JPH03270309A - Multi-electrode structure type surface acoustic wave element - Google Patents

Multi-electrode structure type surface acoustic wave element

Info

Publication number
JPH03270309A
JPH03270309A JP2069121A JP6912190A JPH03270309A JP H03270309 A JPH03270309 A JP H03270309A JP 2069121 A JP2069121 A JP 2069121A JP 6912190 A JP6912190 A JP 6912190A JP H03270309 A JPH03270309 A JP H03270309A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
output
input
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2069121A
Other languages
Japanese (ja)
Inventor
Yoshio Sato
良夫 佐藤
Osamu Igata
理 伊形
Tsutomu Miyashita
勉 宮下
Mitsuo Takamatsu
高松 光夫
Takashi Matsuda
隆志 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2069121A priority Critical patent/JPH03270309A/en
Priority to CA002038474A priority patent/CA2038474C/en
Priority to US07/672,018 priority patent/US5179310A/en
Priority to DE69123620T priority patent/DE69123620T2/en
Priority to EP91302376A priority patent/EP0448357B1/en
Priority to KR1019910004351A priority patent/KR940009395B1/en
Publication of JPH03270309A publication Critical patent/JPH03270309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To improve the out-band attenuation and the pass band width characteristic by making the number of electrode pairs of plural input electrodes and plural output electrodes different respectively, and also the number electrode pairs between the plural input electrodes and the plural output electrodes different. CONSTITUTION:A multi-electrode structure surface acoustic wave element is formed in which plural input electrodes 2 and plural output electrodes 3 comprising regular interdigital electrodes are arranged alternately on a piezoelectric substrate 1 and a strip reflector 4 is provided to both outermost sides and the number of electrode pairs of the plural input electrodes 2 and plural output electrodes 3 is made different from each other, and the number of electrode pairs between the plural input electrodes 2 and the plural output electrodes 3 is made different. Thus, the out-band attenuation and the pass band width characteristic are considerably improved.

Description

【発明の詳細な説明】 〔目次〕 概要 産業上の利用分野 従来の技術(第14図〜第16図) 発明が解決しようとする課題 課題を解決するための手段 作用 実施例(第1図〜第13図) 発明の効果 〔概要〕 多電極構成型弾性表面波素子に関し、 高周波数帯域に用いる多電極構成型弾性表面波素子の帯
域外減衰量と通過帯域中特性を改善することを目的とし
、 圧電体基板上に、正規型すだれ状電極からなる複数の入
力用電極と複数の出力用電極とを交互に入り組ませて配
列し、最外側の両側にストリップ型の反射器を設けた多
電極構成型弾性表面波素子において、前記複数の入力用
電極と前記複数の出力用電極のそれぞれの電極対数が異
なり、かつ、前記複数の入力用電極と前記複数の出力用
電極相互の間でも電極対数が異なるように多電極構成型
弾性表面波素子を構成する。さらに、入出力電極の中心
間の距離を所定の大きさにし、かつ、電極群の両側に設
ける反射器をオープンストリップ型構成にして効果をよ
り高めるように構成する。
[Detailed Description of the Invention] [Table of Contents] Overview Industrial Application Fields Prior Art (Figs. 14 to 16) Problems to be Solved by the Invention Examples of Means and Actions for Solving the Problems (Figs. 1 to 16) (Figure 13) Effects of the invention [Summary] Regarding a multi-electrode surface acoustic wave device, the present invention aims to improve the out-of-band attenuation and in-pass band characteristics of the multi-electrode surface acoustic wave device used in high frequency bands. , a plurality of input electrodes and a plurality of output electrodes made of regular interdigital electrodes are arranged in an intertwined pattern on a piezoelectric substrate, and strip-type reflectors are provided on both sides of the outermost side. In the electrode configuration type surface acoustic wave element, the plurality of input electrodes and the plurality of output electrodes each have a different number of electrode pairs, and the number of electrode pairs is different between the plurality of input electrodes and the plurality of output electrodes. A multi-electrode surface acoustic wave element is configured so that the logarithms are different. Furthermore, the distance between the centers of the input and output electrodes is set to a predetermined value, and the reflectors provided on both sides of the electrode group are configured in an open strip type configuration to further enhance the effect.

〔産業上の利用分野〕[Industrial application field]

本発明は多電極構成型弾性表面波素子、とくに、多電極
構成型弾性表面波フィルタの入出力電極と反射器の構成
および配置に関する。
The present invention relates to a multi-electrode surface acoustic wave element, and more particularly to the structure and arrangement of input/output electrodes and reflectors of a multi-electrode surface acoustic wave filter.

近年、情報処理機器や通信機器の高速化にともなって、
搬送波や信号波の周波数帯は益々高周波域にシフトして
きており、それに対応して高周波における安定度の高い
基準信号の発生や2位相同期用の素子、あるいは、フィ
ルタなどが必要となり、最近はこれらの用途に弾性表面
波素子、たとえば、弾性表面波フィルタや弾性表面波共
振子が使用されるようになってきた。
In recent years, with the increase in speed of information processing equipment and communication equipment,
The frequency bands of carrier waves and signal waves are increasingly shifting to higher frequencies, and correspondingly, it is necessary to generate highly stable reference signals at high frequencies, elements for two-phase synchronization, filters, etc. Surface acoustic wave devices, such as surface acoustic wave filters and surface acoustic wave resonators, have come to be used for applications such as surface acoustic wave filters and surface acoustic wave resonators.

今後、その小形、安価という特徴を生かして、自動車電
話、携IF電話などの移動体無線への展開が期待されて
おり、より安価で高性能、たとえば、帯域外減衰量や通
過帯域特性の優れた弾性表面波フィルタの開発が求めら
れている。
Taking advantage of its small size and low cost, it is expected to be used in mobile radio applications such as car phones and mobile IF phones. There is a need for the development of surface acoustic wave filters with improved performance.

〔従来の技術〕[Conventional technology]

弾性表面波素子、たとえば、弾性表面波フィルタは、電
気−機械結合係数が大きく、しかも周波数の温度係数が
比較的小さい圧電体基板、たとえば、36°回転Yカッ
トーX伝播LiTa0z(36°Y−X LiTa0z
)単結晶基板の上に、Aj2などからなる入力用および
出力用のすだれ状電極を設けた3端子あるいは4@子型
素子である。
A surface acoustic wave element, for example, a surface acoustic wave filter, is made of a piezoelectric substrate having a large electro-mechanical coupling coefficient and a relatively small temperature coefficient of frequency, for example, a 36° rotation Y cut-X propagation LiTa0z (36° Y-X LiTa0z
) It is a 3-terminal or 4-terminal device in which input and output interdigital electrodes made of Aj2 or the like are provided on a single crystal substrate.

すだれ状電極(櫛型電極とも呼ばれる)の櫛歯の巾(L
)、櫛歯間のスペース(S) 、 4’!歯ピツチ(P
)は表面波の波長をλとすると、通常、L =S−λ/
4.P−λ/2といった設計値のものが多い。たとえば
、中心周波数835MHzを得るためには、前記基vi
lのX伝播表面波の音速4090m / sからλ=4
.9 μmが算出され、電極ピッチは2.45μm電極
巾および電極間隔は1.23μmといった値となる。通
常、入力用および出力用のすだれ状電極の一組を対面さ
せた構成のものが多いが、用途によって、たとえば、自
動車電話や携帯電話などの分野では低損失(たとえば、
挿入損失:3〜5 dB以下)、広帯域(たとえば、中
心周波数: 835MHz以上で通過帯域中:25MH
z以上)、抑圧度の優れた(たとえば帯域外減衰量:2
4〜25dB)弾性表面波フィルタが要求されるように
なっている。
The width of the comb teeth (L
), space between comb teeth (S), 4'! tooth pitch (P
) is usually L = S - λ/, where λ is the wavelength of the surface wave.
4. Many have a design value such as P-λ/2. For example, to obtain a center frequency of 835 MHz, the base vi
From the sound speed of the X-propagating surface wave of l 4090 m/s, λ = 4
.. 9 μm is calculated, the electrode pitch is 2.45 μm, the electrode width is 1.23 μm, and so on. Usually, the structure is such that a pair of input and output interdigital electrodes face each other, but depending on the application, for example, low loss (for example
Insertion loss: 3 to 5 dB or less), wideband (for example, center frequency: 835 MHz or more, passband: 25 MHz)
z or higher), excellent suppression (for example, out-of-band attenuation: 2)
(4 to 25 dB) surface acoustic wave filters are now required.

