JPH03273123A - Spatial temperature measurement system - Google Patents

Spatial temperature measurement system

Info

Publication number
JPH03273123A
JPH03273123A JP7197490A JP7197490A JPH03273123A JP H03273123 A JPH03273123 A JP H03273123A JP 7197490 A JP7197490 A JP 7197490A JP 7197490 A JP7197490 A JP 7197490A JP H03273123 A JPH03273123 A JP H03273123A
Authority
JP
Japan
Prior art keywords
light
temperature
sensor
mirror
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7197490A
Other languages
Japanese (ja)
Other versions
JPH0769218B2 (en
Inventor
Yutaka Ono
豊 大野
Shinichi Uebayashi
植林 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Dan Co Ltd
Original Assignee
Dai Dan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Dan Co Ltd filed Critical Dai Dan Co Ltd
Priority to JP2071974A priority Critical patent/JPH0769218B2/en
Publication of JPH03273123A publication Critical patent/JPH03273123A/en
Publication of JPH0769218B2 publication Critical patent/JPH0769218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To accurately measure the temperature distribution in a two-three-dimensional non-contactly by installing only a sensor at an optional position in a space where temperature is to be measured and detecting the temperature of th sensor with light from a remote position. CONSTITUTION:The light source light L1 which is projected by a light source 11 in a measuring instrument 10 through a projection leans 12 is reflected by a mirror 21 in an optical system 20, and made incident of a beam splitter 22 and split into reference light L2 and projection light L3. Then the reference light L2 passes through a projection lens 23 and an optical fiber 41 and is made incident of a photoelectric conversion part 13 and converted into an electric signal. The projection light, on the other hand, is reflected by a mirror 24 to make a scan on sensors 31 - 34. Then a sensor part 30 receives the projection light L3 by fluorescent material layers of the sensors 31 - 34 and converts the light into luminescent light, which is made incident of an scan mirror 26 as received light L4. This received signal L4 is converged 25, transmitted in the optical fiber 42 through a filter F3, and converted 14 photoelectrically, and a computing element 15 compares it with an electric signal of the reference light inputted from the photoelectric conversion part 13, so that the signal is displayed 16 as measured temperature at each point.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空間の温度分布を計測する非接触型の空間温
度計測システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-contact spatial temperature measurement system for measuring temperature distribution in a space.

〔従来の技術〕[Conventional technology]

従来より、温度計測システムとして1例えばフォトルミ
ネセンスを利用した接触型の光フアイバサーモメータが
知られている。
2. Description of the Related Art Conventionally, a contact type optical fiber thermometer using photoluminescence has been known as a temperature measurement system.

この種の温度計測システムは、測定器内の光源(キセノ
ンランプ、LD 、LED)から放射された光が光フア
イバケーブル内を透過し、被測定物と接触させる先端部
の半導体蛍光物質系センサ部に達すると、センサはこの
光を吸収して励起され、吸収した光とは全く異なる波長
の別の光を放射する。そして、別の復路を通るか、また
は同じ光フアイバケーブルを復路として測定器内へ返信
される。この返信光の波長はセンサの感知温度によって
異なるので、測定器はこの波長の違いを分光分析演算処
理する。すなわち、返信光は波長分波器を経てフォトダ
イオードにより検知され、参照光などと比較演算されて
液晶デイスプレィなどに温度が表示される。
In this type of temperature measurement system, light emitted from a light source (xenon lamp, LD, LED) inside the measuring device passes through an optical fiber cable and comes into contact with a semiconductor fluorescent material sensor at the tip. When this happens, the sensor absorbs this light and becomes excited, emitting another light at a completely different wavelength than the absorbed light. Then, it is sent back into the measuring instrument through another return route or through the same optical fiber cable. Since the wavelength of this returned light differs depending on the temperature sensed by the sensor, the measuring instrument processes this difference in wavelength through spectroscopic analysis and calculation. That is, the returned light passes through a wavelength demultiplexer, is detected by a photodiode, is compared with a reference light, and the temperature is displayed on a liquid crystal display or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この種の接触型の温度計測システムでは
、不特定個所に点在する被測定物の温度を計測する場合
、その都度、光フアイバケーブルを引き廻してその先端
部のセンサを被測定物に接触させることによって温度測
定が可能になるが、このようなものでは、近年の分布計
測や面から更に立体空間における温度計測の要請に対し
て対応できないという問題があった。
However, in this type of contact-type temperature measurement system, when measuring the temperature of objects to be measured scattered at unspecified locations, each time an optical fiber cable is routed and the sensor at the tip is connected to the object to be measured. Although it is possible to measure temperature by making contact, this type of device has a problem in that it cannot meet the recent demands for distribution measurement and temperature measurement in a three-dimensional space.

