバス回路109,110が設けられ、第1のバイ
パス回路109には第2電磁弁111と逆止弁112が
、第2のバイパス回路110には第3電磁弁113と逆
止弁114がそれぞれ設けられている。
In the figure, 101 is a compressor, and 102 is a four-way valve. This four-way valve 102 includes an outdoor heat exchanger 103,
An expansion valve 104 as an expansion mechanism, a heat storage tank 105, and an indoor heat exchanger 106 are connected in sequence, and these elements constitute a basic heat pump refrigeration cycle. Furthermore, a first electromagnetic valve 107 and a rising expansion valve 108 are provided in parallel between the heat storage tank 105 and the indoor heat exchanger 106. In addition, the expansion valve 104 has first and second valves.
bus bus circuits 109 and 110 are provided, the first bypass circuit 109 has a second solenoid valve 111 and a check valve 112, and the second bypass circuit 110 has a third solenoid valve 113 and a check valve 114, respectively. It is provided.

このように構成されたヒートポンプ装置において、蓄熱
#105の熱を利用して暖房立上がり運転を行う場合に
は、第6図に示すようになる。すなわち、第1電磁弁1
07が閉じ、第2電磁弁111が開き、室内側熱交換器
106のファン(図示しない)のみがオンとなり、室内
側熱交換器106が凝縮器として作用し、蓄熱槽105
が蒸発器として作用して蓄熱槽105の熱を汲み上げる
。この運転を続けると蓄熱槽105の温度は低下するが
、蒸発温度が外気温度より高い間は外気より吸熱するこ
とにより高暖房能力を出せる。
In the heat pump device configured in this way, when the heating start-up operation is performed using the heat of the heat storage #105, the situation is as shown in FIG. 6. That is, the first solenoid valve 1
07 is closed, the second solenoid valve 111 is opened, and only the fan (not shown) of the indoor heat exchanger 106 is turned on, so that the indoor heat exchanger 106 acts as a condenser, and the heat storage tank 105
acts as an evaporator and pumps up heat from the heat storage tank 105. If this operation continues, the temperature of the heat storage tank 105 will decrease, but as long as the evaporation temperature is higher than the outside air temperature, high heating capacity can be achieved by absorbing heat from the outside air.

また、蓄熱槽105の温度が低下し、高暖房能力を出せ
なくなったときには、第7図に示す暖房蓄熱運転に入る
。これは除霜のための蓄熱を行うサイクルで、このサイ
クルでは、室内側熱交換器106および室外熱交換器1
03のファン(図示しない)がオンとなり、室内側熱交
換器106と蓄熱槽105が凝縮器として作用し、暖房
と蓄熱を同時に行う。
Furthermore, when the temperature of the heat storage tank 105 decreases and high heating capacity cannot be achieved, the heating heat storage operation shown in FIG. 7 is entered. This is a cycle for storing heat for defrosting, and in this cycle, the indoor heat exchanger 106 and the outdoor heat exchanger 1
The fan 03 (not shown) is turned on, and the indoor heat exchanger 106 and heat storage tank 105 act as a condenser to perform heating and heat storage at the same time.

〔発明が解決しようとするB題〕[Problem B that the invention attempts to solve]

従来のヒートポンプ装置は、以上のように構成されてい
るので、暖房運転停止時に蓄熱運転を長時間行なわない
場合には、蓄熱槽の温度は低くなって蓄熱材は固化して
いる。従って、この状態で暖房蓄熱運転を開始すると、
暖房運転立上り時の吹出空気温度の上昇に時間がかかる
という問題があった。
Since the conventional heat pump device is configured as described above, if the heat storage operation is not performed for a long time when the heating operation is stopped, the temperature of the heat storage tank becomes low and the heat storage material is solidified. Therefore, if heating heat storage operation is started in this state,
There was a problem in that it took time for the temperature of the blown air to rise at the start of heating operation.