このような性能を満たすために、種々の方法が提案され
ているが、その代表的なものに多電極構成型弾性表面波
フィルタがある(たとえば、M、Lewis、1982
 Ultrasonics Syn+posiulII
Proceedings、PI3)。
Various methods have been proposed to meet such performance, and a typical example is a multi-electrode surface acoustic wave filter (for example, M. Lewis, 1982).
Ultrasonics Syn+posiulII
Proceedings, PI3).

第14図は多電極構成型弾性表面波フィルタの基本構成
例を示すブロック図で、同図(イ)は出力用電極が奇数
の場合、同図(ロ)は出力用電極が偶数の場合である。
Figure 14 is a block diagram showing an example of the basic configuration of a multi-electrode surface acoustic wave filter. Figure (a) shows the case where the number of output electrodes is odd, and figure (b) shows the case where the number of output electrodes is even. be.

図中、2゛は入力用電極、3′は出力用電極、4“は反
射器、20は入力端子部、30は出力端子部である。ま
た、0Nは出力用電極の対数1iNは入力用電極の対数
である。同図(イ)は6人カー5出力の場合であり、同
図(ロ)は7人カー6出力の場合である。いずれの場合
も入力用電極と出力用電極とを交互に入り込ませて配置
した多段電極構成になっている。なお、圧電体基板の図
示は省略しである。
In the figure, 2'' is the input electrode, 3' is the output electrode, 4'' is the reflector, 20 is the input terminal section, and 30 is the output terminal section. 0N is the logarithm of the output electrode. 1iN is the input electrode. This is the number of pairs of electrodes. Figure (a) shows the case of a 6-person car with 5 outputs, and figure (b) shows the case of a 7-person car with 6 outputs. In both cases, the input electrode and the output electrode It has a multi-stage electrode structure in which the electrodes are alternately arranged. Note that the piezoelectric substrate is not shown.

第15図は従来の多電極構成型弾性表面波フィルタの櫛
型電極配置例を示す模式図で、6人カー5出力の場合で
ある。図中、1は圧電体基板であり、d′は入出力電極
中心間の距離である。反射器4はストリップ状の電極の
両端を短絡させた。いわゆる、ショートストリップ型の
反射器であり、図では簡略化のため入出力電極は櫛歯電
極指の交差長が等しい、いわゆる、正規型−正規型構成
の場合で、しかも、反射器を含めて各電極対数は正確で
なく模式的に示しである。
FIG. 15 is a schematic diagram showing an example of the comb-shaped electrode arrangement of a conventional multi-electrode surface acoustic wave filter, in the case of a six-person car and five outputs. In the figure, 1 is a piezoelectric substrate, and d' is the distance between the centers of the input and output electrodes. The reflector 4 short-circuited both ends of the strip-shaped electrode. This is a so-called short strip type reflector, and for the sake of simplicity, the figure shows a case where the input and output electrodes have the same intersecting length of the comb-like electrode fingers, a so-called normal type-normal type configuration, and the reflector is included. The number of electrode pairs is not exact and is shown schematically.

このような多電極構成型弾性表面波フィルタでも特性改
善を図って種々の改良変形例が提案されている。たとえ
ば、入出力電極の櫛歯電極指の交差長を変えた。いわゆ
る、アポタイズ電極にしたり(たとえば、仏国特許第6
911765)、入出力電極の櫛歯電極指を間引きして
重み付けする。いわゆる、間引き電極法(たとえば、特
開昭5O−40259)を用いたり、入出力電極の櫛歯
電極対数を変えるいわゆる、入出力電極対数比の変化法
(たとえば、特開昭49−66051)などの例が出さ
れている。 たとえば、第16図は従来の多電極構成型
弾性表面波フィルタの通過帯域特性例を示す図で、縦軸
は減衰量(または挿入損失)、横軸は周波数を取ったも
のである。なお、試料は36°Y  X LiTa0:
+基板に正規型−正規型、6人カー5出力の多段電極と
し、□Nは19対、0Nは30対であり、反射器はいず
れも30対のショートストリップ型のものを用いた。
Various improved and modified examples of such multi-electrode structured surface acoustic wave filters have been proposed to improve the characteristics. For example, the intersecting length of the comb-like electrode fingers of the input and output electrodes was changed. So-called apotized electrodes (for example, French Patent No. 6)
911765), the comb-shaped electrode fingers of the input/output electrodes are thinned out and weighted. The so-called thinning electrode method (for example, JP-A-5O-40259) is used, the so-called input-output electrode log ratio changing method (for example, JP-A-49-66051) that changes the number of pairs of comb-teeth electrodes of the input and output electrodes, etc. An example is given. For example, FIG. 16 is a diagram showing an example of the passband characteristics of a conventional multi-electrode surface acoustic wave filter, in which the vertical axis represents attenuation (or insertion loss) and the horizontal axis represents frequency. The sample is 36°Y x LiTa0:
A regular type-regular type was used on the + substrate, multi-stage electrodes with 5 outputs for 6 people, 19 pairs of □N and 30 pairs of 0N, and short strip type reflectors with 30 pairs were used for both reflectors.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来の多電極構成型弾性表面波フィルタで
は、第16図のデータから明らかなように、高性能を要
求される用途には充分な特性を得ることができない。と
くに、帯域外減衰量が13 dB程度に止まり、通過帯
域の大きなリンプル(もしくは、デイツプ)が生してお
り、広い通過帯域を保証することが困難であるなどの重
大な問題があり、その解決が必要であった。
However, as is clear from the data in FIG. 16, the conventional multi-electrode surface acoustic wave filter cannot provide sufficient characteristics for applications requiring high performance. In particular, there are serious problems such as the out-of-band attenuation being limited to about 13 dB and a large ripple (or dip) in the passband, making it difficult to guarantee a wide passband. was necessary.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、圧電体基板l上に、正規型すだれ状電極
からなる複数の入力用電極2と複数の出力用電極3とを
交互に入り組ませて配列し、最外側の両側にストリップ
型の反射器4を設けた多電極構成型弾性表面波素子にお
いて、前記複数の入力用電極2と前記複数の出力用電極
3のそれぞれの電極対数が異なり、かつ、前記複数の入
力用電極2と前記複数の出力用電極3相互の間でも電極
対数が異なる多電極構成型弾性表面波素子により解決す
ることができる。さらに、前記入力用電極2の電極対数
iNと前記出力用電極3の電極対数0Nとの比(iN 
/ ON)、すなわち、入出力電極対数比をTとしたと
き、隣接する全ての入出力電極間において、r =0.
13±0.07の一定値を有しかつ、前記2つの反射器
4がオープンストリップ型であり、また、前記複数の出
力用電極3の中で電極対数が最も多い出力用電極の電極
対数を0N。
The above problem is solved by arranging a plurality of input electrodes 2 and a plurality of output electrodes 3 consisting of regular interdigital electrodes on a piezoelectric substrate l in an alternately intertwined manner, and forming strip-type electrodes on both sides of the outermost side. In the multi-electrode surface acoustic wave device provided with a reflector 4, the plurality of input electrodes 2 and the plurality of output electrodes 3 each have a different number of electrode pairs, and the plurality of input electrodes 2 and This problem can be solved by using a multi-electrode surface acoustic wave element in which the number of electrode pairs differs between the plurality of output electrodes 3. Furthermore, the ratio (iN
/ ON), that is, when the input/output electrode logarithmic ratio is T, r = 0.0 between all adjacent input/output electrodes.
13±0.07, the two reflectors 4 are open strip type, and the output electrode has the largest number of electrode pairs among the plurality of output electrodes 3. 0N.