例えば、スタジオなど観客員数立体室内の空間温度を考
えた場合、立体階層起伏の多い室内にはエアコンなどの
空調設備の吹出口が整備されているが、その空間各所の
温度分布は様々な値になっている。この温度分布を検出
できればそれに応じて最適な空調制御が可能となる。し
かしながら、このような空間各債所の温度分布の計測は
、従来の接触型の温度計測システムでは実大かつ複雑と
なって実施は極めて困難であった。
For example, when considering the spatial temperature in a three-dimensional room with a large number of spectators, such as a studio, air outlets for air conditioners such as air conditioners are installed in rooms with many undulating three-dimensional floors, but the temperature distribution in various parts of the space varies. It has become. If this temperature distribution can be detected, optimal air conditioning control can be performed accordingly. However, it has been extremely difficult to measure the temperature distribution of each space in a conventional contact-type temperature measurement system due to its large size and complexity.

〔M題を解決するための手段〕[Means for solving M problem]

このような課題を解決するために、本発明による空間温
度計測システムは、光を出射する光出射手段と、出射光
を参照光と投光とに分割するとともに投光を空間に出射
する光学系と、空間内に配置され投光を受光して温度に
応じて励起変化した投光とは異なる波長強度の受信光を
光学系に出射するセンサと、光学系からの参照光と受信
光を受光して電気信号に変換し演算を行なって受信光の
波長からセンサの温度を測定する温度計測手段とを有し
ている。
In order to solve such problems, the space temperature measurement system according to the present invention includes a light emitting means that emits light, an optical system that divides the emitted light into a reference light and a projected light, and emits the projected light into the space. and a sensor placed in the space that receives the projected light and emits the received light with a different wavelength intensity from the projected light, which is excited and changed according to the temperature, to the optical system, and receives the reference light and received light from the optical system. and a temperature measuring means for measuring the temperature of the sensor from the wavelength of the received light by converting it into an electrical signal and performing calculations.

また、センサを複数設け、投光器で各センサ部位に走査
分配するようにした。
In addition, a plurality of sensors were provided, and a light projector was used to scan and distribute the light to each sensor site.

〔作 用〕[For production]

本発明においては、光学系から放射される投光が空間に
設置されたセンナに入射すると、このセンサ内の温度に
応じた別な波長を誘発し、この光は元の光路に放射され
、この光が受信側の光学系に入射されてセンサの温度、
すなわち、センサが設置された空間の温度が測定できる
In the present invention, when the projected light emitted from the optical system enters a sensor installed in space, it induces a different wavelength depending on the temperature inside this sensor, and this light is emitted to the original optical path, When light enters the optical system on the receiving side, the temperature of the sensor,
That is, the temperature of the space where the sensor is installed can be measured.

センサを複数設ければ、空間の温度分布が測定できる。If multiple sensors are provided, the temperature distribution in the space can be measured.

〔実施例〕〔Example〕

以下、本発明を図面に示した実施例を用いて詳細に説明
する。
Hereinafter, the present invention will be explained in detail using embodiments shown in the drawings.

