JPH03274269A - Method for synthesizing diamondlike thin film and diamondlike thin film - Google Patents

Method for synthesizing diamondlike thin film and diamondlike thin film

Info

Publication number
JPH03274269A
JPH03274269A JP7521090A JP7521090A JPH03274269A JP H03274269 A JPH03274269 A JP H03274269A JP 7521090 A JP7521090 A JP 7521090A JP 7521090 A JP7521090 A JP 7521090A JP H03274269 A JPH03274269 A JP H03274269A
Authority
JP
Japan
Prior art keywords
thin film
diamond
nitrogen
plasma
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7521090A
Other languages
Japanese (ja)
Inventor
Hideo Kurokawa
英雄 黒川
Tsutomu Mitani
力 三谷
Yuichi Nakagami
裕一 中上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7521090A priority Critical patent/JPH03274269A/en
Publication of JPH03274269A publication Critical patent/JPH03274269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To synthesize a good quality diamondlike thin film on a substrate with good adhesion by adding gaseous nitrogen to the raw gas contg. carbon element, converting the mixture to plasma and allowing the ion and radical in the plasma to collide with the substrate. CONSTITUTION:A filament 2 is heated to liberate a thermoelectron which is accelerated by a mesh electrode 3 in an evacuated vacuum vessel 1. The raw gas contg. carbon element such as C6H6 is introduced into the vessel 1, allowed to collide with the thermoelectron and converted to plasma. A magnetic field is further impressed by a coil 4 to accelerate the plasma. The ion in the plasma is allowed to collide with the substrate 5 negatively charged by a bias power source 6 to deposit a film. In this case, 0.1-50vol.% gaseous nitrogen is added to the raw gas. As a result, a hard and high-transparency diamondlike thin film consisting essentially of carbon, contg. at least 0.1wt.% nitrogen and having <=1X10<6>OMEGAcm resistivity is synthesized on the substrate 5 with good adhesion.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、機械的特性、電気的特性等の諸特性がダイヤ
モンドに近い特性を示すダイヤモンド状薄膜及びその合
成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a diamond-like thin film that exhibits properties such as mechanical properties and electrical properties that are close to those of diamond, and a method for synthesizing the same.

従来の技術 ダイヤモンド状薄膜は非晶質でありながらダイヤモンド
に近い諸特性を備えているために、トライポロジー分野
への応用をはじめとして幅広い応用展開が期待されてい
る。
Conventional technology Although diamond-like thin films are amorphous, they have properties similar to those of diamond, so they are expected to have a wide range of applications, including applications in the field of tribology.

ダイヤモンド状薄膜の合成方法については、プラズマC
VD法、イオンビームスパッタリング法、イオンブレー
ティング法などすでに数々の方法が報告されている。
For the synthesis method of diamond-like thin films, please refer to Plasma C
A number of methods have already been reported, such as the VD method, ion beam sputtering method, and ion brating method.

プラズマCVD法は炭化水素や一酸化炭素等の炭素元素
を含むガスを原料ガスとし、高周波やマイクロ波、ある
いは直流電位で原料ガスをプラズマ化してプラズマ中の
イオンやラジカルを利用してダイヤモンド状薄膜を合成
する方法である(例えばj寺許No、 1479432
参照)。この方法により硬くて透明度が高い良質のダイ
ヤモンド状薄膜が合成されるのは、負電位を印加する等
の方法で基板に加速したイオンを照射した場合に限られ
る。
The plasma CVD method uses a gas containing carbon elements such as hydrocarbons and carbon monoxide as a raw material gas, converts the raw material gas into plasma using high frequency waves, microwaves, or DC potential, and uses ions and radicals in the plasma to form a diamond-like thin film. It is a method of synthesizing (for example, J Temple No. 1479432
reference). This method can synthesize a diamond-like thin film of high quality that is hard and highly transparent only when the substrate is irradiated with accelerated ions, such as by applying a negative potential.