とし、その両側にそれぞれ配列された出力用電極3のう
ちの前記最大電極対数の出力用電極から、m番目の出力
用電極3の電極対数を0N”として(ただし、mは正の
整数)、電極対数逓減率αを±[(oNooN” )/
0N0(m  l)] で表すとα=±(0゜07±0
.01)であり、また、前記入力用電極2と前記出力用
電極3の相隣る電極のそれぞれの中心の間隔をd7弾性
表面波の波長をλ、nを正の整数としたとき、d= (
n十β)・λの関係で表され、かつ、β=0.17〜0
.25であり、また、前記2つの反射器4の電極対数が
、前記出力用電極3のうちの前記最大電極対数0Noの
±17%以内の電極対数になるようにした前記多電極構
成型弾性表面波素子によって極めて効果的に解決するこ
とができる。
and the number of electrode pairs of the m-th output electrode 3 from the output electrode with the maximum number of electrode pairs among the output electrodes 3 arranged on both sides thereof is 0N'' (where m is a positive integer), The electrode logarithm decrease rate α is ±[(oNooN”)/
0N0(ml)] α=±(0°07±0
.. 01), and when the distance between the centers of adjacent electrodes of the input electrode 2 and the output electrode 3 is d7, the wavelength of the surface acoustic wave is λ, and n is a positive integer, d= (
It is expressed by the relationship n + β)・λ, and β = 0.17 to 0
.. 25, and the number of electrode pairs of the two reflectors 4 is within ±17% of the maximum number of electrode pairs 0No of the output electrodes 3. This problem can be solved very effectively by wave elements.

〔作用〕[Effect]

本発明によれば、極めて複雑に関係する多電極構成型弾
性表面波フィルタの主要パラメータを取り出し、よく知
られたスミスの等価回路モデルを用い、櫛型電極を4端
子対回路で表し、これから本発明者らが独自に機械系端
子と電気系端子との4×4のFマトリクス(転送行列)
を求め、これを更に10 X 10の10端子対回路に
拡張し、最終的にその通過特性を決める式を求め、それ
をシミュレーションツールとして各種パラメータ間の最
適関係を決定し、さらに、試料の試作実験データと対応
させて、それら最適条件による入出力電極および反射器
の構成や配置を決めているので、高性能で、かつ、再現
性のよい多電極構成型弾性表面波フィルタを安価に設計
・製作することができるのである。
According to the present invention, the main parameters of a multi-electrode surface acoustic wave filter that are extremely complexly related are extracted, and the well-known Smith equivalent circuit model is used to express the comb-shaped electrodes as a four-terminal pair circuit. The inventors independently created a 4×4 F matrix (transfer matrix) of mechanical terminals and electrical terminals.
We then expanded this to a 10 x 10 10 terminal pair circuit, finally found the formula that determines its pass characteristics, used it as a simulation tool to determine the optimal relationship between various parameters, and then prototyped the sample. Since the configuration and arrangement of input/output electrodes and reflectors are determined based on the optimal conditions in conjunction with experimental data, it is possible to design and inexpensively design a multi-electrode surface acoustic wave filter with high performance and good reproducibility. It can be manufactured.

〔実施例〕〔Example〕

具体的な試料の設計・試作を行うのに先立ってまず、ス
ミスの等価回路(W、R,Sm1th、et、al、、
 rEEETrans、 on MTT、vol、MT
T−20,No、7.p458.1972)を用い、本
発明者ら独自のシミュレーションツールを作成した。櫛
型電極を4端子対で表し、機械系端子の、■と電気系端
子■、■との4×4のFマトリクス(転送行列)を求め
ると次式のごとくになる。
Prior to designing and prototyping a specific sample, first, the Smith equivalent circuit (W, R, Sm1th, et, al,...
rEEETrans, on MTT, vol, MT
T-20, No, 7. p458.1972), the inventors created their own simulation tool. The comb-shaped electrode is represented by a four-terminal pair, and a 4×4 F matrix (transfer matrix) of the mechanical terminal (■) and the electrical terminals (■) and (■) is obtained as shown in the following equation.

こ\で、el+j182+ j2  は機械系端子■と
■における変数で、eは音圧、iは粒子速度を表し、e
ff+11、 e4. i4は電気系端子■と■におけ
る変数で、eは電圧、iは電流を表す。また、 5A−cos(θlI)・cos(θ9 )  [(q
”+1)/2ql・5in(θ、)・5in(θ9) S 11=cos(θII)・cos(θ、 )  +
5in(θII)(a−q”d)/q SC=cos(θlI)・cos(θ、 ) +5in
(θ1)(q2a−d)/q q=Zo/L = vg/Va =i +k”/2a=
cos2(θ、/2) d−sin”(θ9/2) r ’= (1)’ 5QRT(2fo ・Go ・k
” ・Zo)C,=ε。5QRT (ε、・ε3:l)
/2  :電極1本の静電容量 Zo(Z 、 ) : 自由表面(電極)下における音
響インピーダンス V9(V、%):自由表面(電極)下における音速θ9
 =[(lc”+2)/(k2+4) l・(πf/f
o) : 自由表面下における音波の位相回転量(「は
周波数) θい= [2/(k2+4) ]・(πf/fo) :
電極下における音波の位相回転量 に2:電気機械結合係数で36’ Y  XLiTaO
x単結晶基板の場合は0.05 fO: 4fi型電極のピッチ(λ。)から決まる共振
周波数でV、 /λ。である。
Here, el+j182+ j2 is a variable at the mechanical terminals ■ and ■, e is the sound pressure, i is the particle velocity, and e
ff+11, e4. i4 is a variable at electrical system terminals ■ and ■, e represents voltage, and i represents current. Also, 5A-cos(θlI)・cos(θ9) [(q
”+1)/2ql・5in(θ, )・5in(θ9) S 11=cos(θII)・cos(θ, ) +
5in(θII)(a-q”d)/q SC=cos(θlI)・cos(θ, ) +5in
(θ1) (q2a-d)/q q=Zo/L=vg/Va=i+k”/2a=
cos2 (θ, /2) d-sin" (θ9/2) r'= (1)' 5QRT (2fo ・Go ・k
”・Zo)C,=ε.5QRT (ε,・ε3:l)
/2: Capacitance of one electrode Zo (Z, ): Acoustic impedance under the free surface (electrode) V9 (V, %): Speed of sound θ9 under the free surface (electrode)
= [(lc”+2)/(k2+4) l・(πf/f
o) : Amount of phase rotation of sound wave under the free surface ("is frequency") θ = [2/(k2+4) ]・(πf/fo) :
The amount of phase rotation of the sound wave under the electrode is 2: The electromechanical coupling coefficient is 36' Y XLiTaO
x 0.05 fO in the case of a single crystal substrate: V, /λ at the resonance frequency determined from the pitch (λ) of the 4fi type electrode. It is.

