JPH03278830A - Production of material having core material coated with fine particle shell - Google Patents

Production of material having core material coated with fine particle shell

Info

Publication number
JPH03278830A
JPH03278830A JP2080456A JP8045690A JPH03278830A JP H03278830 A JPH03278830 A JP H03278830A JP 2080456 A JP2080456 A JP 2080456A JP 8045690 A JP8045690 A JP 8045690A JP H03278830 A JPH03278830 A JP H03278830A
Authority
JP
Japan
Prior art keywords
core material
particle group
suspension
fine particle
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2080456A
Other languages
Japanese (ja)
Other versions
JP2560220B2 (en
Inventor
Noriyuki Yamada
山田 則行
Hidekazu Abe
英一 安部
Hideharu Hirosue
広末 英晴
Hiroshi Tateyama
博 立山
Osamu Ishibashi
修 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2080456A priority Critical patent/JP2560220B2/en
Publication of JPH03278830A publication Critical patent/JPH03278830A/en
Application granted granted Critical
Publication of JP2560220B2 publication Critical patent/JP2560220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a material consisting of a core material coated with fine particle shell by spraying a suspension consisting of a large particle group as the core material and a small particle group as the film material and drying it. CONSTITUTION:A large particle group of silicon carbide, etc., having particle size in micron order and a small particle group of colloidal silica, etc., having about one fifth particle size of the large one in submicron are mixed to give a suspension. When the suspension is sprayed, the large particle group works as a core material and the small particle group works as the film material and a material consisting of the core material and fine particle shell covering the core material is obtained. The material is effectively used as drugs, agricultural chemicals, and fertilizers which sustainedly release.

Description

【発明の詳細な説明】 〈産業化の利用分野〉 本発明は、徐放性の医薬、農薬又は肥料として有効に活
用できる物体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a method for producing an object that can be effectively utilized as a sustained-release medicine, agricultural chemical, or fertilizer.

〈従来の技術〉 従来より徐放性の医薬、農薬又は肥料は、有効成分から
成る芯物質の周囲にセルロース系やラテンクス系から成
る有機高分子をスプレ一方式でコーティングすることに
より造られている。
<Prior art> Traditionally, sustained-release medicines, pesticides, or fertilizers have been produced by coating a core material consisting of an active ingredient with organic polymers such as cellulose or Latinx using a one-way spray method. .

一方粒子懸濁液を噴霧乾燥すると得られる製品に粒子の
偏析が見られることは古くから知られているが、この事
実は均質な粉体を得ようとする場合の欠点として認識さ
れてきた。
On the other hand, it has been known for a long time that particle segregation is observed in the product obtained by spray drying a particle suspension, and this fact has been recognized as a drawback when attempting to obtain a homogeneous powder.

〈発明が解決しようとする課題〉 上記有機高分子膜で覆設した従来の徐放性の医薬、農薬
又は肥料は、該高分子をスプレーする際に有機溶媒を使
う必要があり該有機溶媒が完全には飛散しきらず製品中
に残存し人体や土地に有害となることもある。又有機高
分子膜である為に耐熱性に劣り、かつ強度もさほど大と
なることはない等の欠点があった。
<Problem to be solved by the invention> Conventional sustained-release drugs, pesticides, or fertilizers covered with the above-mentioned organic polymer film require the use of an organic solvent when spraying the polymer. It may not be completely dispersed and may remain in the product, causing harm to humans and the land. Furthermore, since it is an organic polymer film, it has disadvantages such as poor heat resistance and not very high strength.

本発明では、これら従来の欠点を解消し優れた徐放性の
医薬、!f4薬又は肥料として活用できる物体の製造方
法を提供することを目的とするものである。
The present invention eliminates these conventional drawbacks and provides an excellent sustained-release drug! The purpose of the present invention is to provide a method for producing an object that can be used as an f4 medicine or fertilizer.