イオンビーム、スパッタリング法は炭素元素から構成さ
れるターゲット(例えばグラファイト)にアルゴンやキ
セノン等のイオンビームを曜躬し、イオンのエネルギー
を利用して炭素原子(クラスター状のものも含む)をk
たき出してこれを基板に堆積する方法である(特開昭6
1−122197参竪)。この方法で良質のダイヤモン
ド状薄膜を合成するためには、例えば別のイオン銃で基
板表面にイオンを照射する等の手段により基板表面にエ
ネルギーを供給しなければならない。
The ion beam and sputtering method uses an ion beam of argon, xenon, etc. to target a target made of carbon element (e.g. graphite), and uses the energy of the ions to sputter carbon atoms (including clusters).
This is a method of ejecting and depositing it on a substrate (Japanese Unexamined Patent Publication No. 6
1-122197 reference). In order to synthesize a high-quality diamond-like thin film using this method, it is necessary to supply energy to the substrate surface by, for example, irradiating the substrate surface with ions using a separate ion gun.

イオンブレーティング法は、炭化水素ガスを原料とする
場合はプラズマCVD法と同じであり、原料ガスをプラ
ズマ化し基板に負電位を印加してプラズマ中のイオンを
基板に衝突させる方法である。また炭素元素から構成さ
れた固形ターゲットを原料とする場合は、電子照射等で
これを炭素原子に分解し高周波等で一部イオン化させて
基板に照射する。
The ion blating method is the same as the plasma CVD method when a hydrocarbon gas is used as a raw material, and is a method in which the raw material gas is turned into plasma, a negative potential is applied to the substrate, and ions in the plasma collide with the substrate. Further, when a solid target made of carbon element is used as a raw material, it is decomposed into carbon atoms by electron irradiation or the like, partially ionized by radio frequency or the like, and then irradiated onto the substrate.

このように、従来から報告されているいずれの方法にお
いても、硬くて透明度の高い良質なダイヤモンド状薄膜
を合成するためには、加速したイオンを基板に照射する
ことが必要であった。
As described above, in any of the conventionally reported methods, it is necessary to irradiate the substrate with accelerated ions in order to synthesize a diamond-like thin film of good quality that is hard and highly transparent.

発明が解決しようとする課題 しかしながらこのような従来の方法で良質なダイヤモン
ド状薄膜を付着性良く合成するためには、次のような課
題があった。良質なダイヤモンド状薄膜は1012ΩC
1’l程度の非抵抗を示す。このため膜が堆積するにつ
れて基板に負電位を印加しても膜表面にチャージアップ
が生じ、イオンの加速が不十分となって膜の堆積につれ
て膜質が低下するという課題があっに、また良質のダイ
ヤモンド状薄膜では大きな内部応力(圧縮応力)が発生
し、厚く堆積しようとすると基板から剥離してしまうと
いう課題があった。
Problems to be Solved by the Invention However, in order to synthesize a high-quality diamond-like thin film with good adhesion using such a conventional method, the following problems were encountered. A high quality diamond-like thin film is 1012ΩC.
It shows a non-resistance of about 1'l. For this reason, as the film is deposited, even if a negative potential is applied to the substrate, charge-up occurs on the film surface, and ions are not sufficiently accelerated, resulting in a decrease in film quality as the film is deposited. Diamond-like thin films generate large internal stress (compressive stress), and when they are deposited thickly, they tend to peel off from the substrate.

本発明は、このような従来技術の課題を解決したダイヤ
モンド状薄膜の合成方法を提供することを目的とする。
An object of the present invention is to provide a method for synthesizing a diamond-like thin film that solves the problems of the prior art.

課題を解決するための手段 本発明は、ガスを原料とする方法においては、適切な量
の窒素ガスを原料ガスに混入することで、また固体を原
料とする方法では成膜時に基板に窒素イオンを照射する
ことで上記のような課題を解決して、膜質の劣化や基板
との剥離を生ずることなく良質なダイヤモンド状薄膜を
合成するものである。
Means for Solving the Problems The present invention is achieved by mixing an appropriate amount of nitrogen gas into the raw material gas in a method using gas as a raw material, and by adding nitrogen ions to the substrate during film formation in a method using a solid raw material. The above-mentioned problems can be solved by irradiating the diamond with high quality diamond-like thin films without deterioration of film quality or separation from the substrate.

また本発明は、炭素を主成分とし、少なくとも0.1重
量%以、Eの窒素が混含されたことを特徴とするダイヤ
モンド状薄膜である。
Further, the present invention is a diamond-like thin film characterized in that the main component is carbon and at least 0.1% by weight of E nitrogen is mixed therein.