なお、5QRTは平方根(Square Root)を
示す。
Note that 5QRT indicates a square root.

上記(1)式の4×4のFマトリクス(転送行列)を基
本として、入力電極、出力電極1反射器、伝播路の全て
を縦続接続し、入力電極、出力電極反射器の各電気系端
子を独立させて、10 X 10のFマトリクス、すな
わち、10端子回路網に拡張する。
Based on the 4×4 F matrix (transfer matrix) in equation (1) above, the input electrode, output electrode 1 reflector, and propagation path are all connected in cascade, and each electrical system terminal of the input electrode and output electrode reflector is connected in cascade. are independently extended to a 10×10 F matrix, ie, a 10-terminal network.

これに適当な負荷条件を設定して、一方の電気系端子を
入力とし、他方の電気系端子を出力とする2端子回路網
へ変換する。結局、2×2の転送行列(マトリクス要素
はA、B、C,Dで周波数の関数である)により表され
、その通過特性Sz+(周波数の関数)として次式を導
出した。
Appropriate load conditions are set for this, and it is converted into a two-terminal circuit network in which one electrical system terminal is used as an input and the other electrical system terminal is used as an output. In the end, it is expressed by a 2×2 transfer matrix (matrix elements are A, B, C, and D and is a function of frequency), and the following equation was derived as its pass characteristic Sz+ (function of frequency).

s!+−2・5QRT(R=−・RouL )/(A−
R、、ut  +B+c  −p、、 −R(luL 
 +  D −R;、、)  −−−−(2)こXで、
R111は電源インピーダンス、Ro、は負荷インピー
ダンスである。
s! +-2・5QRT(R=-・RouL)/(A-
R,,ut +B+c -p,, -R(luL
+ D −R;,,) -----(2) In this X,
R111 is a power source impedance, and Ro is a load impedance.

上記(2)式をシミュレーションツールとして各種条件
を設定してコンピュータで計算し、さらに、実際に試料
を作製して測定し、目標値を満足する最適条件を決定し
た。以下に本発明の実施例について説明する。
Using equation (2) above as a simulation tool, various conditions were set and calculated using a computer, and samples were actually prepared and measured to determine optimal conditions that satisfied the target values. Examples of the present invention will be described below.

第1図は本発明の電極配置の基本構成例を説明するブロ
ック図で、同図(イ)は出力用電極が奇数個で中心対称
配置の場合、同図(ロ)は出力用電極が偶数個で中心対
称配置の場合、同図(ハ)は出力用電極が奇数個で中心
非対称配置の場合である。図中、2は入力用電極、3は
出力用電極、4は反射器である。
Figure 1 is a block diagram illustrating a basic configuration example of the electrode arrangement of the present invention. Figure (A) shows an odd number of output electrodes in a centrally symmetrical arrangement, and Figure (B) shows an even number of output electrodes. In the case of a centrally symmetrical arrangement with an odd number of output electrodes, FIG. In the figure, 2 is an input electrode, 3 is an output electrode, and 4 is a reflector.

なお、前記従来例の諸国面で説明したものと同等の部分
については同一符号を付し、かつ、同等部分についての
説明は省略する。
Note that the same reference numerals are given to the same parts as those explained in the various countries of the conventional example, and the explanation of the same parts will be omitted.

こ\で、斜線で示した出力用電極3は最大電極対数であ
る0Noを有し、それから左右の出力用電極3は0No
よりも小さく、かつ、等しい電極対数である0Nlを有
しており、順次外側に行くほどその対数は逓減している
Here, the output electrode 3 indicated by diagonal lines has a maximum electrode pair number of 0No, and then the left and right output electrodes 3 have a 0No.
It has a smaller and equal number of electrode pairs, 0Nl, and the number of pairs gradually decreases as it goes outward.

また、最大電極対数である0Noを有する出力用電極3
の両側、あるいは、最大電極対数0Ni1を有する2つ
の出力用電極3の間の入力用電極2は、入力用電極2と
しては最大の電極対数iNilを有しそれから左右の入
力用電極2はiNOよりも小さく。
In addition, the output electrode 3 having the maximum number of electrode pairs of 0No.
or between the two output electrodes 3 having the maximum number of electrode pairs 0Ni1, the input electrodes 2 have the maximum number of electrode pairs iNil for the input electrodes 2, and the left and right input electrodes 2 Also small.

かつ、等しい電極対数である0Nlを有しており、順次
外側に行くほどその対数は逓減している。
In addition, they have an equal number of electrode pairs, 0Nl, and the number of pairs gradually decreases as they move outward.

また、最大電極対数である0Noを有する出力用電極3
の両側、あるいは、最大電極対数0NOを有する2つの
出力用電極3の間の入力用電極2は、入力用電極2とし
ては最大の電極対数iN11を有しそれから左右の入力
用電極2はiNilよりも小さく:かつ、等しい電極対
数であるiN+を有している。
In addition, the output electrode 3 having the maximum number of electrode pairs of 0No.
or between the two output electrodes 3 having the maximum number of electrode pairs 0NO, the input electrodes 2 have the maximum number of electrode pairs iN11 for the input electrodes 2, and the left and right input electrodes 2 have a is also small: and has an equal number of electrode pairs iN+.

すなわち、複数の入力用電極2と前記複数の出力用電極
3のそれぞれの電極対数が異なり、かつ、前記複数の入
力用電極2と前記複数の出力用電極3相互の間でも電極
対数が異なるように多電極構成型弾性表面波フィルタを
構成する。
That is, the number of electrode pairs of each of the plurality of input electrodes 2 and the plurality of output electrodes 3 is different, and the number of electrode pairs is also different between the plurality of input electrodes 2 and the plurality of output electrodes 3. A multi-electrode surface acoustic wave filter is constructed.

第2図は本発明の第1実施例を示す図で、正規型−正規
型構成である。反射器4は図示したごとく電気的負荷が
開放されているオープンストリップ型にした。図中、d
は入力用電極2の中心と出力用電極3の中心の間の距離
である。
FIG. 2 is a diagram showing a first embodiment of the present invention, which has a normal type-normal type configuration. The reflector 4 was of an open strip type with an open electrical load as shown. In the figure, d
is the distance between the center of the input electrode 2 and the center of the output electrode 3.

なお、前記の諸国面で説明したものと同等の部分につい
ては同一符号を付し、かつ、同等部分についての説明は
省略する。
Note that the same reference numerals are given to the same parts as those explained in the above countries, and the explanation of the same parts will be omitted.

第3図は帯域外減衰量と入力電極対数の関係を示す図で
、前記第2図の構成で出力電極対数0N=30と一定に
し、入力電極対数iNを変えてシミュレーションを行っ
た結果をプロットしたもので、入力電極対数iNが22
近辺で最も大きな帯域外減衰量が得られた。
Figure 3 is a diagram showing the relationship between the out-of-band attenuation and the number of input electrode pairs, and plots the results of simulations performed with the configuration shown in Figure 2, with the number of output electrode pairs kept constant at 0N = 30, and the number of input electrode pairs iN changed. and the number of input electrode pairs iN is 22
The largest out-of-band attenuation was obtained in the vicinity.

