JPH03268478A - Electronic circuit and manufacture thereof - Google Patents

Electronic circuit and manufacture thereof

Info

Publication number
JPH03268478A
JPH03268478A JP2067117A JP6711790A JPH03268478A JP H03268478 A JPH03268478 A JP H03268478A JP 2067117 A JP2067117 A JP 2067117A JP 6711790 A JP6711790 A JP 6711790A JP H03268478 A JPH03268478 A JP H03268478A
Authority
JP
Japan
Prior art keywords
conductor
thick film
laser
substrate
contact angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2067117A
Other languages
Japanese (ja)
Inventor
Noritaka Kamimura
神村 典孝
Tadamichi Asai
忠道 浅井
Toshio Ogawa
敏夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2067117A priority Critical patent/JPH03268478A/en
Publication of JPH03268478A publication Critical patent/JPH03268478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PURPOSE:To obtain a high precision, high density thick film hybrid IC by setting the contact angle between the plane of a conductor pattern board to be cut with laser beam and the side plane of a conductor circuit, within 90+20. CONSTITUTION:Being coated with paste and silk-printed, a conductor film 41 is formed on a substrate. The film is processed with a laser 43 before or after calcination so that it may be possible to obtain a specified line width and line interval of 50mum or below. Processing means include electron beams, sand grain beams, and ion beams, in addition to the laser processing 43. They are used on a single or combination basis. The contact angle between the plane of the substrate 42 and the side plane of high precision conductor pattern 41 is adapted to range from 90 deg.+ or -20 deg.. This construction makes it possible to form a high precision wiring pattern and to manufacture on excellent high frequency thick film substrate, using a thick film copper conductor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高精細厚膜ハイブリッドICに係り、特に、高
精細配線に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-definition thick film hybrid IC, and particularly to high-definition wiring.

〔従来の技術〕[Conventional technology]

従来の厚膜導体配線は、導電性ペーストを用いてスクリ
ーン印刷−焼成により製造されている。
Conventional thick film conductor wiring is manufactured by screen printing and firing using conductive paste.

スクリーン印刷法では、配線幅50μm以下の高精細配
線を形成するのは困難である。
With the screen printing method, it is difficult to form high-definition wiring with a wiring width of 50 μm or less.

なお、この種の技術として関連するものには、例えば、
特開昭52−137667号、特開昭61−65492
号公報が挙げられる。
In addition, related technologies of this type include, for example,
JP-A-52-137667, JP-A-61-65492
Publication No.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来スクリーン印刷方法は、銅ペーストの粘度によ
って、第4図(a)と第4図(b)のように低粘度のペ
ーストはにじんで配線の線幅が広くなってしまったり、
高粘度の銅ペーストはかすれて断線したりするなどの問
題があった。このため、スクリーン印刷のみの方法では
lOOμm程度の線幅が限界であった。
In the conventional screen printing method described above, depending on the viscosity of the copper paste, as shown in Figures 4(a) and 4(b), the low-viscosity paste may bleed and the line width of the wiring may become wider.
High viscosity copper paste has problems such as blurring and disconnection. For this reason, a line width of about 100 μm is the limit for a method using only screen printing.

本発明の目的は、高精細高密度厚膜ハイブリッドICを
提供することにある。
An object of the present invention is to provide a high-definition, high-density, thick-film hybrid IC.

また、厚膜抵抗体の抵抗値精度は、厚膜抵抗体の形状誤
差によって変動し、その影響は抵抗体を小型化する程大
きくなり、実用上の問題が大きい。
Further, the resistance value accuracy of the thick film resistor varies depending on the shape error of the thick film resistor, and the influence becomes larger as the resistor is made smaller, which poses a serious problem in practical use.

本発明の他の目的は、抵抗値精度の高い厚膜抵抗体を含
む高精度厚膜ハイブリッドICを提供することにある。
Another object of the present invention is to provide a high-precision thick-film hybrid IC including a thick-film resistor with high resistance value accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は.セラミツク基板
上に導体ペーストをスクリーン印刷で導体膜を形成し、
焼成前、あるいは、後でレーザ加工をすることで、例え
ば、50μm以下の所定の線幅及び線間隔を得るもので
ある。
In order to achieve the above object, the present invention... A conductive film is formed by screen printing conductive paste on a ceramic substrate,
By performing laser processing before or after firing, a predetermined line width and line spacing of, for example, 50 μm or less can be obtained.