作用 本発明は、窒素ガスを導入した原料ガスのプラズマを利
用してダイヤモンド状薄膜を合成すると、膜中に窒素が
微量に含まれて抵抗が小さくなる。
Function: According to the present invention, when a diamond-like thin film is synthesized using plasma of a raw material gas into which nitrogen gas is introduced, a small amount of nitrogen is contained in the film, and the resistance is reduced.

このため膜が堆積されても膜表面でのチャージアップは
発生しなくなり、常にイオンが十分に加速されて良質な
ダイヤモンド状薄膜が連続で合成できる。また、膜中に
窒素が混入すると従来のダイヤモンド状薄膜で発生して
いた内部応力が小さくなり、基板との付着性が向上する
Therefore, even when the film is deposited, charge-up does not occur on the film surface, and ions are always sufficiently accelerated to continuously synthesize high-quality diamond-like thin films. Furthermore, when nitrogen is mixed into the film, the internal stress that occurs in conventional diamond-like thin films is reduced, and the adhesion to the substrate is improved.

またイオンビームスパッタリング法や真空蒸着法で、基
板に窒素イオンを照射しつつ膜を合成した場合も同じ効
果が得られる。すなわち窒素イオンを照射することで膜
中に窒素が混入され、抵抗が小さくなって良質なダイヤ
モンド状薄膜の連続合成が可能になるとともに、内部応
力が小さくなって基板との付着性が向りする。
The same effect can also be obtained when a film is synthesized while irradiating the substrate with nitrogen ions using ion beam sputtering or vacuum evaporation. In other words, by irradiating with nitrogen ions, nitrogen is mixed into the film, which reduces resistance and enables continuous synthesis of high-quality diamond-like thin films, and also reduces internal stress and improves adhesion to the substrate. .

実施例 以下に本発明の実施例を図面を参煕して説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明にかかるダイヤモンド状fiI膜の合成
方法の−の実施例に使用した装置の概略図である。真空
槽l中にはフィラメント2が設置され、これを加熱して
放出された熱電子をメツシュ状の電極3に正電位を印加
して加速する。真空槽1中に導入された原料ガスは、熱
電子と衝突することでプラズマ化される。この時、プラ
ズマを促進するためにコイル4により磁場を印加する。
FIG. 1 is a schematic diagram of an apparatus used in Example 1 of the method for synthesizing a diamond-like fiI film according to the present invention. A filament 2 is installed in a vacuum chamber 1, and the heated electrons are accelerated by applying a positive potential to a mesh-like electrode 3. The raw material gas introduced into the vacuum chamber 1 is turned into plasma by colliding with thermoelectrons. At this time, a magnetic field is applied by the coil 4 to promote plasma.

基板5には基板バイアス電源6により負電位が印加され
ており、プラズマ中のイオンが基板5に加速衝突して膜
が堆積される。原料ガスとしてはC15Hsカス(ベン
ゼンガス)を使用し、成膜時の圧力は1O−3Torr
台になるよう設定した。
A negative potential is applied to the substrate 5 by a substrate bias power supply 6, and ions in the plasma accelerate and collide with the substrate 5 to deposit a film. C15Hs gas (benzene gas) is used as the raw material gas, and the pressure during film formation is 1O-3 Torr.
I set it up to be a stand.

窒素ガスを混含した場合としない場合の実験結果の一例
を表1に示す。
Table 1 shows an example of experimental results with and without nitrogen gas mixed in.