第4図は入出力電極対数の最適関係を示す図で縦軸に入
力電極対数iN +横軸に出力電極対数0Nを取っであ
る。前記第3図は出力電極対数0N=30と固定した場
合であるが、この図では0NとiNのいずれも変化させ
て通過特性を計算し、帯域外減衰量30dBレベルにな
る条件についてプロットしたものである。計算値は一本
の直線状によく載っており、その傾斜、すなわち、入出
力電極対数比γ(iNi0N) =0.73が得られる
。これと前記第2図に示した帯域外減衰量の実用的な許
容巾を2dB程度に設定すると最適な入出力電極対数比
は次式のごとく決めることができる。
FIG. 4 is a diagram showing the optimal relationship between the number of input and output electrode pairs, with the vertical axis representing the number of input electrode pairs iN and the horizontal axis representing the number of output electrode pairs 0N. The above figure 3 shows the case where the number of output electrode pairs is fixed at 0N = 30, but in this figure, the pass characteristics are calculated by changing both 0N and iN, and the conditions are plotted for the out-of-band attenuation level to be 30 dB. It is. The calculated values lie well on a single straight line, and the slope thereof, that is, the input/output electrode logarithmic ratio γ(iNi0N) = 0.73 is obtained. If this and the practical allowable width of the out-of-band attenuation shown in FIG. 2 are set to about 2 dB, the optimum input/output electrode log ratio can be determined as shown in the following equation.

r =O,’13±0.07−−−−・−・・−−−一
−・−・−−−−−−−−−(3)第5図は本発明の第
1実施例の通過帯域特性を示す図である。
r = O, '13 ± 0.07 - - - - - - - - - - - - - - - - (3) Figure 5 shows the first embodiment of the present invention. FIG. 3 is a diagram showing passband characteristics.

試料は基板1として、厚さ0.5 mm、中1.2mm
、長さ2.2mmの36@Y−XLiTa03単結晶基
板を用い、電極材料はA 1.−Cuを厚さ約170n
mにスパッタして薄膜を形成し、櫛型電極の電極指中と
スペースとが1.2μmになるようにホトエツチングし
て電極および反射器を形成した。この電極形成法はすで
に公知のものであるので、詳細な説明は省略する。
The sample is substrate 1, thickness 0.5 mm, medium 1.2 mm.
, a 36@Y-XLiTa03 single crystal substrate with a length of 2.2 mm was used, and the electrode material was A1. -Cu about 170n thick
A thin film was formed by sputtering to a thickness of m, and photoetched to form an electrode and a reflector so that the space between the electrode fingers of the comb-shaped electrode was 1.2 μm. Since this electrode forming method is already known, detailed explanation will be omitted.

電極設計は前記シごユレーシゴン結果に基づいて行った
が、7人カー6出力の多電極III′Ii、とし、人力
電極対数iN =22で一定、出力電極対数0N=30
で一定、すなわちr =0.73.入力用電極2の中心
と出力用電極3の中心の間の距離d=(n+0.25)
・λとし1反射器4はそれぞれ30対のオープンストリ
ップ型とした一例を示したものである。
The electrode design was carried out based on the above-mentioned simulation result, and the multi-electrode III'Ii with 6 outputs for 7 people was used, the number of human electrode pairs was constant at iN = 22, and the number of output electrode pairs was 0N = 30.
constant, i.e. r = 0.73. Distance d between the center of input electrode 2 and the center of output electrode 3 = (n+0.25)
- An example is shown in which each reflector 4 is an open strip type with 30 pairs of λ.

図から明らかなように、第15図の従来の多電極構成型
弾性表面波フィルタに比較して、帯域外減衰量1通過帯
域リップル特性とも大巾に改善されている。たクシ、計
算データのような大きな帯域外減衰量は得られていない
As is clear from the figure, compared to the conventional multi-electrode surface acoustic wave filter shown in FIG. 15, both the out-of-band attenuation and the passband ripple characteristics are greatly improved. However, large out-of-band attenuation as in the calculated data was not obtained.

第6図は本発明の第2実施例の通過帯域特性を示す図(
その1)で、同図(イ)はシミュレーション結果、同図
(ロ)は実験結果である。
FIG. 6 is a diagram showing the passband characteristics of the second embodiment of the present invention (
In part 1), the figure (a) shows the simulation results, and the figure (b) shows the experimental results.

本実施例では入出力電極対数比T =0.73±0.0
6を保ちながら、出力電極対数0Nを最大値の0Noか
ら両側に向かって順次逓減するようにした。電極構成は
7人カー6出力で第1図(ロ)に示した中心対称配置の
場合である。出力電極対数は0N’ =30゜0N’=
28.0N” =26、入力電極対数はiN’=22 
In this example, the input/output electrode logarithmic ratio T = 0.73±0.0
6, the number of output electrode pairs 0N was gradually decreased from the maximum value 0No toward both sides. The electrode configuration was a seven-person car, six outputs, and a center-symmetrical arrangement as shown in FIG. 1(b). The number of output electrode pairs is 0N' = 30°0N' =
28.0N" = 26, the number of input electrode pairs is iN' = 22
.

iN’=20、1N2=19とした場合である。This is the case where iN'=20 and 1N2=19.

いま、電極対数ifi滅率αを下記(4)式で定義する
と、この例ではα=0.07となる。
Now, when the electrode pair number ifi failure rate α is defined by the following equation (4), in this example, α=0.07.

α−上(ON’ −ON’ )/0N0(m −1) 
−−−−−−−−(4)なお、こ\でmは正の整数であ
り、士符号は最大出力電極対数0Noの電極の左右両側
の勾配が逆符号であることを示す。
α-Up(ON'-ON')/0N0(m-1)
------- (4) Here, m is a positive integer, and the sign indicates that the gradients on both the left and right sides of the electrodes with the maximum output electrode pair number 0No have opposite signs.

なお、その他の条件は前記第1実施例の場合と同様であ
る。なお、図中のΔfallは通過帯域のリップルがΔ
S、の場合の通過端域中を示す。
Note that other conditions are the same as in the first embodiment. Note that Δfall in the figure is the ripple in the passband.
The inside of the passing edge region is shown in case of S.

シミュレーション結果も実験結果も、ともに帯域外減衰
量は25dBが確保され、極めて良い結果が得られてい
る。
In both the simulation results and the experimental results, an out-of-band attenuation of 25 dB is secured, and extremely good results are obtained.

第7図は本発明の第2実施例の通過帯域特性を示す図(
その2)で、同図(イ)はシミュレーション結果、同図
(ロ)は実験結果である。
FIG. 7 is a diagram showing the passband characteristics of the second embodiment of the present invention (
In part 2), the figure (a) shows the simulation results, and the figure (b) shows the experimental results.

本実施例は電極構成は同しく7人カー6出力であるが、
前記第1図(ハ)に示した中心非対称配置の場合である
。出力電極対数は0N’ =34.0N’=32、0N
”=30 、0N−”=O,0N″’=28.0N−3
=0.0N゛4=26、0N−’=0 、入力電極対数
は1N0=24 、 iN’=22 、  iN2=2
0 、  iN −”=0.  iN’=19 、  
iN −’=OiN’=18 、 iN−’=0.とし
た場合である。なお、電極対数の添字の士、〜は最大電
極対数の電極に対して反対側にあるものを便宜的に示し
たものである。
In this example, the electrode configuration is the same, with 7 people and 6 outputs.
This is the case of the center asymmetric arrangement shown in FIG. 1(C). The number of output electrode pairs is 0N' = 34.0N' = 32, 0N
"=30,0N-"=O,0N"'=28.0N-3
=0.0N゛4=26, 0N-'=0, the number of input electrode pairs is 1N0=24, iN'=22, iN2=2
0, iN−”=0. iN′=19,
iN-'=OiN'=18, iN-'=0. This is the case. Note that the subscripts of the number of electrode pairs, .

この実施例の場合も第7図の場合と同様に、シミュレー
ション結果も実験結果も、ともに帯域外減衰量は25d
Bが確保され、極めて良い結果が得られている。
In the case of this example, as in the case of Fig. 7, both the simulation results and the experimental results show that the out-of-band attenuation is 25 d.
B was secured and extremely good results were obtained.