加工の手段はレーザ加工の他に、電子ビーム。In addition to laser processing, the processing method is electron beam.

砂粒ビーム及びイオンビームを単独、もしくは、これら
を組み合わせる方法であってよい。
A sand grain beam and an ion beam may be used alone, or a combination of these may be used.

〔作用〕[Effect]

例えば、衛星通信等に用いられるKaバンドの2O−3
0GHz、あるいは、Kuバンドの12〜14GHzに
おける高周波フィルタ回路に適用される導体配線分布定
数型の回路となるため、特に寸法精度の高い配線が要求
され、パターン精度として±10μm以下の要求もある
。このような配線回路は従来は薄膜技術、あるいは、ホ
トリソ技術等によってなされていた。しかし、量産性あ
るいは価格的な面で問題があった。本発明はレーザ加工
等の高精細性と高速性を厚膜形成技術に応用することで
、この問題を解決した。すなわち、セラミック基板に形
成された厚膜導体配線を所定の条件でレーザ、もしくは
、他の物理的方法で切断加工することで高精細化パター
ンを実現した。
For example, 2O-3 of Ka band used for satellite communication etc.
Since it is a conductor wiring distributed constant type circuit applied to a high frequency filter circuit at 0 GHz or 12 to 14 GHz in the Ku band, wiring with particularly high dimensional accuracy is required, and pattern accuracy of ±10 μm or less is also required. Conventionally, such wiring circuits have been created using thin film technology, photolithography technology, or the like. However, there were problems in terms of mass production and price. The present invention has solved this problem by applying the high precision and high speed of laser processing etc. to thick film formation technology. That is, a high-definition pattern was realized by cutting thick-film conductor wiring formed on a ceramic substrate using a laser or other physical method under predetermined conditions.

本発明によって形成された回路パターンは、スクリーン
印刷により形成されたものに比較してパターン端部のだ
れが極めて小さく、基板面と回路側面との接触角が垂直
に近いものが得られる。第3図に回路断面の構造を模式
図で示す。(、)がスクリーン印刷による導体パターン
、 (b)が本発明によるものである。従って、回路が
高密度に形成でき、導体配線のアスペクト比も高くでき
るのでインピーダンスの低い回路が形成できる。
The circuit pattern formed by the present invention has extremely small droop at the edge of the pattern compared to one formed by screen printing, and the contact angle between the substrate surface and the side surface of the circuit is close to perpendicular. FIG. 3 schematically shows the cross-sectional structure of the circuit. (,) is the conductor pattern by screen printing, (b) is the one according to the present invention. Therefore, a circuit can be formed with high density and the aspect ratio of the conductor wiring can be made high, so that a circuit with low impedance can be formed.

〔実施例〕〔Example〕

〈実施例1〉 アルミナ基板上に200メツシユスクリーンを用いて、
銅ペーストをスクリーン印刷した後、乾燥・焼成すると
導体線幅が150±2oμmのものが得られた0次に、
400メツシユスクリーンを用いると、第5図に示すよ
うに、100±20μmの導体パターンが得られた。し
かし、これよりさらに細い線を得ようとすると、線幅の
ばらつきが大きくなり、実用に耐えるパターンは得られ
なかった。
<Example 1> Using a 200 mesh screen on an alumina substrate,
After screen printing the copper paste, drying and baking it yielded a conductor line width of 150±2oμm.
When a 400 mesh screen was used, a conductor pattern of 100±20 μm was obtained as shown in FIG. However, when attempting to obtain lines even thinner than this, variations in line width became large, making it impossible to obtain a pattern that could be put to practical use.

〈実施例2〉 アルミナ基板上に400メツシユスクリーンを用いて、
銅ペーストをスクリーン印刷した後、乾燥・焼成し、線
幅が500μmの導体を作製した。
<Example 2> Using a 400 mesh screen on an alumina substrate,
After screen printing the copper paste, it was dried and fired to produce a conductor with a line width of 500 μm.