表1 窒素ガスを混入しても膜質の低下や剥離は発生していな
い。この状態からざらに成膜を継続すると、C1186
ガスだけの時は剥離が進行するとともに膜がスス状とな
る。これに対して窒素ガスを添加した場合は剥離が生じ
にくく、長時間成膜後も膜の硬度に変化は認められなか
った。窒素ガスの添加量は0.1−50体積%、さらに
は0.5−20体積%が好ましい。これは窒素の添加量
が00101体積り少なくなると膜中に取り込まれる窒
素の量が少なくなり、低抵抗化、内部応力緩和の効果が
薄れてしまうし、また窒素の添加量が50体積%以上に
なると、ダイヤモンド状薄膜自身の硬度が低下してしま
うからである。他に添加ガスとしては、半導体を作成す
る時に使用されるジボランガスやホスフィンガスでもか
まわないが、これらのガスは有毒性あるいは可燃性の高
い性質を示すために取扱に十分注意する必要があり、ま
た排ガス処理装置が必要になるなど装置構成も*雑にな
る面がある。またこのような半導体製造用のガスでは、
内部応力を低減して付着力を向上させる効果は少なかっ
た。
Table 1 Even when nitrogen gas was mixed, no deterioration in film quality or peeling occurred. If film formation is continued roughly from this state, C1186
When only gas is used, peeling progresses and the film becomes sooty. On the other hand, when nitrogen gas was added, peeling was less likely to occur, and no change in the hardness of the film was observed even after long-term film formation. The amount of nitrogen gas added is preferably 0.1-50% by volume, more preferably 0.5-20% by volume. This is because when the amount of added nitrogen decreases by 00101 volume, the amount of nitrogen incorporated into the film decreases, and the effect of lowering resistance and relieving internal stress weakens. This is because the hardness of the diamond-like thin film itself decreases. Other additive gases include diborane gas and phosphine gas, which are used when creating semiconductors, but these gases are highly toxic or flammable and must be handled with great care. The equipment configuration may also be complicated, such as the need for exhaust gas treatment equipment. In addition, in such gases for semiconductor manufacturing,
The effect of reducing internal stress and improving adhesion was small.

次に本発明の第二の実施例について説明する。Next, a second embodiment of the present invention will be described.

第2図に第二の実施例に使用した装置の概略を示す。構
成は並行平板型の高周波スパッタリング装置と同じであ
り、真空槽7中に一対の対抗する電極8a、8bを備え
、一方の電極8aには高周波型R9から高周波が印加さ
れる。基板10は従来のスパッタリング法ではターゲッ
トが設置される電極8a(すなわち高周波が印加される
電極)上に設置され、導入したガスは高周波によりプラ
ズマ化されて膜が堆積する。この時真空槽7中に設置さ
れたイオン銃11により、基板10表面には窒素イオン
が照射される。本実施例ではメタンガスを原料ガスとし
、0.5−10体積%の範囲で窒素ガスを添加した。結
果の一例を表2に示す。
FIG. 2 shows an outline of the apparatus used in the second embodiment. The configuration is the same as a parallel plate type high frequency sputtering device, and includes a pair of opposing electrodes 8a and 8b in a vacuum chamber 7, and high frequency waves are applied to one electrode 8a from a high frequency type R9. In the conventional sputtering method, the substrate 10 is placed on an electrode 8a on which a target is placed (that is, an electrode to which high frequency is applied), and the introduced gas is turned into plasma by the high frequency to deposit a film. At this time, an ion gun 11 installed in the vacuum chamber 7 irradiates the surface of the substrate 10 with nitrogen ions. In this example, methane gas was used as the raw material gas, and nitrogen gas was added in a range of 0.5-10% by volume. An example of the results is shown in Table 2.

表2 本実施例では、高周波放電特有のセルフバイアス効果に
より基板の抵抗に関わらず基板表面にイオンが衝突する
ため、窒素イオンを熊射しなくても膜が堆積するここ従
って膜質が低下する傾向はごく弱いものであった。特に
原料ガスに窒素ガスを添加した時は、膜質が低下する傾
向は全く認められなかった。
Table 2 In this example, because ions collide with the substrate surface regardless of the resistance of the substrate due to the self-bias effect peculiar to high-frequency discharge, a film is deposited even without the injection of nitrogen ions.Therefore, the film quality tends to deteriorate. was very weak. In particular, when nitrogen gas was added to the raw material gas, no tendency for the film quality to deteriorate was observed at all.

しかし膜の硬度は窒素イオンを照射した方が硬くなる傾
向にあり、付着性に関しては窒素イオンを照射した方が
飛躍的に良くなる。
However, the hardness of the film tends to increase when irradiated with nitrogen ions, and the adhesion properties are dramatically improved when irradiated with nitrogen ions.