〈課題を解決する為の手段〉 上記本発明の目的は次の如き手段を採用することにより
達成できる。即ち、芯物質としての大粒子群と、該大粒
子の175以下の膜物質としての小粒子群とから成る懸
濁液を噴霧乾燥することで、芯物質の周囲が微粒子殻で
覆われた物体を製造することができる。
<Means for Solving the Problems> The above object of the present invention can be achieved by employing the following means. That is, by spray-drying a suspension consisting of a group of large particles as a core material and a group of small particles as a membrane material of 175 or less of the large particles, an object in which the periphery of the core material is covered with a fine particle shell is created. can be manufactured.

なおここで大粒子というのはその径がミクロンオーダー
のものを指称し、小粒子というのは該大粒子の径の17
5以下のものを指称する。小粒子の径が大粒子の径の1
75よりも大なる場合には、後述する実施例の結果から
も明らかな如く大粒子と小粒子が完全には別れきれずに
十分な微粒子殻が得られない。
Note that large particles here refer to those whose diameter is on the order of microns, and small particles refer to those with a diameter of 17 microns.
5 or less. The diameter of the small particle is 1 of the diameter of the large particle.
If it is larger than 75, large particles and small particles cannot be completely separated and a sufficient particle shell cannot be obtained, as is clear from the results of Examples described later.

く作用〉 本発明の方法では、第1図の(イ)に示す様に大粒子群
と小粒子群とが混在した懸濁液を噴霧乾燥すると、途中
第1図の(0)に示す様な形態を採り乾燥後は第1図(
ハ)に示す様に小粒子群が大粒子群を取り囲んだ様な形
態となる。
In the method of the present invention, when a suspension containing a mixture of large particle groups and small particle groups is spray-dried as shown in (a) of FIG. 1, during the process, as shown in (0) of FIG. Figure 1 (
As shown in c), a group of small particles surrounds a group of large particles.

〈実施例〉 この実施例では、ミクロンオーダーの粒子としては、市
販の研磨剤である不二見研磨剤工業■の炭化ケイ素を、
サブミクロンの超微粒子としては、触媒化成工業■のコ
ロイダルシリカ5i500 (6nm) 及びSiSi
30P(80nを用いた。又薬物質としては、徳山曹達
■の炭酸マグネシウムを用いた。これらの粒子を含んだ
懸濁液を塔径1.6m、円筒部高さ0.91の噴霧乾燥
装置により乾燥した。乾燥条件は人口温度120°C9
予熱時出ロ温度約90°C1操作時温度約80°Cとし
た。回転円板は直径7 cmで回転数1200Orpm
、風量は4.4rrr / mtn、供給液量701n
1/minとした。
<Example> In this example, silicon carbide from Fujimi Abrasive Industry ■, a commercially available abrasive, was used as the micron-order particles.
As submicron ultrafine particles, colloidal silica 5i500 (6 nm) and SiSi manufactured by Catalysts & Chemical Industry ■ are used.
30P (80n) was used. Magnesium carbonate from Tokuyama Soda ■ was used as the drug substance. The suspension containing these particles was dried in a spray dryer with a tower diameter of 1.6 m and a cylindrical part height of 0.91 m. The drying conditions were a population temperature of 120°C9.
The temperature at the time of preheating was approximately 90°C, and the temperature during operation was approximately 80°C. The rotating disk has a diameter of 7 cm and a rotation speed of 1200 rpm.
, air volume is 4.4rrr/mtn, supply liquid volume is 701n
It was set to 1/min.

乾燥された粒子は主として本体下部より回収し、これの
74μmふるい下を上品とし、サイクロンで回収したも
のの74μmふるい下をサイクロン品とし、100°C
の乾燥器で再乾燥したものを実験試料とした。さらに一
部の製品は電気炉により最高400°Cまで加熱した。
The dried particles were mainly collected from the bottom of the main body, the part under the 74 μm sieve was classified as high-quality, and the part collected in a cyclone was classified as the 74 μm sieve under the cyclone, and the part was heated at 100°C.
The sample was re-dried in a dryer and used as an experimental sample. Additionally, some products were heated to a maximum of 400°C in an electric furnace.