第1図は本発明に係る空間温度計測システムの一実施例
による構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of an embodiment of a space temperature measurement system according to the present invention.

同図において、10は温度計測を行たう測定器であり、
この測定器10には、例えばキセノンランプ光又はレー
ザ光などの光源光L1を発生させるための光源11と、
その投光レンズ12および光フィルタF1と、後述する
光学系から入射される参照光L2と受信光L3とをそれ
ぞれ電気信号に変換する光電変換部13.14と、変換
された各電気信号を比較演算する演算部15と、その演
算結果を計測温度として数値表示する表示部16とが設
けられている。
In the figure, 10 is a measuring device for measuring temperature;
This measuring instrument 10 includes a light source 11 for generating light source light L1 such as xenon lamp light or laser light,
The light projecting lens 12 and optical filter F1 are compared with photoelectric converters 13 and 14 that convert reference light L2 and received light L3 incident from an optical system described later into electrical signals, respectively, and each of the converted electrical signals is compared. A calculation unit 15 that performs calculations and a display unit 16 that numerically displays the calculation results as measured temperatures are provided.

20は各種の光を入出射させて往復の光路制御を行なう
光学系であり、この光学系20には、投光レンズ12を
介して入射されたレーザ光L1を所定方向に反射させる
ミラー21と、このミラー21の反射光を参照光L2と
投光L3とに分割するビームスプリッタ22と、参照光
L2の投光レンズ23および光フィルタF2と、投光L
3を所定の方向に反射させるミラ一部24と、後述する
受信光L4を集光して測定器10側に出射させる集光レ
ンズ25と、ミラ一部24で反射された投光L3を室内
空間の所定範囲の方向にわたってサーボ機構により駆動
され走査を行なうスキャンミラー26とが設けられてい
る。
Reference numeral 20 denotes an optical system that controls the reciprocating optical path by inputting and outputting various types of light, and this optical system 20 includes a mirror 21 that reflects the laser beam L1 that has entered through the projection lens 12 in a predetermined direction. , a beam splitter 22 that splits the reflected light of this mirror 21 into a reference light L2 and a light projection L3, a light projection lens 23 and an optical filter F2 for the reference light L2, and a light projection L2.
3 in a predetermined direction, a condensing lens 25 that collects received light L4 (described later) and emits it to the measuring instrument 10 side, and a mirror part 24 that reflects light L3 reflected by the mirror part 24 into the room. A scan mirror 26 is provided which is driven by a servo mechanism to perform scanning over a predetermined range of directions in space.

30は光学系20から離れて室内の温度測定領域空間に
、その受光面をスキャンミラー26の方向に向けて設置
された複数のセンサ31〜34からなるセンサ部である
。これらのセンサ31〜34は、スキャンミラー26か
ら出射された投光L3を受けると、センサ内の後記する
半導体蛍光物質30bがルミネセンス作用により励起さ
れて異なる波長(周波数)の受信光L4を入射光の入射
方向と同じ方向に向けて回帰反射する。
Reference numeral 30 denotes a sensor section consisting of a plurality of sensors 31 to 34, which is installed in an indoor temperature measurement area space away from the optical system 20, with its light-receiving surface facing toward the scan mirror 26. When these sensors 31 to 34 receive the projected light L3 emitted from the scan mirror 26, a semiconductor fluorescent substance 30b (described later) inside the sensor is excited by luminescence, and the received light L4 of a different wavelength (frequency) is incident thereon. The light is reflected back in the same direction as the incident direction.