この時照射する窒素イオンの密度は0.01mA/cm
2以上で、加速エネルギーはI 00−2000eVて
なければならない。窒素イオンの密度が0.01rnA
/cm2より小さいと、エネルギーの大小にかかわらず
照射の効果が表れてこない。またイオンの加速エネルギ
ーが100eVより小さい場合も同様に、照射の効果が
表れにくい。逆にイオンの加速エネルギーが2000e
Vより大きいと、イオンが表面をスパッタリングしてし
まい膜質が低下する。
The density of nitrogen ions irradiated at this time is 0.01 mA/cm
2 or more, the acceleration energy must be I00-2000eV. Nitrogen ion density is 0.01rnA
If it is smaller than /cm2, the effect of irradiation will not appear regardless of the energy level. Similarly, when the ion acceleration energy is less than 100 eV, the effect of irradiation is also difficult to show. On the other hand, the acceleration energy of the ion is 2000e
If it is larger than V, ions will sputter the surface and the film quality will deteriorate.

次に本発明の第三の実施例について説明する。Next, a third embodiment of the present invention will be described.

第3図に第三の実施例で使用した装置の概略を示す。FIG. 3 shows an outline of the apparatus used in the third embodiment.

その構成はデュアルビームスバッタリング装置と同じで
あり、2つのイオン銃12.13を備えている。
Its configuration is the same as the dual beam scattering device and includes two ion guns 12 and 13.

第一のイオン銃12によりアルゴンイオンをターゲット
(グラファイト)14に照射して炭素原子をスパッタリ
ングし、相対する基板15表面にこれを堆積させる。同
時に第二のイオン銃13により窒素イオンもしくは窒素
イオンとアルゴンイオンを基板15表面に1.復刊する
A target (graphite) 14 is irradiated with argon ions by the first ion gun 12 to sputter carbon atoms, which are deposited on the surface of the opposing substrate 15 . At the same time, the second ion gun 13 applies nitrogen ions or nitrogen ions and argon ions to the surface of the substrate 15. To be republished.

結果の一例を表3に示す。従来はアルゴンやキセノン等
の不活性ガスのイオンを基板に照射しており、これを熊
躬しないと硬質化が図れない。しかし不活性ガスのイオ
ンを基板に照射するとプラズマCVD法の場合と同様に
、膜の堆積につれてイオンの加速が不十分となり膜質が
低下する。また付着性も不十分であり、表3で示したよ
うに極薄い膜厚でも剥離が生じる。これに対して窒素イ
オンもしくは窒素イオンと不活性ガスのイオンを基板に
照射すると、膜質の低下は認め八れず付着性も向上する
An example of the results is shown in Table 3. Conventionally, the substrate is irradiated with ions of an inert gas such as argon or xenon, and it is impossible to harden the substrate unless this is applied. However, when a substrate is irradiated with inert gas ions, as in the plasma CVD method, as the film is deposited, the ions are insufficiently accelerated and the film quality deteriorates. Furthermore, the adhesion is insufficient, and as shown in Table 3, peeling occurs even when the film is extremely thin. On the other hand, when the substrate is irradiated with nitrogen ions or ions of nitrogen ions and an inert gas, the film quality does not deteriorate and the adhesion improves.

表3 喧剖する窒素イオンの密度及びエネルギーについては、
第二の実施例で示した条件とほぼ同してあり、照射イオ
ン密度は0.0In+A/cn+”以E、照射エネルギ
ーは100−2000eVでなけれはならない。
Table 3 Regarding the density and energy of nitrogen ions,
The conditions are almost the same as those shown in the second embodiment, and the irradiation ion density must be 0.0 In+A/cn+'' or more E, and the irradiation energy must be 100-2000 eV.

実施例で示した方法で合成したダイヤモンド状薄膜を分
析すると、良質で付着性に優れたサンプルでは0.1−
20重量%の窒素が含まれていた。これに対して窒素ガ
スの添加量が少なく、あるいは窒素イオンの照射量が少
ないためζこM質の低下や剥離を生じたサンプルでは、
0.1重量%より少ない窒素しか認められなかった。ダ
イヤモンド状薄膜の中に窒素イオンが含まれると抵抗が
小さくなったり付着性が向上する理由は定かでないが、
これらの現象は膜中に含まれる窒素の量と相関があると
考えられる。また、比抵抗が1x106Ωcrnより小
さいダイヤモンド状薄膜が望ましい。
Analysis of the diamond-like thin film synthesized by the method shown in the example shows that samples of good quality and excellent adhesion have a concentration of 0.1-
It contained 20% nitrogen by weight. On the other hand, in samples where the amount of nitrogen gas added or the amount of nitrogen ion irradiation was small, the ζM quality deteriorated or peeled off.
Less than 0.1% by weight nitrogen was observed. Although it is not clear why the inclusion of nitrogen ions in a diamond-like thin film reduces resistance or improves adhesion,
These phenomena are considered to be correlated with the amount of nitrogen contained in the film. Further, a diamond-like thin film having a specific resistance of less than 1×10 6 Ωcrn is desirable.

