JPH0327974B2 - - Google Patents

Info

Publication number
JPH0327974B2
JPH0327974B2 JP59076257A JP7625784A JPH0327974B2 JP H0327974 B2 JPH0327974 B2 JP H0327974B2 JP 59076257 A JP59076257 A JP 59076257A JP 7625784 A JP7625784 A JP 7625784A JP H0327974 B2 JPH0327974 B2 JP H0327974B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
recording
alloy
gesnte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59076257A
Other languages
Japanese (ja)
Other versions
JPS60219646A (en
Inventor
Teruo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Columbia Co Ltd
Original Assignee
Nippon Columbia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Columbia Co Ltd filed Critical Nippon Columbia Co Ltd
Priority to JP59076257A priority Critical patent/JPS60219646A/en
Publication of JPS60219646A publication Critical patent/JPS60219646A/en
Publication of JPH0327974B2 publication Critical patent/JPH0327974B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)

Description

【発明の詳細な説明】 本発明は光ビームを用いて情報が記録される光
情報記録媒体に関し、特に小さい光エネルギーに
て情報を記録することができる記録薄膜に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical information recording medium in which information is recorded using a light beam, and particularly to a recording thin film that can record information with small optical energy.

光情報記録媒体において、記録薄膜に光ビーム
を照射し、記録薄膜を構成する材料の非晶質−結
晶質転移による反射率変化を成起せしめ、情報を
記録する方法が知られている。この記録膜材料と
してはテルル低級酸化物TeOx(0<x<2)や
三セレン化アンチモンSb2Se3が知られているが、
光ビーム照射前後の反射率変化量が小さかつた
り、光エネルギー吸収層を積層する必要がある等
の欠点がある。本出願人は、先にかゝる欠点を解
消する材料としてテルル化ゲルマニウムGeTe薄
膜を特願昭59−13745号により提案した。GeTe
は光ビーム照射前後の反射率変化量が大きくしか
も単層で記録膜を構成できる利点があるが、非晶
質−結晶質転移を生じさせるには該薄膜を440〓
以上になるよう光エネルギーを与える必要があつ
た。そのため高感度記録、例えばビデオ信号を実
時間で記録する際には、光ビーム装置は高出力の
ものが必要になり、記録再生装置が高価になる欠
点があつた。
In optical information recording media, a method is known in which information is recorded by irradiating a recording thin film with a light beam to cause a reflectance change due to an amorphous-crystalline transition of the material constituting the recording thin film. As recording film materials, tellurium lower oxide TeOx (0<x<2) and antimony triselenide Sb 2 Se 3 are known.
There are drawbacks such as a small amount of change in reflectance before and after irradiation with a light beam, and the need to laminate a light energy absorbing layer. The present applicant previously proposed a germanium telluride GeTe thin film in Japanese Patent Application No. 13745/1983 as a material to overcome the above-mentioned drawbacks. GeTe
has the advantage of having a large change in reflectance before and after light beam irradiation and being able to form a recording film with a single layer, but in order to produce an amorphous-crystal transition, the thin film must be
It was necessary to provide light energy to achieve this. Therefore, for high-sensitivity recording, for example, when recording video signals in real time, a high-output light beam device is required, which has the drawback of making the recording and reproducing device expensive.

本発明はGeTe記録薄膜の上述の欠点を解消
し、小さい光エネルギーにて情報を記録再生する
ことのできる光情報記録媒体を提供することを目
的とするもので、その特徴は記録薄膜はGe,Sn
及びTeを主成分とする金属薄膜であり、Ge,Sn
及びTeがGe1-xSnxTe(0<x≦0.7)なる組成
(アトミツク%)であることにある。
The present invention aims to eliminate the above-mentioned drawbacks of the GeTe recording thin film and provide an optical information recording medium that can record and reproduce information with small optical energy. Sn
It is a metal thin film whose main components are Te and Ge, and Sn.
and Te has a composition (atomic %) of Ge 1-x Sn x Te (0<x≦0.7).

以下実施例に従つて詳細に説明する。 A detailed explanation will be given below based on examples.