第8図は帯域外減衰量と電極対数逓減率の関係を示す図
で、縦軸に帯域外減衰量を横軸に電極対数逓減率αを取
っである。実用上の要請から帯域外減衰量の許容巾を2
4〜25dBとすれば、α−0,07±0.01−・−
−−−−・−・−・−・−−−−−一−−−・・(5)
となる。
FIG. 8 is a diagram showing the relationship between the out-of-band attenuation and the electrode logarithm reduction rate, with the out-of-band attenuation on the vertical axis and the electrode logarithm reduction rate α on the horizontal axis. Due to practical requirements, the allowable range of out-of-band attenuation is set to 2.
If it is 4 to 25 dB, α-0.07±0.01-・-
−−−−・−・−・−・−−−−−1−−−・・(5)
becomes.

第9図は本発明の入出力電極対数と入出力番号の関係を
示す図で、前記第1実施例のγと本実施例のαの関係を
分かり易くまとめて示したものである。なお、mはOを
含む整数である。
FIG. 9 is a diagram showing the relationship between the number of input/output electrode pairs and the input/output number of the present invention, and clearly shows the relationship between γ in the first embodiment and α in the present embodiment. Note that m is an integer including O.

第1O図は本発明の第3実施例の通過帯域特性を示す図
で、同図(イ)はシミュレーション結果、同図(ロ)は
実験結果である。
FIG. 1O is a diagram showing the passband characteristics of the third embodiment of the present invention, in which (a) shows the simulation results and (b) shows the experimental results.

以上に述べた実施例で帯域外減衰量は非常に改善され、
また、通過帯域内リンプルの改善効果も大きい。本実施
例では通過帯域内リンプルΔSやが1.5dB以下の平
坦部の通過帯域Δfallをより一層広げるための最適
条件を求めるものである。
In the embodiments described above, the out-of-band attenuation is greatly improved,
Furthermore, the effect of improving ripple within the passband is also significant. In this embodiment, the optimum conditions for further widening the passband Δfall in a flat portion where the in-passband ripple ΔS is 1.5 dB or less are determined.

すなわち、入出力電極対数比γ=0.73±0.07と
α=0.07±0.01を保ちながら、入力用電極2の
中心と出力用電極3の中心の間の距離d= (n十β)
・λを変化させた場合のデータの一例で、この図の例は
入出力電極中心間隔係数β=0.2の場合である。なお
、電極構成は7人カー6出力で第1図(ロ)に示した中
心対称配置で、出力電極対数は0N’ =30.人力電
極対数は1N0=22とし、反射器4はそれぞれ30対
のオープンストリップ型とした。
That is, while maintaining the input/output electrode logarithmic ratio γ = 0.73 ± 0.07 and α = 0.07 ± 0.01, the distance d between the center of the input electrode 2 and the center of the output electrode 3 = ( n ten β)
- This is an example of data when λ is changed, and the example in this figure is for the input/output electrode center distance coefficient β=0.2. The electrode configuration is a 7-person car with 6 outputs and a center-symmetrical arrangement as shown in Figure 1 (b), and the number of output electrode pairs is 0N' = 30. The number of manual electrode pairs was 1N0=22, and each reflector 4 was an open strip type with 30 pairs.

同図(イ)のシミュレーションでΔf□=26MH2、
実験値で28MHzと極めてよい結果が得られている。
In the simulation of the same figure (a), Δf□=26MH2,
An extremely good result of 28 MHz has been obtained in the experimental value.

第11図は通過帯域中と入出力電極中心間隔係数の関係
を示す図で、破線はシミュレーション結果を、実線は実
M値を示した。通過帯域中25MHz以上になるβの値
は次の通りである。
FIG. 11 is a diagram showing the relationship between the passband and the input/output electrode center spacing coefficient, where the broken line shows the simulation results and the solid line shows the actual M value. The value of β at 25 MHz or more in the passband is as follows.

β=0.17〜0.25−・−一−−−−・−・・−−
−−−−−−−〜−−−−(6)次に、通過帯域の平坦
化には反射器4の影響が大きいことが知られており、本
発明者らはこれについても詳細に検討した。
β=0.17~0.25−・−1−−−−・−・・−−
−−−−−−−−−−−−(6)Next, it is known that the reflector 4 has a large influence on the flattening of the passband, and the present inventors also studied this in detail. did.

第12図は本発明の第4実施例の通過帯域特性を示す図
で、シミュレーション結果を示したものである。電極構
成は7人カー6出力で、出力電極対数0NO=30.入
力電極対数iN’=22.  r =0.73+0゜0
7、α=0.07±0.01、β=0.2の場合である
。なお、反射器は全てオープンストリップ型とした。
FIG. 12 is a diagram showing the passband characteristics of the fourth embodiment of the present invention, and shows simulation results. The electrode configuration is a 7-person car with 6 outputs, and the number of output electrode pairs is 0NO = 30. Number of input electrode pairs iN'=22. r=0.73+0゜0
7. This is the case where α=0.07±0.01 and β=0.2. All reflectors were of open strip type.

同図(イ)は反射器なし、同図(ロ)は30対、同図(
ハ)は60対の場合である。図から明らかなように、反
射器対数の影響は顕著であり、これをまとめて第13図
に示した。
The figure (a) shows no reflector, the figure (b) shows 30 reflectors, and the figure (b) shows 30 reflectors.
C) is the case of 60 pairs. As is clear from the figure, the influence of the reflector logarithm is significant, and this is summarized in FIG. 13.

第13図は通過帯域中と反射器対数の関係を示す図であ
る。すなわち、最大出力電極対数0Noと同し対数に設
定するのが最も大きな通過帯域中が得られ、実用的な見
地から反射器対数N++を次のごとく決めればよい。
FIG. 13 is a diagram showing the relationship between the passband and the reflector logarithm. That is, the largest pass band can be obtained by setting the maximum output electrode pair number 0No to the same logarithm, and from a practical standpoint, the reflector pair number N++ may be determined as follows.

N14=0N’(1±0.17)−・−一一−−−−・
−・・−・−・・−(7)上記実施例のシミュレーショ
ンおよび試料は何れも基板1として、36°Y −X 
LiTaO3単結晶基板を用いる場合について示したが
、他の圧電体を用いても同様に本発明の方法を通用して
多電極構成型弾性表面波フィルタを設計、製作できるこ
とは言うまでもない。
N14=0N'(1±0.17)----11----
−・・−・−・・−(7) In both the simulation and sample of the above embodiment, the substrate 1 is 36°Y −X
Although the case where a LiTaO3 single crystal substrate is used is shown, it goes without saying that a multi-electrode surface acoustic wave filter can be similarly designed and manufactured using the method of the present invention using other piezoelectric materials.

また、中心周波数についても上記実施例の835MHz
に限定されるものでなく、その他の周波数でも同様に本
発明が適用できることは勿論である。
In addition, the center frequency is also 835MHz in the above example.
Of course, the present invention is not limited to this, and can be applied to other frequencies as well.

すなわち、以上述べた実施例は数例を示したもので、本
発明の趣旨に添うものである限り、使用する素材や構成
なと適宜好ましいもの、あるいはその組み合わせを用い
ることができることは言うまでもない。
That is, the embodiments described above are just a few examples, and it goes without saying that any suitable material or structure used, or a combination thereof, can be used as long as it complies with the spirit of the present invention.