本発明において、原料ガスである炭化水素ガス、窒素ガ
ス雰囲気中にキャリアガスとしてアルゴンガス、キセノ
ンガスなどを添加してもかまわない。
In the present invention, argon gas, xenon gas, or the like may be added as a carrier gas to the hydrocarbon gas or nitrogen gas atmosphere as the raw material gas.

発明の効果 以上のように本発明によれば、良質のダイヤモンド状薄
膜を膜質を低下させずに付着性良く合成することが可能
となり、その効果は工業的に非常に大きなものである。
Effects of the Invention As described above, according to the present invention, it is possible to synthesize a high-quality diamond-like thin film with good adhesion without degrading the film quality, and the effect is industrially very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のダイヤモンド状薄膜の合成方法の一
実施例に用いた成膜装置の概略を示す側面図、第2図は
、本発明のダイヤモンド状薄膜の合成方法の他の実施例
に用いた成膜装置の概略を示す側面図、第3図は、本発
明のダイヤモンド状薄膜の合成方法の他の実施例に用い
た成膜装置の概略を示す側面図である。 l・・・真空槽、4・・・コイル、5・・・基板、11
・・・イオン銃、 14・・・ターゲット。
FIG. 1 is a side view schematically showing a film forming apparatus used in one embodiment of the diamond-like thin film synthesis method of the present invention, and FIG. 2 is another embodiment of the diamond-like thin film synthesis method of the present invention. FIG. 3 is a side view schematically showing the film forming apparatus used in another embodiment of the diamond-like thin film synthesis method of the present invention. l...Vacuum chamber, 4...Coil, 5...Substrate, 11
...Ion gun, 14...Target.

Claims (6)

【特許請求の範囲】[Claims] (1)少なくとも炭素元素を含む原料ガスをプラズマ化
し、プラズマ中のイオンやラジカルを利用してダイヤモ
ンド状薄膜を合成するダイヤモンド状薄膜の合成方法に
おいて、前記原料ガスの中に窒素ガスを添加することを
特徴とするダイヤモンド状薄膜の合成方法。
(1) In a diamond-like thin film synthesis method in which a raw material gas containing at least carbon element is turned into plasma and a diamond-like thin film is synthesized using ions and radicals in the plasma, nitrogen gas is added to the raw material gas. A method for synthesizing diamond-like thin films characterized by:
(2)窒素ガスの添加量が0.1−50体積%であるこ
とを特徴とする請求項1記載のダイヤモンド状薄膜の合
成方法。
(2) The method for synthesizing a diamond-like thin film according to claim 1, characterized in that the amount of nitrogen gas added is 0.1-50% by volume.
(3)少なくとも炭素元素を含む原料ガスをプラズマ化
し、プラズマ中のイオンやラジカルを利用してダイヤモ
ンド状薄膜を合成するダイヤモンド状薄膜の合成方法に
おいて、製膜と並行して基板の表面に窒素イオンもしく
は運動エネルギーを備えた窒素原子を照射することを特
徴とするダイヤモンド状薄膜の合成方法。
(3) In a diamond-like thin film synthesis method in which a source gas containing at least the carbon element is turned into plasma and a diamond-like thin film is synthesized using ions and radicals in the plasma, nitrogen ions are applied to the surface of the substrate in parallel with film formation. Alternatively, a method for synthesizing a diamond-like thin film is characterized by irradiating nitrogen atoms with kinetic energy.
(4)炭素元素から構成されたターゲットを、イオン衝
撃、電子衝撃、加熱のいずれかの方法により炭素原子単
体もしくは炭素原子のクラスターに分解して炭素膜を合
成するダイヤモンド状薄膜の合成方法において、製膜と
並行して基板の表面に少なくとも窒素イオンもしくは運
動エネルギーを備えた窒素原子を照射することを特徴と
するダイヤモンド状薄膜の合成方法。
(4) A method for synthesizing a diamond-like thin film in which a carbon film is synthesized by decomposing a target made of carbon element into single carbon atoms or clusters of carbon atoms by any of ion bombardment, electron bombardment, or heating methods, A method for synthesizing a diamond-like thin film, which comprises irradiating the surface of a substrate with at least nitrogen ions or nitrogen atoms with kinetic energy in parallel with film formation.
(5)炭素を主成分とし、少なくとも0.1重量%以上
の窒素が混含されたことを特徴とするダイヤモンド状薄
膜。
(5) A diamond-like thin film containing carbon as a main component and containing at least 0.1% by weight of nitrogen.
(6)比抵抗が1×10^6Ωcmより小さいことを特
徴とする請求項5記載のダイヤモンド状薄膜。
(6) The diamond-like thin film according to claim 5, characterized in that the specific resistance is smaller than 1×10^6 Ωcm.
JP7521090A 1990-03-22 1990-03-22 Method for synthesizing diamondlike thin film and diamondlike thin film Pending JPH03274269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7521090A JPH03274269A (en) 1990-03-22 1990-03-22 Method for synthesizing diamondlike thin film and diamondlike thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7521090A JPH03274269A (en) 1990-03-22 1990-03-22 Method for synthesizing diamondlike thin film and diamondlike thin film