この発明は、上記のような間則点を解消するためになさ
れたもので、暖房運転立上り時に、蓄熱器の熱を利用し
て高温度の風をすぐに出せるようにしたヒートポンプ装
置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and provides a heat pump device that can immediately emit high-temperature air using the heat of the heat storage device at the start of heating operation. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るヒートポンプ装置は、冷凍サイクル内に
蓄熱器を設け、この蓄熱器に貯えた熱を利用して暖房運
転立上がり時の暖房能力を高めるようにした装置であっ
て、前記蓄熱器に内蔵されている蓄放熱熱交換器の蓄熱
側の配管温度を検出する温度検出手段と、前記配管温度
か所定の温度に到達するまでの蓄熱運転時間を811I
Ilシて蓄熱運動停止の信号を出力するとともに、蓄熱
運動停止後の所定の運転不動作時間を積算して蓄熱運転
開始の信号を出力する時間積算手段と、前記蓄熱運転時
間をあらかじめ設定した時間と比較し、その長短により
次回の蓄熱運転不動時間を決定する制御手段を備えてい
るものである。
A heat pump device according to the present invention is a device in which a heat storage device is provided in a refrigeration cycle, and the heat stored in the heat storage device is used to increase the heating capacity at the start of heating operation, and the heat pump device has a built-in heat storage device in the heat storage device. temperature detection means for detecting the pipe temperature on the heat storage side of the heat storage/radiation heat exchanger, and the heat storage operation time until the pipe temperature reaches a predetermined temperature.
a time integrating means for outputting a signal to stop the heat storage operation, and outputting a signal to start the heat storage operation by integrating a predetermined non-operational time after the stop of the heat storage movement; and a preset time for the heat storage operation time. The system is equipped with a control means that determines the next heat storage operation immobility time based on the length of the period.

(作用) この発明によるヒートポンプ装置においては、温度検出
手段によって検出された配管温度があらかじめ設定され
た温度(蓄熱材相変化温度以上)に到達したら蓄熱運転
が停止され、時間積算手段が停止後の時間を積算する。
(Function) In the heat pump device according to the present invention, when the pipe temperature detected by the temperature detection means reaches a preset temperature (heat storage material phase change temperature or higher), the heat storage operation is stopped, and the time integration means Accumulate time.

そして、その積算時間があらかじめ設定した初回の蓄熱
運転開始までの時間(蓄熱運転不動作時間)を越えると
、再び蓄熱運転が開始され、開始と同時に時間積算手段
が蓄熱運転時間を積算する。そして、配管温度があらか
じめ設定した温度に到達したら蓄熱運転が停止され、同
時に、時間積算手段が蓄熱運転時間の積算を停止する。
Then, when the accumulated time exceeds a preset time until the start of the first heat storage operation (thermal storage operation non-operation time), the heat storage operation is started again, and at the same time as the start, the time integration means integrates the heat storage operation time. Then, when the pipe temperature reaches a preset temperature, the heat storage operation is stopped, and at the same time, the time integration means stops integrating the heat storage operation time.

この蓄熱運転時間があらかじめ設定さ4た時間と比較し
て短かい場合は、次回の蓄熱運転不動作時間を長くする
。逆に、前記蓄熱運転時間が長い場合は、次回の蓄熱運
転不動作時間を短くする。
If this heat storage operation time is shorter than the preset time, the next heat storage operation non-operation time is lengthened. Conversely, if the heat storage operation time is long, the next heat storage operation non-operation time is shortened.