C発明の効果〕 以上述べたように、本発明によれば極めて複雑に関係す
る多電極構成型弾性表面波フィルタの主要パラメータを
取り出し、よく知られたスミスの等価回路モデルを用い
、櫛型電極を4端子対回路で表し、これから本発明者ら
が独自に機械系端子と電気系端子との4×4のFマトリ
クス(転送行列)を求め、これを更に10 X 10の
10@子対回路に拡張し、最終的にその通過特性を決め
る式を求め、それをシミュレーションツールとして各種
パラメータ間の最適関係を決定し、さらに、試料の試作
実験データと対応させて、それら最適条件による入出力
電極および反射器の構成や配置を決めて、帯域外抑圧度
と通過帯域中の大巾な改善を可能としたので、多電極構
成型弾性表面波フィルタの性能および再現性の向上と低
価格化に寄与するところが極めて大きい。
C. Effects of the invention] As described above, according to the present invention, the main parameters of a multi-electrode structured surface acoustic wave filter that are extremely complexly related are extracted, and the comb-shaped electrode is is expressed as a 4-terminal pair circuit, from which the inventors independently found a 4 x 4 F matrix (transfer matrix) of mechanical terminals and electrical terminals, and further converted this into a 10 x 10 10 @child pair circuit. Finally, we found a formula that determines the passage characteristics, used it as a simulation tool to determine the optimal relationship between various parameters, and then correlated it with sample experimental data to determine the input and output electrodes under these optimal conditions. By determining the configuration and placement of the reflector and the configuration of the reflector, it was possible to significantly improve the degree of out-of-band suppression and the inside of the passband, thereby improving the performance and reproducibility of multi-electrode surface acoustic wave filters and reducing their cost. The contribution is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電極配置の基本構成例を説明するブロ
ック図、 第2図は本発明の第1実施例を示す図、第3図は帯域外
減衰量と入力電極対数の関係を示す図、 第4図は入出力電極対数の最適関係を示す図、第5図は
本発明の第1実施例の通過帯域特性を示す図、 第6図は本発明の第2実施例の通過帯域特性を示す図(
そのl)、 第7図は本発明の第2実施例の通過帯域特性を示す図(
その2)、 第8図は帯域外減衰量と電極対数逓減率の関係を示す図
、 第9図は本発明の入出力電極対数と入出力番号の関係を
示す図、 第1O図は本発明の第3実施例の通過帯域特性を示す図
、 第11図は通過帯域中と入出力電極中心間隔係数の関係
を示す図 第12図は本発明の第4実施例の通過帯域特性を示す図
、 第13図は通過帯域中と反射器対数の関係を示す図、 第14図は多電極構成型弾性表面波フィルタの基本構成
例を示すブロック図、 第15図は従来の多電極構成型弾性表面波フィルタの櫛
型電極配置例を示す模式図、 第16図は従来の多電極構成型弾性表面波フィルタの通
過帯域特性例を示す図である。 図において、 1は圧電体基板、 2は入力用電極、 3は出力用電極、 4は反射器、 20は入力端子部、 30は出力端子部である。 第 図 帯域外:賊褒量とλ力@t&対数の関係を示す間第 3
 図 (ロ)出力用@橋がイ萬数1固で中叱対称配屓の場合(
ハ)出力用電橋が奇数イ固で中心走対称配置の鳩合本茫
明のtrH!!漸ジ1の基本構成イ列矢説明するブ′ロ
ソグ同第  1  図 (イ〕シミエし一ジョン粘果 第 図 を掻対数逓減千べ 第 図 第 図 50 00 50 00 周波数(MHz) (、l’)シミュレーション劫果 (ロ)実塵口店果 思ン乏数(ト)日の 周沢凌丹訓Z) ←0シミ1し一ジョン紹果 本発明の第3¥胞g1]のl昌帝域将ヰ主を示1同第 0 図 第 11 図 1記國目醤士或曙と尺」寸(iズ↑数の関イ糸を示1同
第 3 図 第 2 図 (ロ)出力用@極がイ蔦数イ囚の場合 角15 図
FIG. 1 is a block diagram illustrating a basic configuration example of the electrode arrangement of the present invention, FIG. 2 is a diagram showing the first embodiment of the present invention, and FIG. 3 is a diagram showing the relationship between the amount of out-of-band attenuation and the number of input electrode pairs. Figure 4 is a diagram showing the optimal relationship between the number of pairs of input and output electrodes, Figure 5 is a diagram showing the passband characteristics of the first embodiment of the present invention, and Figure 6 is a diagram showing the passband characteristic of the second embodiment of the present invention. Diagram showing characteristics (
7 is a diagram showing the passband characteristics of the second embodiment of the present invention (
Part 2), Figure 8 is a diagram showing the relationship between out-of-band attenuation and electrode logarithm reduction rate, Figure 9 is a diagram showing the relationship between the number of input/output electrode pairs and input/output number of the present invention, and Figure 1O is a diagram of the present invention. FIG. 11 is a diagram showing the relationship between the passband and the input/output electrode center spacing coefficient. FIG. 12 is a diagram showing the passband characteristic of the fourth embodiment of the present invention. , Fig. 13 is a diagram showing the relationship between the passband and the number of reflector logs, Fig. 14 is a block diagram showing an example of the basic configuration of a multi-electrode surface acoustic wave filter, and Fig. 15 is a conventional multi-electrode surface acoustic wave filter. FIG. 16 is a schematic diagram showing an example of a comb-shaped electrode arrangement of a surface acoustic wave filter. FIG. 16 is a diagram showing an example of passband characteristics of a conventional multi-electrode surface acoustic wave filter. In the figure, 1 is a piezoelectric substrate, 2 is an input electrode, 3 is an output electrode, 4 is a reflector, 20 is an input terminal portion, and 30 is an output terminal portion. Diagram outside the band: Showing the relationship between the reward and λ force @t & logarithm 3rd
Figure (b) When the output @ bridge is 1000 yen and has a symmetrical layout (
c) trH of Hatogomoto Isamei with an odd number of output bridges and a center running symmetrical arrangement! ! Figure 1 (A) The basic structure of Gradient 1 is explained in Figure 1. ') Simulation kalpa fruit (b) actual dust mouth store fruit thought scanty number (g) day Zhou Zelingdan practice Z) ←0 stain 1 and 1 John Shao fruit 3rd cell g1 of the present invention l Chang Emperor area Indicates the main character 1 Figure 1 Figure 11 Figure 1 indicates the number of stars ↑ Figure 2 Figure 2 (B) For output @ If the pole is the number I, angle 15 Fig.

Claims (5)