次に、第2図に示すように、この導体をレーザ加工し、
高精細導体パターンを得た。すなわち、YAGレーザと
して、出力26A、走査スピード10IIIII/Sの
条件で銅導体にレーザを照射することで、第1図に示す
ように、50±5μmの高精細導体配線を得た。
Next, as shown in Figure 2, this conductor is laser processed.
A high-definition conductor pattern was obtained. That is, by irradiating a copper conductor with a YAG laser under conditions of an output of 26 A and a scanning speed of 10III/S, a high-definition conductor wiring of 50±5 μm was obtained as shown in FIG.

〈実施例3〉 アルミナ基板上に400メツシユスクリーンを用いて、
RuO2抵抗ペーストを印刷した後、乾燥・焼成し、長
さ0 、3 rmX幅0.15wnの抵抗体を形成した
。次に、この抵抗体をレーザ加工し、長さ0 、3 m
 x幅0.05mの抵抗体にした。さらに、この抵抗体
上に導体間隔が100μmの導体を印刷・乾燥・焼成す
ると、長さ100μm×幅50μmの微細抵抗体が精度
よく形成が可能である。
<Example 3> Using a 400 mesh screen on an alumina substrate,
After printing the RuO2 resistance paste, it was dried and fired to form a resistor with a length of 0.3 rm and a width of 0.15 wn. Next, this resistor was laser-processed to a length of 0.3 m.
A resistor with a width of 0.05 m was used. Furthermore, by printing, drying, and baking a conductor with a conductor spacing of 100 μm on this resistor, a fine resistor with a length of 100 μm×width of 50 μm can be formed with high accuracy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、厚膜銅導体を用いて、高精細の配線パ
ターンの形成を可能とし、極めて良好な高周波用厚膜基
板の製造方法を提供することができる。
According to the present invention, it is possible to form a high-definition wiring pattern using a thick film copper conductor, and it is possible to provide an extremely good method of manufacturing a thick film substrate for high frequency.

なお、実施例として、Cu導体、及び、Ru○2系抵抗
体の例を示したが、本発明では材料は限定されない。
Note that although examples of a Cu conductor and a Ru2-based resistor are shown as examples, the materials are not limited in the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による高精細導体パターンの
表面状態金属組織を示す写真、第2図(a)は導体をレ
ーザ照射加工している断面図、(b)はレーザ加工した
後の高精細導体の平面説明図、第3図(、)はスクリー
ン印刷による導体パターンの断面図、(b)は本発明の
一実施例による高精細導体パターンの断面図、第4図は
従来技術による実施例の模式図、第5図は実施例1によ
り作製した100±20μmの導体の表面状態の金属組
織を示す写真である。 11.21,31,41,51,61・・・導体、12
.22,32,42,52.62・・・アルミナ基板、
43・・・レーザ光線、44.63・・・レーザ照茅 囮 (久) 2 革 固 <b) (a) (IOT;、:Q 茅4−ロ 銘) 乎4目 <b) 2 1/ /2 茅 目 I 2
Figure 1 is a photograph showing the surface state metal structure of a high-definition conductor pattern according to an embodiment of the present invention, Figure 2 (a) is a cross-sectional view of a conductor being processed by laser irradiation, and (b) is after laser processing. 3(a) is a cross-sectional view of a conductor pattern formed by screen printing, (b) is a cross-sectional view of a high-definition conductor pattern according to an embodiment of the present invention, and FIG. 4 is a conventional technique. FIG. 5 is a photograph showing the metal structure of the surface state of a 100±20 μm conductor manufactured in accordance with Example 1. 11.21, 31, 41, 51, 61... conductor, 12
.. 22, 32, 42, 52.62... alumina substrate,
43... Laser beam, 44.63... Laser shining decoy (ku) 2 leather hard<b) (a) (IOT;, :Q 茅4-RO mark) 乎4目<b) 2 1/ /2 Kayame I 2

Claims (4)