以上のように、この発明のヒートポンプ装置によれば、
常に蓄熱運転をタイミングよく開始または停止させて、
蓄熱状態を保持することができるので、暖房運転立上り
時に、この蓄熱を利用してすぐに高温の風を出すことが
できる。
As described above, according to the heat pump device of the present invention,
Always start or stop heat storage operation in a timely manner,
Since the heat storage state can be maintained, the heat storage can be used to immediately blow out high-temperature air at the start of heating operation.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図〜第4図によって説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図において、1は圧縮機、2は室内熱交換器、3は
室外熱交換器、4は蓄熱器である。蓄熱器4は、第1冷
媒配管パス5と第2冷媒配管パス6を設けた蓄放熱熱交
換器7を内蔵するとともに、潜熱型の蓄熱材を充填した
構造のものである。
In FIG. 1, 1 is a compressor, 2 is an indoor heat exchanger, 3 is an outdoor heat exchanger, and 4 is a heat storage device. The heat storage device 4 has a built-in heat storage/radiation heat exchanger 7 provided with a first refrigerant piping path 5 and a second refrigerant piping path 6, and is filled with a latent heat type heat storage material.

8は圧縮機1と室内熱交換器3を接続する第1接続配管
で、9はその途中に接続された四方弁である。10は室
内熱交換器2と室外熱交換器3を接続する第2接続配管
で、その途中には、室内熱交換器2側から第1開閉弁1
1、第1流量制御器(たとえば毛細管)12、第1冷媒
配管バス5および第2流量制御器(たとえば温度式膨張
弁)13の順序て接続されている。
8 is a first connection pipe that connects the compressor 1 and the indoor heat exchanger 3, and 9 is a four-way valve connected in the middle thereof. 10 is a second connection pipe that connects the indoor heat exchanger 2 and the outdoor heat exchanger 3;
1, a first flow rate controller (for example, a capillary tube) 12, a first refrigerant pipe bus 5, and a second flow rate controller (for example, a thermostatic expansion valve) 13 are connected in this order.

14は上記要素11,12.5.13をバイパスする形
で第2接続配管10に接続された第17(イパス配管で
、その途中には、室内熱交換器2側から第2開閉弁15
と逆止弁16が順次接続されている。
Reference numeral 14 denotes a 17th (ipass pipe) connected to the second connection pipe 10 in a manner that bypasses the elements 11, 12.5.
and check valve 16 are connected in sequence.

17は室外熱交換器3と四方弁9を接続する第3接続配
管で、その途中には、3方弁(流路切換器)18が接続
されている。19は四方弁9をバイパスする形で3方弁
18と圧縮機1を接続する第2バイパス配管で、その途
中には、第2冷媒配管6が接続されている。
A third connecting pipe 17 connects the outdoor heat exchanger 3 and the four-way valve 9, and a three-way valve (flow path switching device) 18 is connected in the middle thereof. A second bypass pipe 19 connects the three-way valve 18 and the compressor 1 in a manner that bypasses the four-way valve 9, and a second refrigerant pipe 6 is connected in the middle thereof.

20は蓄放熱熱交換器7の蓄熱側配管である第1冷媒配
管バス5に設けられている温度センサーで、上記蓄熱側
配管温度を検出してこれを後述するコントローラに出力
するセンサーである。
Reference numeral 20 denotes a temperature sensor provided in the first refrigerant piping bus 5, which is the heat storage side piping of the heat storage/radiation heat exchanger 7, which detects the temperature of the heat storage side piping and outputs it to a controller to be described later.

21はタイマーである。このタイマー21は、上記配管
温度が所定温度に到達するまでの蓄熱運転時間をカウン
トして蓄熱運転停止の信号を出力するとともに、蓄熱運
動停止後の所定の運転不動作時間をカウントして蓄熱運
動開始の信号を出力する。
21 is a timer. This timer 21 counts the heat storage operation time until the pipe temperature reaches a predetermined temperature and outputs a signal to stop the heat storage operation, and also counts the predetermined non-operation time after the heat storage movement is stopped and starts the heat storage operation. Outputs a start signal.

22は上記温度センサー20とタイマー21からの出力
により、蓄熱運転時間をあらかじめ設定した時間と比較
し、その長短により次回の蓄熱運転不動作時間(蓄熱運
転を再開するタイミング)を決定するコントローラであ
る。
22 is a controller that compares the heat storage operation time with a preset time based on the output from the temperature sensor 20 and timer 21, and determines the next heat storage operation inoperative time (timing to restart the heat storage operation) based on the length of the time. .