光情報記録媒体に使用される基体は熱伝導度が
小さく、該基板表面が平滑でキズが少ないことが
必要で、又例えば光ビームを基板を通して記録薄
膜に照射する場合は該光ビームに対して透過性で
なければならない。このような基板には記録再生
レーザー光に対し透明な合成樹脂、例えばポリメ
チルメタクレート、ポリカーボネート、ポリ塩化
ビニル、ポリスルホンなどや、ガラスが用いられ
る。
The substrate used for optical information recording media has low thermal conductivity, and the surface of the substrate must be smooth and free from scratches.For example, when a light beam is irradiated onto a recording thin film through the substrate, Must be transparent. For such a substrate, a synthetic resin transparent to recording and reproducing laser light, such as polymethyl methacrylate, polycarbonate, polyvinyl chloride, polysulfone, etc., or glass is used.

情報記録薄膜は前記基板上に接して設けること
もできるが、前記基板上に低熱伝導物質からなる
熱遮断性薄膜、前記基板上に存在するキズを除去
する高分子塗膜又は光ビーム反射性薄膜を介して
設けることもできる。金属記録薄膜は公知の技
術、例えば真空蒸着、スパツタリング、イオンプ
レーテイング等によつて前記基板上に被着させる
ことができる。
The information recording thin film can be provided in contact with the substrate, but it is also possible to provide a heat-blocking thin film made of a low thermal conductivity material on the substrate, a polymer coating film to remove scratches existing on the substrate, or a light beam reflective thin film. It can also be provided via. The metal recording film can be deposited on the substrate by known techniques such as vacuum deposition, sputtering, ion plating, etc.

本実施例においては前記記録薄膜は真空蒸着法
によりGe1-xSnxTe(以下GeSnTeと記載する場合
もある)合金薄膜を作製するにはGeSnTe合金を
蒸発源とする一元蒸発法あるいはGeTe,SnTe
を蒸発源とする二元同時蒸着法を用いることがで
き本発明にはいずれも有効であつた。
In this embodiment, the recording thin film is formed by a vacuum evaporation method to produce a Ge 1-x Sn x Te (hereinafter sometimes referred to as GeSnTe) alloy thin film by a one-dimensional evaporation method using a GeSnTe alloy as an evaporation source or by a GeTe, SnTe
A binary simultaneous evaporation method using the evaporation source as an evaporation source can be used, and both methods are effective for the present invention.

一元蒸発法に用いられる合金は以下のように作
製した純度99.99%以上のGe,Sn及びTeを所望
の合金組成となるよう秤量し、石英ガラス管内に
入れ真空封止を行つた。この石英ガヤス管を1000
℃、5時間加熱の後急冷してGeSnTe合金を得
た。GeSnTe合金は、抵抗加熱法、電子ビーム加
熱法いずれの方法によつても蒸発させることがで
きる。なお蒸発源合金組成と薄膜合金組成との差
異は抵抗加熱法において少し認められたので、こ
のことを考慮して前記合金組成を変化させること
により所望の合金組成を持つGeSnTe薄膜を得る
ことができる。一方電子ビーム加熱法においては
蒸発源合金組成と薄膜合金組成との差異は認めら
れなかつた。
The alloys used in the single-source evaporation method were prepared as follows: Ge, Sn, and Te with a purity of 99.99% or higher were weighed to give the desired alloy composition, and placed in a quartz glass tube and vacuum-sealed. This quartz gayas tube is 1000
℃ for 5 hours and then rapidly cooled to obtain a GeSnTe alloy. GeSnTe alloy can be evaporated by either resistance heating method or electron beam heating method. Note that a slight difference between the evaporation source alloy composition and the thin film alloy composition was observed in the resistance heating method, so by taking this into consideration and changing the alloy composition, a GeSnTe thin film with a desired alloy composition can be obtained. . On the other hand, in the electron beam heating method, no difference was observed between the evaporation source alloy composition and the thin film alloy composition.