この各センサは、例えば、事務所内では机、4F#子、
書棚、ロッカ、事務機器、床面、壁面などの適当な場所
に設定する。適当な場所とは、各機器の取扱いの邪魔に
ならず、かつ、スキャンミラー26の方向に幾何光学的
に面する場所である。また、スタジオ、劇場、ホールな
どでは、座席の椅子の上に設けられた座席番号プレート
の位置、′4路段々が適当である。さらに、天井から細
い棒で下げられたマイクや照明器具等に設けることもで
きる。また、空間内でなく壁や床などに設けることもで
きる。
For example, in an office, each sensor may be placed on a desk, 4th floor child,
Set it in an appropriate location such as a bookshelf, locker, office equipment, floor, or wall. An appropriate location is a location that does not interfere with the handling of each device and faces geometrically in the direction of the scan mirror 26. In addition, in studios, theaters, halls, etc., the appropriate location for seat number plates on the seats is the 4th step. Furthermore, it can also be installed on a microphone, lighting equipment, etc. that is hung from the ceiling with a thin rod. Moreover, it can also be provided not within the space but on a wall or floor.

第2FM(a)はセンサ31の側面断面図であり、透光
性のガラス基板30aと、入射する投光L3を吸収する
とその入射光の刺激により励起された別の光(ルミネセ
ンス光)、すなわち受信光L4を発光する蛍光物W層3
0bと、入射光である投光L3と反射光である受信光L
4とが平行になる幾何光学的に回帰性を有するように光
の方向を規制するコーナキューブプリズム30cとを組
合わせて構成されている。この蛍光物質fi30bは、
同図(b)の断面図に示すように、第1のAJIG a
As層30blとGaAs層30b2層と第2のA交G
aAs層30b3とが積層れて構成されており、投光L
3の吸収により効率良く受信光L4としてルミネセンス
光を発生させる機能を有している。また、コーナキュー
ブプリズム30cは、同図(C)にIs視図で示すよう
にキューブのコーナを形成するように互いに交差する3
つの反射面30cl  、30c2.30c3を有し、
キューブの対角線に対して垂直な入射面を膚して構成さ
れており、投光L3の入射角度にかかわらず1反射光は
全て入射方向に反射されるという機能を有している0以
上、センサ31について説明したが、他のセンサ32,
33.34も全く同じ構造である。
The second FM (a) is a side sectional view of the sensor 31, which shows a transparent glass substrate 30a, another light (luminescence light) excited by the stimulation of the incident light when the incident projected light L3 is absorbed, That is, the fluorescent substance W layer 3 emits the received light L4.
0b, the projected light L3 which is the incident light, and the received light L which is the reflected light.
It is configured in combination with a corner cube prism 30c that regulates the direction of light so that it has geometrical optical recurrence so that 4 and 4 are parallel to each other. This fluorescent material fi30b is
As shown in the cross-sectional view of the same figure (b), the first AJIG a
As layer 30bl, GaAs layer 30b2 layer and second A-cross G
The aAs layer 30b3 is laminated, and the light emitting L
It has a function of efficiently generating luminescence light as the received light L4 by absorbing the light L4. Furthermore, as shown in the Is view in FIG.
It has two reflective surfaces 30cl, 30c2.30c3,
The sensor is configured with an incident surface perpendicular to the diagonal of the cube, and has the function that all reflected light is reflected in the incident direction regardless of the incident angle of the projected light L3. 31, but other sensors 32,
33 and 34 have exactly the same structure.

なお、第1図において、41は光学系20の投光レンズ
23から出射された参照光L2を測定器10内の光電変
換部13に導光する光ファイバ、42は同様にレンズ2
5により集光された受信光L4を光電変換部14に導光
する光ファイバである。
In FIG. 1, 41 is an optical fiber that guides the reference light L2 emitted from the projection lens 23 of the optical system 20 to the photoelectric converter 13 in the measuring instrument 10, and 42 is the lens 2.
This is an optical fiber that guides the received light L4 focused by 5 to the photoelectric conversion unit 14.