【特許請求の範囲】[Claims] 1.セラミツク基板上に形成された厚膜導体回路におい
て、導体の一部をレーザもしくは他の物理的方法によつ
て切断加工することで特定形状の導体パターンが形成さ
れ、前記セラミツク基板の面と導体回路側面との接触角
度が90°±20°の範囲にあることを特徴とする電子
回路の製法。
1. In a thick film conductor circuit formed on a ceramic substrate, a conductor pattern of a specific shape is formed by cutting a part of the conductor using a laser or other physical method, and the surface of the ceramic substrate and the conductor circuit are A method for manufacturing an electronic circuit, characterized in that the contact angle with the side surface is in the range of 90°±20°.
2.請求項1において、前記接触角度が90°±20°
の範囲にある電子回路。
2. In claim 1, the contact angle is 90°±20°.
Electronic circuits in the range of.
3.請求項1において、セラミツク配線基板上に形成さ
れた厚膜抵抗体において、前記厚膜抵抗体の一部をレー
ザもしくは他の物理的方法を用いて特定寸法の形状に切
断加工することにより形成し、前記基板面と切断加工さ
れた前記厚膜抵抗体側面との接触角度が90°±20°
の範囲にある電子回路の製法。
3. According to claim 1, in the thick film resistor formed on a ceramic wiring board, a part of the thick film resistor is formed by cutting into a shape with specific dimensions using a laser or other physical method. , the contact angle between the substrate surface and the cut side surface of the thick film resistor is 90°±20°.
Manufacturing methods for electronic circuits within the scope of.
4.請求項3において、前記接触角度が90°±20°
の範囲にある電子回路。
4. In claim 3, the contact angle is 90°±20°.
Electronic circuits in the range of.
JP2067117A 1990-03-19 1990-03-19 Electronic circuit and manufacture thereof Pending JPH03268478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2067117A JPH03268478A (en) 1990-03-19 1990-03-19 Electronic circuit and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2067117A JPH03268478A (en) 1990-03-19 1990-03-19 Electronic circuit and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03268478A true JPH03268478A (en) 1991-11-29

Family

ID=13335635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2067117A Pending JPH03268478A (en) 1990-03-19 1990-03-19 Electronic circuit and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03268478A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003037049A1 (en) * 2001-10-22 2003-05-01 Invint Limited Circuit formation by laser ablation of ink
US7185428B2 (en) 2002-09-23 2007-03-06 International Business Machines Corporation Method of making a circuitized substrate
JP2011103431A (en) * 2009-10-16 2011-05-26 Tomoo Matsushita Pattern forming device
JP2011235625A (en) * 2009-07-15 2011-11-24 Tomoo Matsushita Pattern forming apparatus and positioning apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003037049A1 (en) * 2001-10-22 2003-05-01 Invint Limited Circuit formation by laser ablation of ink
US7185428B2 (en) 2002-09-23 2007-03-06 International Business Machines Corporation Method of making a circuitized substrate
US7325299B2 (en) 2002-09-23 2008-02-05 International Business Machines Corporation Method of making a circuitized substrate
US7596862B2 (en) 2002-09-23 2009-10-06 International Business Machines Corporation Method of making a circuitized substrate
JP2011235625A (en) * 2009-07-15 2011-11-24 Tomoo Matsushita Pattern forming apparatus and positioning apparatus
JP2011103431A (en) * 2009-10-16 2011-05-26 Tomoo Matsushita Pattern forming device

Similar Documents

Publication Publication Date Title
US4508753A (en) Method of producing fine line conductive/resistive patterns on an insulating coating
US4508754A (en) Method of adding fine line conductive/resistive patterns to a thick film microcircuit
US4808435A (en) Screen printing method for producing lines of uniform width and height
US4191938A (en) Cermet resistor trimming method
JPH03268478A (en) Electronic circuit and manufacture thereof
JPH0415608B2 (en)
JPH10135014A (en) Manufacture of chip part
JPS59207651A (en) Manufacture of filmy circuit substrate
JPH0195588A (en) Manufacture of circuit substrate
JP2005347642A (en) Manufacture of laminated ceramic electronic component
JPS6119102A (en) Method of producing thick film printed board
JPS5952804A (en) Method of producing film resistor
JPS5819158B2 (en) Manufacturing method for high-density multilayer wiring board
JPH09260108A (en) Chip type thermistor and manufacturing method thereof
JPH0410903A (en) Production of ceramic substrate
JPS5922397B2 (en) Method for manufacturing thick film multilayer wiring board
JPS5678147A (en) Manufacture of thick film hybrid integrated circuit board
JPS6144453A (en) Manufacture of hybrid ic
JPH03119788A (en) Manufacture of circuit board
JPH0745933A (en) Ceramic printed substrate
JPH0144032B2 (en)
JPH01140695A (en) Manufacture of electronic circuit component
JPS6278895A (en) Hybrid ic
JPH10135015A (en) Manufacture of chip part
JPH06112018A (en) Thick-film resistor forming method