なお薬物質の溶出試験は、製品0.1gをpH2の緩衝
溶液500dに懸濁浮遊させ、溶出したMgイオンを経
時的に原子吸光分光光度計により測定するというもので
ある。
In the elution test of the drug substance, 0.1 g of the product is suspended in 500 d of a pH 2 buffer solution, and the eluted Mg ions are measured over time using an atomic absorption spectrophotometer.

■ 〈作用〉の実験的確認 下記第1表に示す様に10μmと1μmの炭化ケイ素を
組合せ、その懸濁液を噴霧乾燥した場合の製品について
細孔径分布を測定した。その結果を第2図に示す。
(2) Experimental Confirmation of <Effect> As shown in Table 1 below, the pore size distribution of a product obtained by combining 10 μm and 1 μm silicon carbide and spray-drying the resulting suspension was measured. The results are shown in FIG.

第  1  表 S−〇からS−5の各製品の走査電子顕微鏡観察による
と、S−2では不十分だがS−3では十分な小粒子によ
る被膜が得られていることが判った。又第2図に示す水
銀圧入ポロシメーターにょる細孔分布の測定結果よりS
−3以上の体積分率で大粒子から成る構造の示す細孔径
がなくなり、小粒子から成る構造の示す細孔径が主体と
なっていることが判る。
According to scanning electron microscope observation of each product in Table 1 S-0 to S-5, it was found that S-2 had an insufficient coating, but S-3 had a sufficient coating of small particles. Also, from the measurement results of pore distribution using a mercury intrusion porosimeter shown in Figure 2, S
It can be seen that at a volume fraction of -3 or more, the pore diameter indicated by the structure consisting of large particles disappears, and the pore diameter indicated by the structure consisting of small particles becomes the main component.

中心部と表面層のみがけ密度が等しいとすると、S−3
で表面層の厚さと中心部の直径との比は約0.2となり
、製品径が40μmのとき表面層の厚さは約6μmであ
る。第1表に示したS−5以外の各体積分率での製品の
空隙率はいずれも0.51〜0.53となっており、こ
れは大小の各成分粒子が混在することなく、それぞれ別
々の位置を占めていることを示唆している。即ち、これ
らの製品は大粒子で構成された芯部分と小粒子で構成さ
れた殻部分とから成るものと考えられ、〈作用〉で述べ
たことが実験的に確認された。S−5の結果からは、製
品の内部に空孔が形成されていることが示唆される。
Assuming that the polishing density of the center and surface layers is equal, S-3
The ratio of the thickness of the surface layer to the diameter of the center is about 0.2, and when the product diameter is 40 μm, the thickness of the surface layer is about 6 μm. The porosity of the products at each volume fraction other than S-5 shown in Table 1 is all 0.51 to 0.53, which means that there is no mixture of large and small component particles, and each product has a porosity of 0.51 to 0.53. This suggests that they occupy separate positions. That is, these products are thought to consist of a core portion made up of large particles and a shell portion made up of small particles, and the above-mentioned ``effect'' was experimentally confirmed. The results of S-5 suggest that pores are formed inside the product.

次に10μmと5μmの炭化ケイ素、及び10μmと2
μmの炭化ケイ素の組合せについて同様に製品の細孔径
分布状態を測定した結果をそれぞれ第3図及び第4図に
示すが、これらの結果から大粒子径と小粒子径の比が5
以上ないとそれらが十分に別れないことが判る。
Next, silicon carbide of 10 μm and 5 μm, and 10 μm and 2
Figures 3 and 4 show the results of similarly measuring the pore size distribution of products for combinations of μm silicon carbide, and these results indicate that the ratio of large particle size to small particle size is 5.
It turns out that they cannot be separated sufficiently unless there is more than that.

■ 徐放性物体の製造 小粒子としてコロイダルシリカを用い微細な細孔を有す
る徐放性の物体の製造方法について述べる、即ち、大粒
子としては、炭酸マグネシウムと炭化ケイ素の混合物を
用いた。
(2) Production of sustained-release material A method for producing a sustained-release material having fine pores using colloidal silica as small particles will be described. That is, a mixture of magnesium carbonate and silicon carbide was used as the large particles.