このように構成された空間温度計測システムにおいて、
測定器lO内の光源Itから投光レンズ12を介して出
射された光源光Llは、光学系20内のミラー21によ
り反射され、ビームスプリッタ22に入射されて参照光
L2と投光L3とに分割される。そして、参照光L2は
投光レンズ23および光ファイバ41を透過して測定器
20内の光電変換部13に入射され電気信号に変換され
る。また、投光L3は、ミラ一部24で反射された後、
さらにスキャンミラー26に反射され室内空間に設置さ
れたセンナ31〜34を走査する。
In the space temperature measurement system configured in this way,
The light source light Ll emitted from the light source It in the measuring instrument IO via the projection lens 12 is reflected by the mirror 21 in the optical system 20, enters the beam splitter 22, and is divided into the reference light L2 and the projection light L3. be divided. Then, the reference light L2 passes through the projection lens 23 and the optical fiber 41, enters the photoelectric conversion section 13 in the measuring instrument 20, and is converted into an electrical signal. Moreover, after the projected light L3 is reflected by the mirror part 24,
Furthermore, it is reflected by the scan mirror 26 and scans the sensors 31 to 34 installed in the indoor space.

そして、センサ部30では、各センサ31〜34の蛍光
物質fi30bが投光L3を受けて光ルミネセンスによ
り別の波長のルミネセンス光に変換され、受信光L4と
してスキャンミラー26に入射される。この受信光L4
は集光レンズ25により集光され、光フィルタF3を経
て光フアイバ42内を伝達して測定器lO内の光電変換
部14に入射されて電気信号に変換される。変換された
電気信号は、演算器15で光電変換部13から入力され
る参照光の電気信号と比較演算され、その演算結果が各
点の計測温度として表示部16に表示される。
In the sensor section 30, the fluorescent substance fi30b of each of the sensors 31 to 34 receives the projected light L3, is converted into luminescent light of a different wavelength by photoluminescence, and enters the scan mirror 26 as received light L4. This received light L4
is condensed by the condensing lens 25, transmitted through the optical filter F3 through the optical fiber 42, and incident on the photoelectric converter 14 in the measuring instrument 10, where it is converted into an electrical signal. The converted electrical signal is compared with the electrical signal of the reference light input from the photoelectric converter 13 in the calculator 15, and the result of the calculation is displayed on the display 16 as the measured temperature at each point.

ここで、各センサ31〜34の蛍光物質層30bから発
光されるルミネセンス光は、第3図に示すように、波長
(周波数)と強度(明るさ)が温度TI、T2.T3 
 (TI (T2 <T3 )に応じて比例変化するこ
とから、温度変化情報を含んだ受信光L4を光源光であ
る参照光L2と比較演算することによって、各センサ3
1〜34が配置された場所の空間温度を正確に測定する
ことができる。
Here, as shown in FIG. 3, the luminescence light emitted from the fluorescent substance layer 30b of each sensor 31 to 34 has a wavelength (frequency) and intensity (brightness) at a temperature of TI, T2. T3
(TI (T2 < T3), so each sensor 3
It is possible to accurately measure the temperature of the space where the devices Nos. 1 to 34 are placed.

一方、第3図(b)に示すように励起された光の強さs
lのピーク値がエクスポネンシャルにsl/eまで減衰
降下(37%)してくる時定数τ時間は、計測温度t1
となる。このことから、前記と同様に空間部位の温度を
知ることができる。
On the other hand, as shown in Fig. 3(b), the intensity of the excited light s
The time constant τ time at which the peak value of l decays exponentially (37%) to sl/e is determined by the measured temperature t1.
becomes. From this, it is possible to know the temperature of the spatial region in the same way as above.