Publications (1)

Publication Number Publication Date
JPH03274269A true JPH03274269A (en) 1991-12-05

Family

ID=13569610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7521090A Pending JPH03274269A (en) 1990-03-22 1990-03-22 Method for synthesizing diamondlike thin film and diamondlike thin film

Country Status (1)

Country Link
JP (1) JPH03274269A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378285A (en) * 1993-02-10 1995-01-03 Matsushita Electric Industrial Co., Ltd. Apparatus for forming a diamond-like thin film
WO1995017537A1 (en) * 1993-12-21 1995-06-29 Commonwealth Scientific Corporation Process for deposition of diamondlike, electrically conductive and electron-emissive carbon-based films
EP0617147A3 (en) * 1993-03-25 1997-05-28 Canon Kk Diamond crystal forming method.
JP2002184300A (en) * 2000-12-13 2002-06-28 Japan Science & Technology Corp Electric field electron emitting element and method for manufacturing the same
JP2006111964A (en) * 2004-08-27 2006-04-27 Nanofilm Technologies Internatl Pte Ltd Method and apparatus for providing substrate coating having predetermined resistivity, and use therefor
JP2006284887A (en) * 2005-03-31 2006-10-19 International Display Technology Kk Liquid crystal cell equipped with low resistive dlc alignment layer, and method for manufacturing the cell
JP2009099228A (en) * 2007-10-18 2009-05-07 Denso Corp Method of adjusting optical bandgap in recording layer, optical recording medium, and method of manufacturing optical recording medium
JP2009227552A (en) * 2008-03-25 2009-10-08 Akita Univ Diamond membrane synthetic method by combustion flame method using high purity acetylene gas
DE102009002320A1 (en) * 2009-04-09 2010-10-14 Hochschule für angewandte Wissenschaft und Kunst Fachhochschule Hildesheim/Holzminden/Göttingen Reduction of the electrical contact resistance of a surface of a metallic body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144705A (en) * 1984-08-09 1986-03-04 Toshiba Corp Method for forming electrically conductive carbon film
JPS63210010A (en) * 1987-02-24 1988-08-31 Semiconductor Energy Lab Co Ltd Production of carbon
JPS63215596A (en) * 1987-02-27 1988-09-08 Matsushita Electric Ind Co Ltd Production of diamond film or diamond like film
JPS6475678A (en) * 1987-09-17 1989-03-22 Sumitomo Electric Industries Hard carbon film containing nitrogen
JPH01141896A (en) * 1987-11-27 1989-06-02 Fujitsu Ltd Formation of diamond film
JPH0230763A (en) * 1988-07-17 1990-02-01 Semiconductor Energy Lab Co Ltd Composite body having film composed principally of carbon
JPH02217471A (en) * 1989-02-16 1990-08-30 Semiconductor Energy Lab Co Ltd Manufacture of carbon-based film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144705A (en) * 1984-08-09 1986-03-04 Toshiba Corp Method for forming electrically conductive carbon film
JPS63210010A (en) * 1987-02-24 1988-08-31 Semiconductor Energy Lab Co Ltd Production of carbon
JPS63215596A (en) * 1987-02-27 1988-09-08 Matsushita Electric Ind Co Ltd Production of diamond film or diamond like film
JPS6475678A (en) * 1987-09-17 1989-03-22 Sumitomo Electric Industries Hard carbon film containing nitrogen
JPH01141896A (en) * 1987-11-27 1989-06-02 Fujitsu Ltd Formation of diamond film
JPH0230763A (en) * 1988-07-17 1990-02-01 Semiconductor Energy Lab Co Ltd Composite body having film composed principally of carbon
JPH02217471A (en) * 1989-02-16 1990-08-30 Semiconductor Energy Lab Co Ltd Manufacture of carbon-based film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378285A (en) * 1993-02-10 1995-01-03 Matsushita Electric Industrial Co., Ltd. Apparatus for forming a diamond-like thin film
EP0617147A3 (en) * 1993-03-25 1997-05-28 Canon Kk Diamond crystal forming method.
WO1995017537A1 (en) * 1993-12-21 1995-06-29 Commonwealth Scientific Corporation Process for deposition of diamondlike, electrically conductive and electron-emissive carbon-based films
US5616179A (en) * 1993-12-21 1997-04-01 Commonwealth Scientific Corporation Process for deposition of diamondlike, electrically conductive and electron-emissive carbon-based films
JP2002184300A (en) * 2000-12-13 2002-06-28 Japan Science & Technology Corp Electric field electron emitting element and method for manufacturing the same
JP2006111964A (en) * 2004-08-27 2006-04-27 Nanofilm Technologies Internatl Pte Ltd Method and apparatus for providing substrate coating having predetermined resistivity, and use therefor
JP2006284887A (en) * 2005-03-31 2006-10-19 International Display Technology Kk Liquid crystal cell equipped with low resistive dlc alignment layer, and method for manufacturing the cell
JP2009099228A (en) * 2007-10-18 2009-05-07 Denso Corp Method of adjusting optical bandgap in recording layer, optical recording medium, and method of manufacturing optical recording medium
JP2009227552A (en) * 2008-03-25 2009-10-08 Akita Univ Diamond membrane synthetic method by combustion flame method using high purity acetylene gas
DE102009002320A1 (en) * 2009-04-09 2010-10-14 Hochschule für angewandte Wissenschaft und Kunst Fachhochschule Hildesheim/Holzminden/Göttingen Reduction of the electrical contact resistance of a surface of a metallic body