【特許請求の範囲】[Claims] (1)圧電体基板(1)上に、正規型すだれ状電極から
なる複数の入力用電極(2)と複数の出力用電極(3)
とを交互に入り組ませて配列し、最外側の両側にストリ
ップ型の反射器(4)を設けた多電極構成型弾性表面波
素子において、 前記複数の入力用電極(2)と前記複数の出力用電極(
3)のそれぞれの電極対数が異なり,かつ、前記複数の
入力用電極(2)と前記複数の出力用電極(3)相互の
間でも電極対数が異なることを特徴とした多電極構成型
弾性表面波素子。
(1) On the piezoelectric substrate (1), there are a plurality of input electrodes (2) and a plurality of output electrodes (3) consisting of regular interdigital electrodes.
In a multi-electrode surface acoustic wave element in which the plurality of input electrodes (2) and the plurality of Output electrode (
3) a multi-electrode structured elastic surface, wherein the number of electrode pairs is different for each of the plurality of input electrodes (2) and the plurality of output electrodes (3); Wave element.
(2)前記入力用電極(2)の電極対数_iNと前記出
力用電極(3)の電極対数_0Nとの比(_iN/_0
N),すなわち、入出力電極対数比をγとしたとき、隣
接する全ての入出力電極間において、γ=0.73±0
.07の一定値を有し,かつ、前記2つの反射器(4)
がいずれも電気的負荷が開放されたオープンストリップ
型であることを特徴とした請求項(1)記載の多電極構
成型弾性表面波素子。
(2) The ratio of the number of electrode pairs_iN of the input electrode (2) to the number of electrode pairs_0N of the output electrode (3) (_iN/_0
N), that is, when the input/output electrode logarithmic ratio is γ, between all adjacent input/output electrodes, γ=0.73±0
.. 07, and the two reflectors (4)
2. The multi-electrode surface acoustic wave device according to claim 1, wherein each of the multi-electrode surface acoustic wave devices is of an open strip type with no electrical load.
(3)前記複数の出力用電極(3)の中で電極対数が最
も多い出力用電極の電極対数を_0N^0とし、その両
側にそれぞれ配列された出力用電極(3)のうちの前記
最大電極対数の出力用電極から、m番目の出力用電極(
3)の電極対数を_0N^mとして(ただし,mは正の
整数)、電極対数逓減率αを±[(_0N^0−_0N
^m)/_0N^0(m−1)]で表すと、α=±(0
.07±0.01)であることを特徴とする請求項(2
)記載の多電極構成型弾性表面波素子。
(3) Let the number of electrode pairs of the output electrode with the largest number of electrode pairs among the plurality of output electrodes (3) be _0N^0, and the maximum number of the output electrodes (3) arranged on both sides thereof From the output electrode of the electrode pair, m-th output electrode (
Assuming the number of electrode pairs in 3) as _0N^m (where m is a positive integer), the rate of decrease in the number of electrode pairs α is ±[(_0N^0-_0N
^m)/_0N^0(m-1)], α=±(0
.. Claim (2) characterized in that: 07±0.01)
) A multi-electrode structured surface acoustic wave device.
(4)前記入力用電極(2)と前記出力用電極(3)の
相隣る電極のそれぞれの中心の間隔をd,弾性表面波の
波長をλ,nを正の整数としたとき、d=(n+β)・
λの関係で表され,かつ、β=0.17〜0.25であ
ることを特徴とする請求項(2)または(3)記載の多
電極構成型弾性表面波素子。
(4) When the distance between the centers of adjacent electrodes of the input electrode (2) and the output electrode (3) is d, the wavelength of the surface acoustic wave is λ, and n is a positive integer, d =(n+β)・
The multi-electrode surface acoustic wave element according to claim 2 or 3, characterized in that the relationship is expressed by λ and β=0.17 to 0.25.
(5)前記2つの反射器(4)の電極対数が前記出力用
電極(3)のうちの前記最大電極対数_0N^0の±1
7%以内の電極対数にすることを特徴とした請求項(2
)〜(4)記載の多電極構成型弾性表面波素子。
(5) The number of electrode pairs of the two reflectors (4) is ±1 of the maximum number of electrode pairs of the output electrodes (3)_0N^0
Claim (2) characterized in that the number of electrode pairs is within 7%.
) to (4), the multi-electrode surface acoustic wave device described in (4) above.
JP2069121A 1990-03-19 1990-03-19 Multi-electrode structure type surface acoustic wave element Pending JPH03270309A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2069121A JPH03270309A (en) 1990-03-19 1990-03-19 Multi-electrode structure type surface acoustic wave element
CA002038474A CA2038474C (en) 1990-03-19 1991-03-18 Surface-acoustic-waver filter having a plurality of electrodes
US07/672,018 US5179310A (en) 1990-03-19 1991-03-19 Surface-acoustic-waver filter having a plurality of electrodes
DE69123620T DE69123620T2 (en) 1990-03-19 1991-03-19 Acoustic surface wave filter with multiple electrodes
EP91302376A EP0448357B1 (en) 1990-03-19 1991-03-19 Surface-acoustic-wave filter having a plurality of electrodes
KR1019910004351A KR940009395B1 (en) 1990-03-19 1991-03-19 Saw filter having plural electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2069121A JPH03270309A (en) 1990-03-19 1990-03-19 Multi-electrode structure type surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPH03270309A true JPH03270309A (en) 1991-12-02

Family

ID=13393497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2069121A Pending JPH03270309A (en) 1990-03-19 1990-03-19 Multi-electrode structure type surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPH03270309A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300902A (en) * 1991-03-29 1994-04-05 Fujitsu Limited Surface acoustic wave device for band-pass filter having small insertion loss and predetermined pass-band characteristics for broad band
US5844453A (en) * 1995-05-29 1998-12-01 Sanyo Electric Co., Ltd. Surface acoustic wave filter utilizing a transducer having interdigital electrodes and continuously adjacent electrodes
US5850167A (en) * 1995-04-11 1998-12-15 Kinseki, Limited Surface acoustic wave device
US6111481A (en) * 1996-05-28 2000-08-29 Fujitsu Limited Surface-acoustic-wave three interdigital electrodes with different numbers of finger pairs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154917A (en) * 1982-03-10 1983-09-14 Hitachi Ltd Band pass filter of surface acoustic wave
JPS6482706A (en) * 1987-09-25 1989-03-28 Hitachi Ltd Surface acoustic wave narrow-band filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154917A (en) * 1982-03-10 1983-09-14 Hitachi Ltd Band pass filter of surface acoustic wave
JPS6482706A (en) * 1987-09-25 1989-03-28 Hitachi Ltd Surface acoustic wave narrow-band filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300902A (en) * 1991-03-29 1994-04-05 Fujitsu Limited Surface acoustic wave device for band-pass filter having small insertion loss and predetermined pass-band characteristics for broad band
US5850167A (en) * 1995-04-11 1998-12-15 Kinseki, Limited Surface acoustic wave device
US5844453A (en) * 1995-05-29 1998-12-01 Sanyo Electric Co., Ltd. Surface acoustic wave filter utilizing a transducer having interdigital electrodes and continuously adjacent electrodes
US6111481A (en) * 1996-05-28 2000-08-29 Fujitsu Limited Surface-acoustic-wave three interdigital electrodes with different numbers of finger pairs

Similar Documents

Publication Publication Date Title
KR100817849B1 (en) Elastic surface wave resonator and elastic surface wave filter using the same
DE69216769T2 (en) Acoustic surface wave filter
CN111510106A (en) Surface acoustic wave resonant structure filter
CN102204091B (en) Tunable filter
EP0746095B1 (en) Surface acoustic wave filter
JPH09167937A (en) Surface acoustic wave filter
US7843285B2 (en) Piezoelectric thin-film filter
JP3929415B2 (en) Surface acoustic wave device
JPH03270309A (en) Multi-electrode structure type surface acoustic wave element
EP0782256B1 (en) Surface acoustic wave resonator filter apparatus
KR970706652A (en) SURFACE ACOUSTIC WAVE DEVICE
CN113746449B (en) Elastic wave broadband filter
JP3476299B2 (en) Double mode surface acoustic wave resonator filter
JPH021403B2 (en)
WO1996028886A1 (en) Surface acoustic wave filter
JP3425394B2 (en) Surface acoustic wave resonator and surface acoustic wave filter
JP4138093B2 (en) Vertically coupled double mode SAW filter
JPH10173467A (en) Transversal saw filter
JPH1117493A (en) Surface acoustic wave device
JP2004516703A (en) Transversal mode coupled resonator filter
JPH09116379A (en) Surface acoustic wave filter
JP3459494B2 (en) Surface acoustic wave filter
JPH10261932A (en) Surface acoustic wave filter and method for configuring the surface acoustic wave filter
JPH0481823A (en) Filter combined with surface acoustic wave resonator
JP3721229B2 (en) Surface acoustic wave filter