以上の実施例においては、センサは第2図に示したよう
に、コーナキューブプリズムを使用した構造のものを用
いたが、本発明はこれに限定されるものではなく、第4
図に断面図で示したような構造のものを用いることもで
きる。第4図において、このセンサは、ガラス基板30
a上に蛍光物質層30bを形威し、この蛍光物質層30
 b J:の投光受光面に多数の透光性のプラスチック
又はガラスからなるポール30ciを並設し、ガラス基
板30a’で押え、このポール30dとほぼ同じ屈折率
を有する接着剤30eで固定したものである。30fは
反射板である。この構造はルーネベルグレンズと同じよ
うな機能を有し、第2図のセンサと同様に、投光と受信
光とが平行になり良好な回帰性が得られる。投光がどの
ような方向から入射しても、受信光はこれと平行方向に
反射される。
In the above embodiments, the sensor used has a structure using a corner cube prism as shown in FIG. 2, but the present invention is not limited to this.
It is also possible to use a structure as shown in the cross-sectional view in the figure. In FIG. 4, this sensor includes a glass substrate 30
A fluorescent material layer 30b is formed on the fluorescent material layer 30b.
b A large number of poles 30ci made of transparent plastic or glass were arranged in parallel on the light emitting and receiving surface of J:, held down with a glass substrate 30a', and fixed with an adhesive 30e having approximately the same refractive index as the pole 30d. It is something. 30f is a reflection plate. This structure has a function similar to that of a Luneberg lens, and like the sensor shown in FIG. 2, the emitted light and the received light are parallel to each other, resulting in good regression performance. No matter what direction the projected light enters, the received light is reflected in a direction parallel to it.

また、投光と受信光を透過するミラ一部と集光レンズの
光学系としては、1s5rgJに示したような実施例も
考えられる。第5図(a)において、投光L3は光ファ
イバ61から出射光プリズム51を経て!’!、1図の
ミラ一部24に相当する中心レンズ部24aに入射され
、ここでビーム状に集光されてスキャンミラーに出射さ
れる。受信光L4は集光レンズ25で集光され受光レン
ズ52を経て光ファイバ42に供給される。$5図(b
)において、集光レンズ25の外面中心部に設けられた
出射光プリズム51により、投光L3は直接にスキャン
ミラーに出射される。
Further, as an optical system including a portion of the mirror that transmits the projected light and the received light and a condensing lens, an embodiment as shown in 1s5rgJ can also be considered. In FIG. 5(a), the projected light L3 is transmitted from the optical fiber 61 through the output light prism 51! '! , is incident on a central lens portion 24a corresponding to the mirror portion 24 in FIG. The received light L4 is condensed by the condenser lens 25 and supplied to the optical fiber 42 via the light receiving lens 52. Figure $5 (b
), the projected light L3 is directly emitted to the scan mirror by the emitted light prism 51 provided at the center of the outer surface of the condenser lens 25.