これはモデル薬物質である。コロイダルシリカとモデル
薬物質の配合を第2表に示す、コロイダルシリカを2種
類の混合物としたのは乾燥の促進を図るためである。
This is a model drug substance. The combination of colloidal silica and model drug substance is shown in Table 2. The reason why two types of colloidal silica were used as a mixture was to promote drying.

第  2  表 第5図及び第6図にそれぞれMgの溶出率と時間との関
係を示すグラフを示す。これによるとコロイダルシリカ
S 1500 (6μm)を比較的多く用いたC−1及
びC−2が強い徐放性を示している事が判る。なお第6
図中C−21(300°C)としているのはC−21を
更に300°Cまで加熱したもので、この様に加熱する
と溶出抑制能が更に強化される。
Table 2, Figures 5 and 6 respectively show graphs showing the relationship between the Mg elution rate and time. This shows that C-1 and C-2, which used a relatively large amount of colloidal silica S 1500 (6 μm), exhibited strong sustained release properties. Furthermore, the sixth
C-21 (300°C) in the figure is C-21 further heated to 300°C, and heating in this manner further strengthens the elution suppression ability.

〈発明の効果〉 以上述べて来た如く、本発明によれば噴霧乾燥させるこ
とで大粒子群は芯部に、小粒子群は表層部に移動し、従
来は均質な成分を造る際の欠点とされていた現象を有効
に活用し芯物質の周囲を微粒子殻で覆われた物体を造る
ことができ、この物体は徐放性の医薬、農薬又は肥料と
して有効利用ができるものである。
<Effects of the Invention> As described above, according to the present invention, by spray drying, large particles move to the core and small particles move to the surface layer, which eliminates the drawbacks of conventional methods when producing homogeneous ingredients. By effectively utilizing this phenomenon, it is possible to create an object in which a core material is surrounded by a shell of fine particles, and this object can be effectively used as a sustained-release medicine, agricultural chemical, or fertilizer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法による懸濁液滴の乾燥過程を示す概
念図、第2図は10μmと1μmの炭化ケイ素の組合せ
による製品の細孔径と微分空孔容積との関係を示すグラ
フ、第3図は10μmと5μmの炭化ケイ素の組合せに
よる製品の細孔径と微分空孔容積との関係を示すグラフ
、第4図は10μmと2μmの炭化ケイ素の組合せによ
る製品の細孔径と微分空孔容積との関係を示すグラフ、
第5図及び第6図は共に製品の徐放特性を示すグラフ。
Fig. 1 is a conceptual diagram showing the drying process of suspension droplets according to the method of the present invention, Fig. 2 is a graph showing the relationship between pore diameter and differential pore volume of products made of a combination of 10 μm and 1 μm silicon carbide, and Fig. Figure 3 is a graph showing the relationship between the pore diameter and differential pore volume of a product made from a combination of 10 μm and 5 μm silicon carbide, and Figure 4 is a graph showing the relationship between the pore diameter and differential pore volume of a product made from a combination of 10 μm and 2 μm silicon carbide. A graph showing the relationship between
Figures 5 and 6 are graphs showing the sustained release characteristics of the product.

Claims (1)

【特許請求の範囲】[Claims] 1、大粒子群と、該大粒子の1/5以下の小粒子群とか
ら成る懸濁液を噴霧乾燥することを特徴とする芯物質の
周囲を微粒子殻で覆われた物体の製造方法。
1. A method for producing an object having a core material surrounded by a fine particle shell, which comprises spray-drying a suspension consisting of a group of large particles and a group of small particles that are 1/5 or less of the large particles.
JP2080456A 1990-03-27 1990-03-27 Sustained release granular material and method for producing the same Expired - Lifetime JP2560220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2080456A JP2560220B2 (en) 1990-03-27 1990-03-27 Sustained release granular material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2080456A JP2560220B2 (en) 1990-03-27 1990-03-27 Sustained release granular material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03278830A true JPH03278830A (en) 1991-12-10
JP2560220B2 JP2560220B2 (en) 1996-12-04