次に動作について説明する。Next, the operation will be explained.

まず、第2図の冷媒回路図を用いて蓄熱運転の動作につ
いて説明する。冷媒は矢印方向に流れ、第1開閉弁11
は開となり、第2開閉弁15は閉のままである。3方弁
18は室外熱交換器3から冷媒が4方弁2に流れるよう
に切換えられる。
First, the operation of the heat storage operation will be explained using the refrigerant circuit diagram shown in FIG. The refrigerant flows in the direction of the arrow, and the first on-off valve 11
is opened, and the second on-off valve 15 remains closed. The three-way valve 18 is switched so that refrigerant flows from the outdoor heat exchanger 3 to the four-way valve 2.

圧縮機1から吐出された高温高圧冷媒ガスは、室内熱交
換器2てほとんど熱交換されずに、ここを通過し、第1
流量制御器12によって若干液化凝縮し、ついで圧力を
高圧から中間圧まで減圧されたのちに、蓄熱器4の第1
冷媒配管バス5に流入して、ここで熱交換(液化凝縮)
し、その熱か蓄熱材に蓄熱される。このとき、中間圧力
はその圧力における飽和温度が蓄熱材の相変化温度より
高くなるように設定される。
The high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the indoor heat exchanger 2 with almost no heat exchange, and then passes through the indoor heat exchanger 2.
After being slightly liquefied and condensed by the flow rate controller 12, and then the pressure is reduced from high pressure to intermediate pressure, the first
The refrigerant flows into the piping bus 5, where it undergoes heat exchange (liquefaction and condensation).
Then, that heat is stored in the heat storage material. At this time, the intermediate pressure is set so that the saturation temperature at that pressure is higher than the phase change temperature of the heat storage material.

次に、中間圧の冷媒は、第2流量制御器13によって低
圧まで減圧され、室外熱交換器3で外気と熱交換されて
ガス化した後に、圧縮機1に吸入される。このように冷
媒は循環して、その熱が蓄熱器4の中の蓄熱材に蓄熱さ
れる。
Next, the intermediate-pressure refrigerant is reduced in pressure to a low pressure by the second flow rate controller 13, exchanged heat with outside air in the outdoor heat exchanger 3, and gasified, and then sucked into the compressor 1. In this way, the refrigerant circulates and its heat is stored in the heat storage material in the heat storage device 4.

次に、蓄熱運転の制御について第3図で説明する。Next, control of heat storage operation will be explained with reference to FIG. 3.

蓄熱運転中に、温度センサー20で蓄放熱熱交換器7の
蓄熱側配管温度Tを検出しくステップ1)、配管温度T
が蓄熱材の相変化温度以上のあらかしめ設定された温度
T0 (たとえば相変化温度17℃のヘキサデカンの場
合だと30℃)に到達したら(ステップ2)、蓄熱運転
を停止し、同時に、蓄熱運転停止時間(蓄熱運転不動作
時間)tを測定するためにタイマー21をスタートさせ
る(ステップ3)。そして、あらかしめ初期設定された
時間t。(たとえば蓄熱不動作時間60分)か経過した
ら(ステップ4)、再び前記蓄熱運転を開始させ、同時
に、蓄熱運転時間を測定するためにタイマー21をスタ
ートさせる(ステップ5)。そして、この蓄熱運転中に
、温度センサー20により蓄放熱熱交換器7の蓄熱側配
管温度Tを検出しくステップ6)、配管温度Tが上記温
度T。に到達したら(ステップ7)、蓄熱運転を停止し
、同時に、蓄熱運転時間測定タイマーを停止する(ステ
ップ8)。
During the heat storage operation, the temperature sensor 20 detects the heat storage side pipe temperature T of the heat storage/radiation heat exchanger 7.Step 1)
When reaches a preset temperature T0 (for example, 30°C in the case of hexadecane with a phase change temperature of 17°C) that is higher than the phase change temperature of the heat storage material (step 2), the heat storage operation is stopped, and at the same time, the heat storage operation is stopped. The timer 21 is started to measure the stop time (thermal storage operation non-operation time) t (step 3). Then, the initialized time t. (For example, the heat storage non-operation time of 60 minutes) has elapsed (step 4), the heat storage operation is started again, and at the same time, the timer 21 is started to measure the heat storage operation time (step 5). During this heat storage operation, the temperature sensor 20 detects the heat storage side pipe temperature T of the heat storage/radiation heat exchanger 7 (step 6), and the pipe temperature T becomes the above temperature T. When reaching (step 7), the heat storage operation is stopped, and at the same time, the heat storage operation time measurement timer is stopped (step 8).