次に第1図は二元同時蒸発法を示す図で真空槽
11の中に回転する基板ホルダー12が設けられ
ておりその下方に基板13を取り付ける。基板1
3の下方には蒸発源14および15がありそれぞ
れにGeTeおよびSnTeが斜線の如く充填される。
蒸発源14および15は独立に制御可能な電源1
6および17を有し、蒸発源14および15に供
給される電力を変化させることにより、作製され
GeSnTe薄膜中のGeとSnの比を変化させ所望の
合金組成をもよGeSnTe薄膜を得た。なお合金組
成定量は螢光X線分析装置を使用して行つた。
Next, FIG. 1 is a diagram showing a dual-component evaporation method, in which a rotating substrate holder 12 is provided in a vacuum chamber 11, and a substrate 13 is attached below it. Board 1
There are evaporation sources 14 and 15 below 3, and each of them is filled with GeTe and SnTe as shown by diagonal lines.
Evaporation sources 14 and 15 are independently controllable power supplies 1
6 and 17, and is produced by changing the power supplied to the evaporation sources 14 and 15.
By changing the ratio of Ge and Sn in the GeSnTe thin film, we obtained a GeSnTe thin film with a desired alloy composition. The alloy composition was determined using a fluorescent X-ray analyzer.

第2図実線21は、Ge1-xSnxTe合金薄膜にお
いて種々のxの値の薄膜を作製し非晶質−結晶、
転移点を測定した結果である。測定はガラス基板
上にGeSnTe合金薄膜を被着させた試料を加熱
し、薄膜の反射率あるいは透過率の光学的性質が
大きく変化する点を転移点とした。又、第2図実
線22は、基板上に被着されたGe1-xSnxTe薄膜
に、波長λ=830nmの半導体レーザー光を200ns
間照射した時、該Ge1-xSnxTe薄膜のレーザー光
被照射部の反射率を、大きく変化させるに必要な
レーザーパワーの相対値を示す。第2図に見られ
るごとくGe1-xSnxTe薄膜はGeTe薄膜に比較する
ならば、Ge1-xSnxTe薄膜中のxの値が大きくな
るにつれ非晶質−結晶転移点が下がり、例えばx
=0.2で410〓、x=0.5で350〓となり、情報を記
録するに必要な光エネルギーはx=0.2のとき86
%、x=0.5のときは59%であり、GeTe薄膜に比
しそれぞれ14%、41%の光エネルギーを節約でき
る。
The solid line 21 in Fig. 2 shows the results of forming Ge 1-x Sn x Te alloy thin films with various values of x.
This is the result of measuring the transition point. In the measurement, a sample with a GeSnTe alloy thin film deposited on a glass substrate was heated, and the transition point was defined as the point where the optical properties of the thin film's reflectance or transmittance changed significantly. In addition, the solid line 22 in Fig. 2 indicates that a semiconductor laser beam with a wavelength λ = 830 nm is applied for 200 ns to the Ge 1-x Sn x Te thin film deposited on the substrate.
The figure shows the relative value of the laser power required to significantly change the reflectance of the laser beam irradiated area of the Ge 1-x Sn x Te thin film when irradiated for a period of time. As seen in Figure 2, if the Ge 1-x Sn x Te thin film is compared to the GeTe thin film, the amorphous-crystalline transition point decreases as the value of x in the Ge 1-x Sn x Te thin film increases. , for example x
= 0.2 = 410〓, x = 0.5 = 350〓, and the light energy required to record information is 86 when x = 0.2.
%, and when x=0.5, it is 59%, which means that the optical energy can be saved by 14% and 41%, respectively, compared to the GeTe thin film.