Family

ID=13718764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2080456A Expired - Lifetime JP2560220B2 (en) 1990-03-27 1990-03-27 Sustained release granular material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2560220B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051091A1 (en) * 1998-04-07 1999-10-14 Shionogi & Co., Ltd. Pulse release pesticide granule having hydrophobic coating film containing silica
WO2001026809A1 (en) * 1999-10-13 2001-04-19 Engelhard Corporation Catalyst compositions employing sol particles and methods of using the same
FR2801227A1 (en) * 1999-11-22 2001-05-25 Univ Fed Do Rio Grande Do Sul Spray-drying colloidal suspensions of polymer nanocapsules or nanospheres, e.g. containing drug such as diclofenac, including addition of silicon dioxide before drying to improve suspension stability
WO2014036572A3 (en) * 2012-08-31 2014-11-06 Aeci Limited Particulate products and process for manufacture thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110128699B (en) * 2019-06-03 2021-03-16 江苏极易新材料有限公司 Method for granulating composite antioxidant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222224A (en) * 1983-04-22 1984-12-13 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Production of surface porous macro-particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222224A (en) * 1983-04-22 1984-12-13 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Production of surface porous macro-particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051091A1 (en) * 1998-04-07 1999-10-14 Shionogi & Co., Ltd. Pulse release pesticide granule having hydrophobic coating film containing silica
WO2001026809A1 (en) * 1999-10-13 2001-04-19 Engelhard Corporation Catalyst compositions employing sol particles and methods of using the same
FR2801227A1 (en) * 1999-11-22 2001-05-25 Univ Fed Do Rio Grande Do Sul Spray-drying colloidal suspensions of polymer nanocapsules or nanospheres, e.g. containing drug such as diclofenac, including addition of silicon dioxide before drying to improve suspension stability
WO2014036572A3 (en) * 2012-08-31 2014-11-06 Aeci Limited Particulate products and process for manufacture thereof

Also Published As

Publication number Publication date
JP2560220B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
Okuyama et al. Preparation of functional nanostructured particles by spray drying
Jyothi et al. Microencapsulation: a review
Wen et al. Controlled release of avermectin from porous hollow silica nanoparticles
US3623659A (en) Articles of manufacture containing encapsulated, vaporizable core material
WO2005110592A1 (en) Mesoporous particles loaded with active substance
US5885547A (en) Particulate material
JPH02504025A (en) Preparation of multiwalled polymeric microcapsules
Kondo et al. Preparation of sustained-release coated particles by novel microencapsulation method using three-fluid nozzle spray drying technique
JPS59222224A (en) Production of surface porous macro-particle
FI65547C (en) FOERFARANDE FOER FRAMSTAELLNING AV FOER INHALERING AVSEDDA MJUKA DINATRIUMKROMOGLYKATPELLETAR
Iyer et al. Evaluation of drug layering and coating: effect of process mode and binder level
Nador et al. Synthesis of polydopamine‐like nanocapsules via removal of a sacrificial mesoporous silica template with water
Garg et al. Microencapsulation techniques in pharmaceutical formulation
CA2112743A1 (en) Process for preparing drug substances in beadlet form
JP2007091716A (en) Drug-sustained releasing fine particle in water and method for producing the same
Niezabitowska et al. Facile production of nanocomposites of carbon nanotubes and polycaprolactone with high aspect ratios with potential applications in drug delivery
JPH03278830A (en) Production of material having core material coated with fine particle shell
Fulzele et al. Preparation and evaluation of microcapsules using polymerized rosin as a novel wall forming material
JP5017363B2 (en) Polymer giant particle surface-modified with nanoparticles and mesoparticles, nanoparticle-polymer composite material using the same, and production method thereof
JPH03229634A (en) Inorganic fine particle shell sustained release microsphere
Xiao et al. Lavender fragrance sol‐gel encapsulated in ORMOSIL nanospheres
Silva et al. Building process understanding of fluid bed taste mask coating of microspheres
JP2519465B2 (en) Composite powder and manufacturing method thereof
Jang et al. Preparation of nanoporous SiO2 particles and their application in drug release control
Jesionowski et al. The Use of Spray Drying in the Production of Inorganic-Organic Hybrid Materials with Defined Porous Structure

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term