この蓄熱運転時間tがあらかじめ設定された蓄熱運転時
間1.と比較して1.より長し1場合は(ステップ9)
、蓄熱運転がかかりすぎる、つまり外気が低く放熱ロス
が多いと判断して、次回の蓄熱運転不動作時間上〇を短
くする。すなわち、toの値をt。−α(αはあらかじ
め設定した時間、たとえば10分)とする(ステップ1
0)。
This heat storage operation time t is a preset heat storage operation time 1. Compared to 1. If it is longer than 1 (step 9)
, determines that the heat storage operation is taking too long, that is, the outside air is low and there is a lot of heat radiation loss, and shortens the next heat storage operation non-operation time (〇). That is, the value of to is t. −α (α is a preset time, e.g. 10 minutes) (Step 1
0).

また、逆にt2より短い場合は(ステップ9)、蓄熱運
転をあまり必要としない、つまり外気が高く放熱ロスが
少ないと判断して、次回の蓄熱不動作時間t。を長くす
る。すなわち、toの値をt0+αとする(ステップ1
1)。以上のように蓄熱運転を実施して、常に蓄熱状態
を保持して、次回の暖房運転に備えて待機する。
On the other hand, if it is shorter than t2 (step 9), it is determined that the heat storage operation is not so necessary, that is, the outside air is high and the heat radiation loss is small, and the next heat storage non-operation time t is set. lengthen. That is, the value of to is set to t0+α (step 1
1). The heat storage operation is carried out as described above, and the heat storage state is always maintained to stand by in preparation for the next heating operation.

次に、暖房運転立上り時の動作を第4図を用いて説明す
る。
Next, the operation at the start of the heating operation will be explained using FIG. 4.

運転暖房立上り時は、冷媒は矢印方向に流れ、第2開閉
弁15は開となり、第1開閉弁11は閉のままである。
At the start of heating operation, the refrigerant flows in the direction of the arrow, the second on-off valve 15 is open, and the first on-off valve 11 remains closed.

3方弁18は室外熱交換器3と1J2バイパス配管19
が連通ずるように切換えられる。
3-way valve 18 connects outdoor heat exchanger 3 and 1J2 bypass piping 19
are switched so that they are connected.

圧縮機1から吐出された高温高圧冷媒ガスは、室内熱交
換82に導入され、ここで室内空気と熱交換(暖房)さ
れて凝縮液化する。この液化した冷媒は、第1バイパス
管14に導がれて、第2開閉弁15、逆止弁16を通過
する際に減圧される。そして、その後、室外熱交換器3
を通るが、ここでは熱交換をほとんど行なわずに通過し
て、蓄熱器4の第2冷媒配管バス6に流入し、蓄熱器4
の中の蓄熱材と熱交換されて蒸発カス化し、圧縮機lに
吸入される。
The high-temperature, high-pressure refrigerant gas discharged from the compressor 1 is introduced into the indoor heat exchanger 82, where it undergoes heat exchange (heating) with indoor air and is condensed and liquefied. This liquefied refrigerant is led to the first bypass pipe 14 and is depressurized when passing through the second on-off valve 15 and check valve 16. Then, after that, the outdoor heat exchanger 3
Here, the refrigerant passes through with almost no heat exchange, flows into the second refrigerant piping bus 6 of the heat storage device 4, and flows into the heat storage device 4.
It exchanges heat with the heat storage material inside and turns into evaporated scum, which is sucked into the compressor 1.