Similar Documents

Publication Publication Date Title
US5712000A (en) Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
US6274014B1 (en) Method for forming a thin film of a metal compound by vacuum deposition
JPS63210099A (en) Preparation of diamond film
JPH0352433B2 (en)
JPH03274269A (en) Method for synthesizing diamondlike thin film and diamondlike thin film
JP2689146B2 (en) Hard carbon film coating method
Xu et al. Characterization of CNx films prepared by twinned ECR plasma source enhanced DC magnetron sputtering
Riley et al. Formation of Q-carbon with wafer scale integration
Kimura et al. Effects of adding hydrocarbon gas to a high-power impulse magnetron sputtering system on the properties of diamond-like carbon films
JPH07258840A (en) Formation of carbon thin film
JP3025743B2 (en) Hard carbon film forming equipment
JPS5855319A (en) Formation of diamondlike carbon film
JPS644591B2 (en)
JP3016748B2 (en) Method for depositing carbon-based high-performance material thin film by electron beam excited plasma CVD
JP2734556B2 (en) Method for producing amorphous carbon film
JP3056827B2 (en) Article having a diamond-like carbon protective film and method for producing the same
Yamamoto et al. Plasma states and carbon film deposition in glow discharge connected to dielectric barrier discharge
KR100325560B1 (en) Hard Carbon Film Substrate and Forming Method and Apparatus
JP3246780B2 (en) Method and apparatus for forming hard carbon film
JPH06272037A (en) Formation of thin film and apparatus therefor
JP2001172763A (en) Method of forming metal-containing hard carbon film
US20100155935A1 (en) Protective coating for semiconductor substrates
JPH07330490A (en) Hard carbon film substrate and its formation
JPH04103777A (en) Base material having hard carbon film
JP2893992B2 (en) Method and apparatus for synthesizing hard carbon film