本実施例においてはGeSnTe合金薄膜は真空蒸
着法にて作製されたが、後GeSnTe薄膜は真空蒸
着法に限らず公知の技術であるスパツタリング法
で作製しても同様の結果が得られた。ただし、こ
の場合GeSnTe薄膜の非晶質−結晶転移点は、真
空蒸着法に比してGe1-xSnxTe薄膜中のxの値に
かゝわらず20〜40〓高くなつた。しかしスパツタ
法により作製したGeTe薄膜の転移点は480〓で
あつたので、Ge1-xSnxTe薄膜の転移点はxの値
にかゝわらずGeTe薄膜の転移点より低く、xの
値の増大と共に転移点が効果は真空蒸着法を用い
た前記実施例と同じであつた。又、前記実施例は
光ビームとして半導体レーザーを用いたが、光ビ
ームは半導体レーザーに限定されることなく、
He−Neレーザー、Arレーザー等のレーザー光、
キセノンランプ、タングステンランプを用いるこ
とができる。なぜならGeSnTe薄膜はGeTe薄膜
と同様に光学的性質の波長依存性がゆるやかで、
該薄膜の膜厚を記録光ビーム波長に応じて最適化
できるからである。
In this example, the GeSnTe alloy thin film was produced by vacuum evaporation, but similar results could be obtained by producing the subsequent GeSnTe thin film not only by vacuum evaporation but also by sputtering, which is a known technique. However, in this case, the amorphous-crystal transition point of the GeSnTe thin film was 20 to 40 times higher than that of the vacuum evaporation method, regardless of the value of x in the Ge 1-x Sn x Te thin film. However, since the transition point of the GeTe thin film prepared by the sputtering method was 480〓, the transition point of the Ge 1-x Sn x Te thin film is lower than that of the GeTe thin film regardless of the value of x. As the transition point increases, the effect is the same as in the previous example using the vacuum evaporation method. In addition, although a semiconductor laser was used as the light beam in the above embodiment, the light beam is not limited to a semiconductor laser.
Laser light such as He-Ne laser, Ar laser, etc.
A xenon lamp or a tungsten lamp can be used. This is because, like GeTe thin films, the optical properties of GeSnTe thin films have gentle wavelength dependence.
This is because the thickness of the thin film can be optimized depending on the recording light beam wavelength.

本発明においてGe1-xSnxTe合金薄膜の組成を
0<x≦0.7とし理由は以下の通りである。Ge1-x
SnxTe合金薄膜においてxが大きくなるにつれ該
薄膜の非晶質−結晶転移温度は多くなりx=0.7
のときには該転移点は300〓となり室温よりわず
かに高いが、x>0.7のときは、作製した上記合
金薄膜は室温にてすでに結晶質に転移しているこ
とになり、情報を記録することができなくなるか
らである。従つて周囲温度が室温よりも高くなる
可能性がある場合は、転移温度を例えば350〓程
度に設定すればよく、この為には0<x≦0.5と
すればよい。
In the present invention, the composition of the Ge 1-x Sn x Te alloy thin film is set to 0<x≦0.7 for the following reasons. Ge 1-x
In a Sn x Te alloy thin film, as x increases, the amorphous-crystal transition temperature of the thin film increases, x = 0.7
When x > 0.7, the transition point is 300〓, which is slightly higher than room temperature, but when x>0.7, the above alloy thin film produced has already transitioned to crystalline state at room temperature, and information cannot be recorded. This is because it will not be possible. Therefore, if there is a possibility that the ambient temperature will be higher than the room temperature, the transition temperature may be set to, for example, about 350〓, and for this purpose, 0<x≦0.5 may be satisfied.

以上詳述したように、基体と該基体上に形成さ
れた薄膜を有し、該薄膜へ光ビームを照射し情報
を記録する光情報記録媒体において、上記薄膜が
Ge,Sn及びTeを主成分とする薄膜であり、該
GeTe,Teは、Ge1-xSnxTe(0<x≦0.7)なる
組成であることを特徴とする光情報記録媒体基体
は小さな光エネルギーにて情報を記録することが
でき、安価な記録再生装置にて高感度記録を実現
することができる。
As detailed above, in an optical information recording medium that has a base and a thin film formed on the base and records information by irradiating the thin film with a light beam, the thin film is
It is a thin film whose main components are Ge, Sn and Te.
GeTe, Te has a composition of Ge 1-x Sn x Te (0<x≦0.7).The optical information recording medium substrate can record information with small optical energy and is an inexpensive recording medium. High-sensitivity recording can be achieved with a playback device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明光情報記録媒体を作製する装置
の1例を示し、第2図は本発明による記録媒体の
組成と非晶質−結晶質転移点及び記録光エネルギ
ーの関係を示す図である。 11……真空槽、13……基板、14,15…
…蒸発源。
FIG. 1 shows an example of an apparatus for producing the optical information recording medium of the present invention, and FIG. 2 is a diagram showing the relationship between the composition of the recording medium according to the present invention, the amorphous-crystalline transition point, and the recording light energy. be. 11... Vacuum chamber, 13... Substrate, 14, 15...
...evaporation source.