〔発明の効果〕 以上のように、この発明によれば、蓄放熱熱交換器の蓄
熱側の配管温度により蓄熱運転を停止し、次回の蓄熱運
転を再開するタイミングを前回の蓄熱運転時間の長短に
より決定するようにしたので、適切な効率の良い蓄熱運
転を行い、常に蓄熱器内の蓄熱材を液体、すなわち、蓄
熱状態に保持しておき、次回の暖房運転開始の際に、こ
れを利用してすぐに高温風を提供できという効果がある
[Effects of the Invention] As described above, according to the present invention, the heat storage operation is stopped depending on the pipe temperature on the heat storage side of the heat storage/radiation heat exchanger, and the timing for restarting the next heat storage operation is determined based on the length of the previous heat storage operation time. Therefore, an appropriate and efficient heat storage operation is carried out, and the heat storage material in the heat storage device is always kept in a liquid state, that is, in a heat storage state, and this is used when starting the next heating operation. It has the effect of being able to provide high-temperature air immediately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるヒートポンプ装置の
冷媒回路図、第2図は同装置の蓄熱運転時の冷媒回路図
、第3図は同装置の蓄熱運転時の制御フローチャート図
、第4図は同装置の暖房運転立上り時の冷媒回路図、第
5図は従来のヒートポンプ装置の冷媒回路図、第6図は
従来の装置の暖房運転立上り時の冷媒回路図、第7図は
従来の装置の暖房蓄熱運転時の冷媒回路図である。 1は圧縮機、2は室内熱交換器、3は室外熱交換器、4
は蓄熱器、5は第1冷媒配管パス、6は′s2冷媒配管
パス、7は蓄放熱熱交換器、9は四方弁、18は三方弁
、20は温度センサーである。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a refrigerant circuit diagram of a heat pump device according to an embodiment of the present invention, FIG. 2 is a refrigerant circuit diagram of the same device during heat storage operation, FIG. 3 is a control flowchart of the same device during heat storage operation, and FIG. The figure shows the refrigerant circuit diagram of the same device at the start of heating operation, Figure 5 is the refrigerant circuit diagram of the conventional heat pump device, Figure 6 is the refrigerant circuit diagram of the conventional device at the start of heating operation, and Figure 7 is the refrigerant circuit diagram of the conventional heat pump device. FIG. 3 is a refrigerant circuit diagram during heating heat storage operation of the device. 1 is a compressor, 2 is an indoor heat exchanger, 3 is an outdoor heat exchanger, 4
5 is a heat storage device, 5 is a first refrigerant piping path, 6 is a 's2 refrigerant piping path, 7 is a heat storage/radiation heat exchanger, 9 is a four-way valve, 18 is a three-way valve, and 20 is a temperature sensor. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 冷凍サイクル内に蓄熱器を設け、この蓄熱器に貯えた熱
を利用して暖房運転立上がり時の暖房能力を高めるよう
にしたヒートポンプ装置であって、前記蓄熱器に内蔵さ
れている蓄放熱熱交換器の蓄熱側の配管温度を検出する
温度検出手段と、前記配管温度が所定の温度に到達する
までの蓄熱運転時間を積算して蓄熱運動停止の信号を出
力するとともに、蓄熱運動停止後の所定の運転不動作時
間を積算して蓄熱運転開始の信号を出力する時間積算手
段と、前記蓄熱運転時間をあらかじめ設定した時間と比
較し、その長短により次回の蓄熱運転不動時間を決定す
る制御手段を備えていることを特徴とするヒートポンプ
装置。
A heat pump device is provided with a heat storage device in the refrigeration cycle and uses the heat stored in the heat storage device to increase the heating capacity at the start of heating operation, the heat storage and radiation heat exchanger built in the heat storage device. a temperature detection means for detecting the temperature of the piping on the heat storage side of the heat storage device; and a control means for comparing the heat storage operation time with a preset time and determining the next heat storage operation non-operation time based on the length of the time. A heat pump device characterized by:
JP2084444A 1990-03-30 1990-03-30 Heat pump device Pending JPH03282149A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2084444A JPH03282149A (en) 1990-03-30 1990-03-30 Heat pump device
DE69109532T DE69109532T2 (en) 1990-03-30 1991-03-28 Air conditioner.
EP91302782A EP0449641B1 (en) 1990-03-30 1991-03-28 Air conditioning system
US07/677,428 US5165250A (en) 1990-03-30 1991-03-29 Air conditioning system with thermal storage cycle control
HK98105504A HK1006328A1 (en) 1990-03-30 1998-06-17 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2084444A JPH03282149A (en) 1990-03-30 1990-03-30 Heat pump device