また1以上の実施例ではセンサは複数設けたが1つでも
よく、また、スタジオ内の空間温度を計測する場合、天
井から下げたバー軸の先端にミラーポール状に各方向に
向けて複数のセンサを設け、いずれか任意の位置から投
光をこのセンサに向けて放射させることもできる。この
ような場合にはセンサの設置場所が1箇所になるので、
投光を走査する必要はなくなり光学系統が簡単になる。
In addition, in one or more embodiments, a plurality of sensors are provided, but only one sensor may be used.Also, when measuring the space temperature in a studio, a plurality of sensors are installed in the shape of a mirror pole in each direction at the tip of a bar shaft hung from the ceiling. It is also possible to provide a sensor and emit light toward the sensor from any arbitrary position. In this case, the sensor only needs to be installed in one location, so
There is no need to scan the projected light, which simplifies the optical system.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る空間温度計測システ
ムによれば、センサのみを温度測定したい空間の任意の
個所に設置しておくだけで、遠島位置から光によりセン
サの温度を検出できるため、面および立体空間における
温度分布を無接触で正確に計測できるという極めて優れ
た効果が得られる。
As explained above, according to the space temperature measurement system according to the present invention, the temperature of the sensor can be detected by light from a remote island location by simply installing the sensor at any location in the space where the temperature is to be measured. The extremely excellent effect of being able to accurately measure temperature distribution in a surface and three-dimensional space without contact can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る空間温度計測システムの一実施例
による構成を示すブロック図、$2図(a) 、 (b
) 、 (c)はM1図のセンサの構成を説明する図、
第3図(a)、(b)は参照光および受信光の励起波長
とその強度の関係を示す図、第4図はセンサの他の実施
例による構成を示す断面図、第5図(a)、(b)は投
光と受信光を透過するミラ一部と集光レンズの光学系の
他の実施例による構成を示す平面図である。 10−−−測定器、11−−−光11.12−−・投光
レンズ、13,14・・・光電変換部、15・・・演算
部、16・・・表示部、20・・・光学系、21・・・
ミラー、22・・・ビームスプリッタ、23・・・投光
レンズ、24・・・ミラ一部 25・・・集光レンズ、
26・・・スキャンミラー、30・−・センサ部、31
〜34・・・センサ、30a・・・ガラス基板、30b
・・・蛍光物質層、30c・・・コーナキューブプリズ
ム、41,42◆・・光ファイバ、Fl、F2゜F3 
◆・・光フィルタ。
FIG. 1 is a block diagram showing the configuration of an embodiment of the space temperature measurement system according to the present invention.
), (c) is a diagram explaining the configuration of the sensor in diagram M1,
3(a) and 3(b) are diagrams showing the relationship between the excitation wavelengths of the reference light and the received light and their intensities, FIG. 4 is a sectional view showing the configuration of another embodiment of the sensor, and FIG. 5(a) ) and (b) are plan views showing configurations of other embodiments of the optical system including a part of the mirror and a condensing lens that transmit the projected light and the received light. 10---Measuring device, 11---Light 11.12---・Light projection lens, 13, 14... Photoelectric conversion section, 15... Calculation section, 16... Display section, 20... Optical system, 21...
Mirror, 22...Beam splitter, 23...Light projection lens, 24...Mirror part 25...Condenser lens,
26...Scan mirror, 30...Sensor section, 31
~34...Sensor, 30a...Glass substrate, 30b
...Fluorescent material layer, 30c...Corner cube prism, 41,42◆...Optical fiber, Fl, F2°F3
◆・・・Light filter.

Claims (2)

【特許請求の範囲】[Claims] (1)光を出射する光出射手段と、 前記出射光を参照光と投光とに分割するとともに、投光
を空間に出射する光学系と、 空間内に配置され、前記投光を受光して温度に応じて変
化した投光とは異なる波長強度の受信光を前記光学系に
出射する光励起センサと、 前記光学系からの参照光と受信光を受光して電気信号に
変換し、演算処理を行なつて前記受信光の波長強度から
前記センサの温度を測定する温度計測手段と を備えたことを特徴とする空間温度計測システム。
(1) a light emitting means for emitting light; an optical system for dividing the emitted light into a reference light and a projected light and emitting the projected light into space; and an optical system disposed in the space for receiving the projected light; a light excitation sensor that emits received light with a wavelength intensity different from that of the emitted light that changes depending on the temperature to the optical system; and temperature measuring means for measuring the temperature of the sensor from the wavelength intensity of the received light.
(2)請求項1において、 前記センサを異なる位置に複数個設け、 前記光学系に前記投光が前記センサのすべてに出射され
るように走査する光走査受光手段を設けた ことを特徴とする空間温度計測システム。
(2) In claim 1, a plurality of the sensors are provided at different positions, and the optical system is provided with a light scanning light receiving means for scanning so that the projected light is emitted to all of the sensors. Space temperature measurement system.
JP2071974A 1990-03-23 1990-03-23 Space temperature measurement system Expired - Fee Related JPH0769218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071974A JPH0769218B2 (en) 1990-03-23 1990-03-23 Space temperature measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071974A JPH0769218B2 (en) 1990-03-23 1990-03-23 Space temperature measurement system

Publications (2)

Publication Number Publication Date
JPH03273123A true JPH03273123A (en) 1991-12-04
JPH0769218B2 JPH0769218B2 (en) 1995-07-26