Claims (1)

【特許請求の範囲】[Claims] 1 基体と該基体上に形成された薄膜を有し、該
薄膜へ光ビームを照射し情報を記録する光情報記
録媒体において、上記薄膜がゲルマニウム、錫、
テルルからなる薄膜であり、Ge1-xSnxTe(0<X
≦0.7)なる組成であることを特徴とする光情報
記録媒体。
1. An optical information recording medium that has a substrate and a thin film formed on the substrate, and records information by irradiating the thin film with a light beam, wherein the thin film is made of germanium, tin,
It is a thin film made of tellurium, Ge 1-x Sn x Te (0<X
≦0.7).
JP59076257A 1984-04-16 1984-04-16 Optical information recording medium Granted JPS60219646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59076257A JPS60219646A (en) 1984-04-16 1984-04-16 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59076257A JPS60219646A (en) 1984-04-16 1984-04-16 Optical information recording medium

Publications (2)

Publication Number Publication Date
JPS60219646A JPS60219646A (en) 1985-11-02
JPH0327974B2 true JPH0327974B2 (en) 1991-04-17

Family

ID=13600152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59076257A Granted JPS60219646A (en) 1984-04-16 1984-04-16 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPS60219646A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670345A (en) * 1985-02-22 1987-06-02 Asahi Kasei Kogyo Kabushiki Kaisha Information recording medium
JPH0717093B2 (en) * 1985-06-07 1995-03-01 松下電器産業株式会社 Optical information recording / reproducing disk
JPH07115536B2 (en) * 1985-07-31 1995-12-13 松下電器産業株式会社 Optical information recording member
DE3675845D1 (en) * 1985-08-15 1991-01-10 Ibm OPTICAL RECORDING PROCEDURE.
CN1010519B (en) * 1985-09-25 1990-11-21 松下电器产业株式会社 Invertible optical recording information dielectrical
JPS6276035A (en) * 1985-09-30 1987-04-08 Tdk Corp Information recording medium and recording method
JP2585520B2 (en) * 1985-12-27 1997-02-26 株式会社日立製作所 Phase change recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107744A (en) * 1983-11-15 1985-06-13 Matsushita Electric Ind Co Ltd Optical information recording member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107744A (en) * 1983-11-15 1985-06-13 Matsushita Electric Ind Co Ltd Optical information recording member

Also Published As

Publication number Publication date
JPS60219646A (en) 1985-11-02

Similar Documents

Publication Publication Date Title
EP0195532B1 (en) An information recording medium
Fujimori et al. Crystallization process of Sb‐Te alloy films for optical storage
KR890004231B1 (en) Optical information recording member
US5580632A (en) Information recording medium
JP2574325B2 (en) Optical information recording medium
JPH0473387B2 (en)
JPH0327974B2 (en)
JP2834131B2 (en) Thin film for information recording
JPS62246788A (en) Information recording medium
US4788561A (en) Optical recording carrier
JPH0444330B2 (en)
JP4227278B2 (en) Information recording medium, manufacturing method thereof, and recording / reproducing method thereof
JPH0582838B2 (en)
JPH01169751A (en) Phase transition recording medium
JPH0465462B2 (en)
JPS63167440A (en) Method for recording or recording and erasing information
JPS61283049A (en) Production of optical disk
JPH02219689A (en) Information recording medium
JPS58222891A (en) Optical recording medium
JPH04186538A (en) Information recording medium
EP0323684A1 (en) Optical memory
JPS61204841A (en) Optical recording medium
JPH01251331A (en) Information recording medium
JPS6256583B2 (en)
JPS6070536A (en) Optical information recording medium