Publications (1)

Publication Number Publication Date
JPH03282149A true JPH03282149A (en) 1991-12-12

Family

ID=13830773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2084444A Pending JPH03282149A (en) 1990-03-30 1990-03-30 Heat pump device

Country Status (1)

Country Link
JP (1) JPH03282149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2299205A1 (en) * 2009-09-22 2011-03-23 Valeo Systèmes Thermiques Air conditioning device for a heating installation, a ventilation installation and/or a air conditioning installation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289254A (en) * 1985-06-17 1986-12-19 Yamatake Honeywell Co Ltd Control of heat accumulating operation
JPH01306756A (en) * 1988-06-06 1989-12-11 Matsushita Electric Ind Co Ltd Method of controlling heat storage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289254A (en) * 1985-06-17 1986-12-19 Yamatake Honeywell Co Ltd Control of heat accumulating operation
JPH01306756A (en) * 1988-06-06 1989-12-11 Matsushita Electric Ind Co Ltd Method of controlling heat storage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2299205A1 (en) * 2009-09-22 2011-03-23 Valeo Systèmes Thermiques Air conditioning device for a heating installation, a ventilation installation and/or a air conditioning installation
FR2950423A1 (en) * 2009-09-22 2011-03-25 Valeo Systemes Thermiques AIR CONDITIONING DEVICE FOR A HEATING, VENTILATION AND / OR AIR CONDITIONING INSTALLATION.

Similar Documents

Publication Publication Date Title
US5689964A (en) Operation control device for air conditioner
US5165250A (en) Air conditioning system with thermal storage cycle control
JPH0799297B2 (en) Air conditioner
JPWO2017138107A1 (en) Refrigeration cycle equipment
JP3341404B2 (en) Operation control device for air conditioner
JP2500522B2 (en) Refrigeration system operation controller
JP2002081769A (en) Air conditioner
JPH0730979B2 (en) Air conditioner
JPH03282149A (en) Heat pump device
JP2003106689A (en) Air conditioner
JPH02192536A (en) Heater device
JPH07243726A (en) Two-stage cooler
JPH0754238B2 (en) Heat storage control method
JP3343915B2 (en) Defrost control device
JP2001280768A (en) Refrigerator
JPH0712439A (en) Binary refrigerator
JPH0490453A (en) Freezer operation control device
JP2503784B2 (en) Operation control device for air conditioner
JPH01306756A (en) Method of controlling heat storage
JPH065572Y2 (en) Refrigeration equipment
JPH04356675A (en) Refrigerating apparatus
JPH02106662A (en) Freezer device
JP2541175B2 (en) Operation control device for air conditioner
JP2664690B2 (en) Air conditioner
JPH03194367A (en) Heat pump apparatus