Family

ID=13475948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071974A Expired - Fee Related JPH0769218B2 (en) 1990-03-23 1990-03-23 Space temperature measurement system

Country Status (1)

Country Link
JP (1) JPH0769218B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173918A (en) * 1997-12-12 1999-07-02 Mitsubishi Heavy Ind Ltd Temperature distribution measuring instrument for inside of combustor
JP2004525583A (en) * 2001-05-07 2004-08-19 フリル システムズ アクチボラゲット Infrared camera sensitive to infrared
GB2545340A (en) * 2015-12-09 2017-06-14 Bae Systems Plc Improvements in and relating to remote sensing
US10852201B2 (en) 2015-12-09 2020-12-01 Bae Systems Plc Remote sensing
US10955345B2 (en) 2015-12-09 2021-03-23 Bae Systems Plc Relating to remote sensing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181623A (en) * 1984-02-28 1985-09-17 Omron Tateisi Electronics Co Temperature measuring apparatus
JPS6469925A (en) * 1987-09-11 1989-03-15 Hitachi Cable Optical fiber type temperature distribution measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181623A (en) * 1984-02-28 1985-09-17 Omron Tateisi Electronics Co Temperature measuring apparatus
JPS6469925A (en) * 1987-09-11 1989-03-15 Hitachi Cable Optical fiber type temperature distribution measuring apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173918A (en) * 1997-12-12 1999-07-02 Mitsubishi Heavy Ind Ltd Temperature distribution measuring instrument for inside of combustor
JP2004525583A (en) * 2001-05-07 2004-08-19 フリル システムズ アクチボラゲット Infrared camera sensitive to infrared
JP4889913B2 (en) * 2001-05-07 2012-03-07 フリル システムズ アクチボラゲット Infrared camera sensitive to infrared rays
GB2545340A (en) * 2015-12-09 2017-06-14 Bae Systems Plc Improvements in and relating to remote sensing
GB2545340B (en) * 2015-12-09 2019-07-24 Bae Systems Plc Improvements in and relating to remote sensing
US10852201B2 (en) 2015-12-09 2020-12-01 Bae Systems Plc Remote sensing
US10955345B2 (en) 2015-12-09 2021-03-23 Bae Systems Plc Relating to remote sensing

Also Published As

Publication number Publication date
JPH0769218B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
CN101784872B (en) Lighting device with adaptable color
US20080062413A1 (en) Apparatus and Method for Characterizing a Light Source
JPS63298115A (en) Apparatus for generating output indicating distance to separated surface
CN100363711C (en) Structured light projector
CN110325878A (en) The narrow divergence proximity sensor of VCSEL
US11754447B2 (en) On-board radiation sensing apparatus
JPH10221064A (en) Optical distance-measuring device
JP2021535408A (en) Detector for determining the position of at least one object
JP2021533356A (en) Detector for determining the position of at least one object
US20190331488A1 (en) Laser level device with reference marking
JPH03273123A (en) Spatial temperature measurement system
US5355217A (en) Assembly for simultaneous observation and laser interferometric measurements, in particular on thin-film structures
RU2543680C2 (en) Optical reflector with semi-reflecting plates for helmet position monitoring device and helmet having said device
JPWO2020096794A5 (en)
JPH02287113A (en) Distance measuring instrument
TWI666422B (en) A displacement sensor device and object displacement measurement method
EP1218769A1 (en) Optical angle sensor for use in a position and/or attitude determination system
CN105486278A (en) Visual optical instrument
JP2018527574A (en) Optical distance measurement system
TW202125034A (en) Light source device and optical inspection system
JP2009098003A (en) Vibration displacement detecting device and method of detecting displacement and vibration
JP5595354B2 (en) Position confirmation system
CN218412229U (en) Optical module and optical measuring apparatus including the same
JPH10142078A (en) Non-contact temperature measuring device
JPS63167534A (en) Optical instruction input device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees