JPH03267356A - Production of sheet and bar of high-sn phosphor bronze - Google Patents

Production of sheet and bar of high-sn phosphor bronze

Info

Publication number
JPH03267356A
JPH03267356A JP6697790A JP6697790A JPH03267356A JP H03267356 A JPH03267356 A JP H03267356A JP 6697790 A JP6697790 A JP 6697790A JP 6697790 A JP6697790 A JP 6697790A JP H03267356 A JPH03267356 A JP H03267356A
Authority
JP
Japan
Prior art keywords
ingot
phosphor bronze
weight
sheet
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6697790A
Other languages
Japanese (ja)
Inventor
Yukio Tsukuya
津久家 幸雄
Akira Hideno
秀野 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6697790A priority Critical patent/JPH03267356A/en
Publication of JPH03267356A publication Critical patent/JPH03267356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To easily produce a sheet and a bar of high-Sn phosphor bronze excellent in spring characteristic, corrosion resistance, wear resistance, etc., in high yield by forming a high-Sn phosphor bronze in which specific percentages of Sn and P are incorporated to Cu into a unidirectionally solidified ingot and subjecting this ingot to cold rolling and homogenizing treatment. CONSTITUTION:A molten high-Sn phosphor bronze 1 having a composition consisting of, by weight, >9.0-13.5% Sn, <=0.4% P, and the balance Cu with inevitable impurities is passed from a heater embedded type casting furnace 2 into a mold 4 in which the internal surface is heated up to the prescribed temp. higher than the melting point of the casting metal by means of a heater 3, and the resulting ingot 5 is cooled by means of a cooler 6 and continuously drawn out by means of pinch rolls 7, by which the ingot 5 in which the precipitates of alpha-phase are dispersed into spherical state along grain boundaries can be obtained without causing the inverse segregation of Sn at the surface can be obtained. Subsequently, this ingot 5 is cold-rolled and then subjected to homogenizing treatment at 400-800 deg.C, by which the sheet and bar composed of high-Sn phosphor bronze suitable, e.g. for switch for electronic and electrical equipment can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高Snりん青銅の板及び条の製造方法に関し
、特に電子、電気機器用スイッチ、リレコネクタや各種
の機械部品に好適な高Snりん青銅の板及び条の製造方
法に係わる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing high Sn phosphor bronze plates and strips, and particularly to high Sn phosphor bronze plates and strips suitable for electronic and electrical equipment switches, relay connectors, and various mechanical parts. Concerning the manufacturing method of phosphor bronze plates and strips.

[従来の技術及び課題] りん青銅合金は、この合金中に含まれる5nffiを増
大させるとバネ特性、耐食性及び耐摩耗性等が向上する
ことが知られている。しかしながら、伸銅品のJIS規
格ではSn含有量が3.5〜9.0重量%のりん青銅の
みしか規格化されていないことから明らかなように一般
的に工業的にはSnが9.0重量%を越えて含んだりん
青銅合金の板及び条は製造されていない。これは、次の
ような理由によるものである。即ち、りん青銅合金はS
n含有量が増加するとその加工性が著しく低下する。
[Prior Art and Problems] It is known that the spring characteristics, corrosion resistance, wear resistance, etc. of phosphor bronze alloys are improved by increasing the 5nffi contained in the alloy. However, as is clear from the fact that the JIS standard for copper products only specifies phosphor bronze with an Sn content of 3.5 to 9.0% by weight, industrially Sn is generally 9.0%. Plates and strips of phosphor bronze alloy containing more than % by weight have not been manufactured. This is due to the following reasons. That is, the phosphor bronze alloy is S
As the n content increases, its processability decreases significantly.

このため、Sn含有量か9.0重量%を越えるりん青銅
合金ではその鋳塊から板及び条を加工することが困難と
なる。従って、高Snりん青銅合金は塑性加工を必要と
しない鋳物のみで使用されているのか現状である。
For this reason, it is difficult to process plates and strips from phosphor bronze alloys whose Sn content exceeds 9.0% by weight. Therefore, at present, high Sn phosphor bronze alloys are used only in castings that do not require plastic working.

一方、りん青銅は一般に熱間圧延に供した場合、熱間脆
性の原因となる低融点のCu−5n−P相やCu−P相
を生成するため、熱間圧延か困難な材料とされている。
On the other hand, when phosphor bronze is subjected to hot rolling, it generally produces low-melting-point Cu-5n-P and Cu-P phases that cause hot brittleness, so it is considered to be a difficult material to hot-roll. There is.

このため、Sn含有量が9.0重量%以下のりん青銅で
あってもその鋳塊から板及び条を製造する場合には冷間
圧延と焼鈍を繰り返し行う方法が採用されている。しか
しながら、一般に鋳造されたりん青銅の鋳塊はその表面
にSnO逆偏析層が生じており、しかも内部にはSnの
濃化したδ相が生じているため、冷間圧延においても割
れを発生することがある。このため、鋳塊の表面層を予
め機械的に面側除去し、更に高温、長時間の熱処理を施
して均質化させることによって前記冷間圧延工程での割
れ発生を防止している。
For this reason, even if phosphor bronze has an Sn content of 9.0% by weight or less, a method of repeatedly cold rolling and annealing is adopted when manufacturing plates and strips from the ingot. However, generally cast phosphor bronze ingots have a reverse segregation layer of SnO on their surface and a δ phase with concentrated Sn inside, which causes cracks to occur even during cold rolling. Sometimes. For this reason, cracking during the cold rolling process is prevented by mechanically removing the surface layer of the ingot in advance, and then subjecting it to a heat treatment at a high temperature and for a long time to make it homogenized.

以上のように、Sn含有量が9.0重量%以下のりん青
銅でも多くの工程を経て製造され、更にSnの含有量か
多くなった場合には面削代の増加による材料ロスの増加
の他に、均質化処理に要する熱エネルギー増や冷間加工
性の低下による焼鈍回数の増加等によって著しくコスト
高となる。その結果、Sn含有量が9.0重量%を越え
るりん青銅は優れた特性ををしているにもかかわらず現
状では板及び条の製造が行われていない。
As mentioned above, even phosphor bronze with a Sn content of 9.0% by weight or less is manufactured through many processes, and when the Sn content increases, material loss due to increased facing allowance increases. In addition, costs increase significantly due to an increase in thermal energy required for homogenization treatment and an increase in the number of annealing times due to a decrease in cold workability. As a result, although phosphor bronze with an Sn content exceeding 9.0% by weight has excellent properties, it is currently not manufactured into plates or strips.

本発明は、上記従来の課題を解決するためになされたも
ので、Sn含有量が9.0重量%を越えるバネ特性、耐
食性及び耐摩耗性等の優れたりん青銅の板及び条を極め
て簡単かつ高歩留りで製造し得る方法を提供しようとす
るものである。
The present invention has been made in order to solve the above-mentioned conventional problems, and it is extremely easy to produce phosphor bronze plates and strips with an Sn content of more than 9.0% by weight, which have excellent spring properties, corrosion resistance, and abrasion resistance. The purpose of the present invention is to provide a method that can be manufactured with high yield.

[課題を解決するための手段] 本発明は、9.0重量%を越え、13.5重量%以下の
Sn、0,4重量%以下のP、残部Cu及び不可避的不
純物からなるりん青銅を一方向凝固させて鋳塊を作製す
る工程と、この鋳塊を冷間圧延した後、均質化処理を施
す工程とを具備したことを特徴とする高Snりん青銅の
板及び条の製造方法である。
[Means for Solving the Problems] The present invention provides phosphor bronze containing more than 9.0% by weight and 13.5% by weight or less of Sn, 0.4% by weight or less of P, the balance Cu, and unavoidable impurities. A method for producing plates and strips of high Sn phosphor bronze, comprising a step of producing an ingot by unidirectional solidification, and a step of cold rolling the ingot and then subjecting it to homogenization treatment. be.

上記Snの含有割合を限定した理由は、その含有量を9
.0重量%以下にするとバネ特性、耐食性及び耐摩耗性
を十分に満足するりん青銅板、条を製造することができ
ず、一方その含有量が13.5重量%を越えると加工性
が低下する。
The reason for limiting the content ratio of Sn is that the content is 9
.. If the content is less than 0% by weight, it will not be possible to produce phosphor bronze plates or strips that fully satisfy spring properties, corrosion resistance, and wear resistance, while if the content exceeds 13.5% by weight, workability will decrease. .

上記Pは、強度や耐食性の向上に寄与するが、その含有
量か0.4重量%を越えてもそれら特性の向上がなされ
ないばかりか、かえって加工性の低下等を招く。
The above-mentioned P contributes to improving strength and corrosion resistance, but if its content exceeds 0.4% by weight, not only will these properties not be improved, but workability will be reduced.

上記均質化処理は、冷間圧延後のりん青銅内部のミクロ
偏析したSn(δ相)を分散するために行う。かかる均
質化処理は、ミクロ偏析したSnの分散化を良好に行い
、一方前記偏析Sn部分での局部的な溶融を回避する観
点から、400〜800℃で行うことが望ましい。この
均質化処理での雰囲気は、大気中でもよいが、原料ロス
を少なくする観点から、弱還元性雰囲気で行うことか好
ましい。
The above-mentioned homogenization treatment is performed to disperse micro-segregated Sn (δ phase) inside the phosphor bronze after cold rolling. This homogenization treatment is desirably performed at a temperature of 400 to 800° C. from the viewpoint of dispersing micro-segregated Sn well and avoiding local melting in the segregated Sn portions. The atmosphere in this homogenization treatment may be air, but from the viewpoint of reducing raw material loss, it is preferable to carry out the homogenization treatment in a weakly reducing atmosphere.

[作用] 一般的な鋳造では、凝固は鋳塊の外周から内部に進行す
るが、りん青銅は凝固温度範囲が広いために凝固の進行
に伴って残液中にSnが濃化され易い。濃化されたSn
は、凝固殻の収縮によって生じる圧力や溶湯に含まれる
ガスの凝固による放出圧力によって外周部に移動して逆
偏析を生じるため、圧延前に鋳塊表面層の面側除去が必
要で、材料ロスを招く。
[Operation] In general casting, solidification progresses from the outer periphery to the inside of the ingot, but since phosphor bronze has a wide solidification temperature range, Sn is likely to be concentrated in the residual liquid as solidification progresses. Enriched Sn
The ingots move to the outer periphery due to the pressure caused by the contraction of the solidified shell or the release pressure caused by the solidification of the gas contained in the molten metal, causing reverse segregation. Therefore, it is necessary to remove the surface layer of the ingot from the side before rolling, which reduces material loss. invite.

一方、前記Snの濃化によって鋳塊内部に6相を生じる
が、かかるδ相は結晶粒界などではクサビ形状をなし、
圧延割れの原因となる。このため、圧延前に高温、長時
間の熱処理によってδ相を消滅させ、または球状化する
ことが必要である。
On the other hand, the enrichment of Sn produces six phases inside the ingot, and the δ phase forms a wedge shape at grain boundaries, etc.
This may cause rolling cracks. Therefore, it is necessary to eliminate the δ phase or make it spheroidized by heat treatment at high temperature and for a long time before rolling.

このようなことから、本発明で一方向凝固により鋳塊を
作製することによって前記各種の問題を解決したもので
ある。即ち、一方向凝固では鋳塊の外周と内部でほぼ同
時に凝固が進行するため、濃化されたSnが外周部に移
動することなく、逆偏析の発生を回避できる。その結果
、圧延工程前に鋳塊表面層の面側除去が不要となり、材
料ロスを防止できる。また、結晶粒界はほぼ平行に生じ
、粒界にクサビ形状をなすδ相は存在しないため、高温
、長時間の熱処理による均質化処理を施さずに冷間圧延
を行うことができる。更に、前記結晶粒界が平行に生じ
、圧延時の割れの原因となる圧延方向に対して垂直な粒
界が存在しないことから、−射的な鋳造品に比べて強加
工が可能となる。しかも、δ相の均質化のための拡散に
要する熱エネルギーはδ相間の距離か短い程少なくてす
むことから、薄くまで圧延後に均質化処理を施すことに
よって従来の鋳塊での均質化に比べて極めて少ない熱エ
ネルギーで均質化が可能になるばかりでなく、圧延後に
行う中間焼鈍と兼ねて行うことができる。
For these reasons, the present invention solves the above-mentioned problems by producing an ingot by unidirectional solidification. That is, in unidirectional solidification, solidification proceeds almost simultaneously on the outer periphery and inside of the ingot, so that the enriched Sn does not move to the outer periphery, and the occurrence of reverse segregation can be avoided. As a result, it is not necessary to remove the surface layer of the ingot before the rolling process, and material loss can be prevented. Further, since the grain boundaries are almost parallel and there is no wedge-shaped δ phase at the grain boundaries, cold rolling can be performed without homogenization treatment by high temperature and long-term heat treatment. Furthermore, since the grain boundaries are parallel and there are no grain boundaries perpendicular to the rolling direction that would cause cracks during rolling, stronger working is possible compared to a shot casting product. Furthermore, the shorter the distance between the δ phases, the less thermal energy required for diffusion to homogenize the δ phase, so by homogenizing the ingot after rolling it to a thinner layer, compared to the conventional homogenization process using an ingot. Not only can homogenization be achieved with extremely little thermal energy, but it can also be performed as an intermediate annealing performed after rolling.

従って、材料ロス、熱処理に要するエネルギー及び工数
を大幅に減少できるために、従来技術では製造すること
が困難であったSnを91口重量%を越えて含み、バネ
特性、耐食性及び耐摩耗性等の優れたりん青銅の板及び
条を極めて簡単かつ高歩留りで製造することが可能とな
る。
Therefore, material loss, energy and man-hours required for heat treatment can be significantly reduced, and the product contains more than 91% by weight of Sn, which was difficult to produce using conventional techniques, resulting in improved spring properties, corrosion resistance, wear resistance, etc. It becomes possible to manufacture excellent phosphor bronze plates and strips extremely easily and with high yield.

[実施例コ 以下、本発明の実施例を図面を参照して詳細に説明する
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

実施例1 下記第1表に示す組成の5種のりん青銅合金を溶解炉に
て溶解し、同第1表に示す温度の各溶湯を第1図に示す
加熱鋳型連続鋳造装置を用いて断面寸法が幅356mm
、厚さ12m+nの板状鋳塊(No1〜No5)を鋳造
した。
Example 1 Five types of phosphor bronze alloys having the compositions shown in Table 1 below were melted in a melting furnace, and each molten metal at the temperature shown in Table 1 was cut into cross sections using the heating mold continuous casting apparatus shown in Fig. 1. Dimensions are 356mm wide
, plate-shaped ingots (No. 1 to No. 5) with a thickness of 12 m+n were cast.

即ち、前記溶湯1をヒータ埋込型鋳造炉2に移送し、該
溶湯lを加熱器3にて内面を鋳造金属の融点より高い所
定温度に加熱した鋳型4に通し、該鋳型4より製出する
鋳塊5を冷却機6により流水をかけて冷却しつつ、ピン
チロール7て所定の速度で引出して連続的に鋳造した。
That is, the molten metal 1 is transferred to a heater-embedded casting furnace 2, passed through a mold 4 whose inner surface is heated to a predetermined temperature higher than the melting point of the cast metal by a heater 3, and the molten metal 1 is produced from the mold 4. The ingot 5 was continuously cast by being cooled by running water using a cooler 6 and pulled out at a predetermined speed by pinch rolls 7.

かかる工程での鋳型温度、鋳造速度及び冷却水量を同第
1表に併記した。また、前記工程において前記りん青銅
合金の融点は鋳型4内面の温度より低いので、凝固時の
熱抽出は鋳型4からはなされず、専ら鋳塊5を介してな
される。その結果、固液界面8は鋳塊5の引出方向にほ
ぼ垂直に形成される。従って、鋳塊表面にSnの逆偏析
を生じることなく、かつ得られた鋳塊5は結晶粒が鋳塊
5の長手方向に伸びた一方向凝固組織になっているため
、δ相の析出物は結晶粒界に沿って球状に分散し、クサ
ビ状のものは全く認められなかった。
The mold temperature, casting speed, and amount of cooling water in this process are also listed in Table 1. Furthermore, in the above process, since the melting point of the phosphor bronze alloy is lower than the temperature of the inner surface of the mold 4, heat is not extracted from the mold 4 during solidification, but only through the ingot 5. As a result, the solid-liquid interface 8 is formed substantially perpendicular to the direction in which the ingot 5 is pulled out. Therefore, there is no reverse segregation of Sn on the ingot surface, and the obtained ingot 5 has a unidirectional solidification structure in which crystal grains extend in the longitudinal direction of the ingot 5, so that δ phase precipitates were dispersed in a spherical shape along the grain boundaries, and no wedge-shaped particles were observed.

また、前記固液界面8は、鋳型4出口近傍に位置するよ
うに冷却器6からの流水量をコントロールしたので、通
常の水冷鋳造のように鋳塊が鋳型と擦れ合うことがなく
、鋳塊表面は平滑で割れ等のない極めて優れたものであ
った。
In addition, since the amount of water flowing from the cooler 6 is controlled so that the solid-liquid interface 8 is located near the outlet of the mold 4, the ingot does not rub against the mold as in normal water-cooled casting, and the ingot surface It was extremely smooth and free of cracks.

一方、比較例として下記第1表に示す組成の2種のりん
青銅合金を従来の水冷鋳造法により断面寸法か幅356
mm、厚さ12II1mの板状鋳塊(No5、N06)
に鋳造した。得られた各鋳塊は、外周から内部方向へと
結晶の成長した多結晶組織であり、粒界にクサビ状の6
相が散在しており、鋳塊表面にはSnの濃化した逆偏析
層が認められた。
On the other hand, as a comparative example, two types of phosphor bronze alloys having the compositions shown in Table 1 below were cast using the conventional water-cooled casting method to achieve a cross-sectional size of 356 mm.
mm, thickness 12II1m plate-shaped ingot (No5, N06)
It was cast in Each ingot obtained has a polycrystalline structure in which crystals grow from the outer periphery toward the inside, with wedge-shaped 6
Phases were scattered, and a reverse segregation layer enriched with Sn was observed on the ingot surface.

得られた鋳塊は、そのままの状態から冷間圧延を施すこ
とによって、Nolでは鋳塊厚さを12mmから 1.
2mm (減面率90%)まで圧延できた。同様にして
No2では鋳塊厚さを12a+wから1.4mm (減
面率88%)まで、No3では鋳塊厚さを12mmから
1 、7mm(減面率86%)まで、No4では鋳塊厚
さを12m+eから2.0mm (減面率88%)まで
、No5では鋳塊厚さを12mmから4.6mm (減
面率88%)まで、それぞれ圧延できた。
The obtained ingot is cold-rolled from its original state, and the thickness of the ingot is reduced from 12 mm to 1.
It was possible to roll it to 2 mm (area reduction rate of 90%). Similarly, for No. 2, the ingot thickness was increased from 12a+w to 1.4 mm (area reduction rate: 88%), for No. 3, the ingot thickness was increased from 12 mm to 1.7 mm (area reduction rate: 86%), and for No. 4, the ingot thickness was increased from 12 mm to 1.4 mm (area reduction rate: 86%). The thickness of the ingot No. 5 could be rolled from 12 mm to 2.0 mm (area reduction rate: 88%), and the ingot thickness from 12 mm to 4.6 mm (area reduction rate: 88%) for No. 5.

これに対し、比較例としてのNo6、No7の鋳塊を上
下面を各1■ずつ面側し、逆偏析層を除去して厚さ10
■とした後、冷間圧延したところ、最初のパス(厚さ 
9mm)で既に割れを生じ、以降のバスでは割れが拡大
するのみで殆ど加工が困難であった。
On the other hand, ingots No. 6 and No. 7 as comparative examples were side-faced by 1 inch each on the upper and lower surfaces, the reverse segregation layer was removed, and the thickness was 10 mm.
■ After cold rolling, the first pass (thickness
9mm), cracks had already occurred, and in subsequent baths the cracks only expanded, making it almost difficult to process.

以上のことから、一方向凝固させたりん青銅鋳塊は、従
来の水冷鋳造法で製造された鋳塊に比べて著しく加工性
に優れているのみならず、面側による材料ロスを回避で
きた。しかしながら、一方向凝固鋳塊でもNo1〜4の
ようにSn量が13,5重量%までは優れた加工性を有
するか、No5のように5nffiが15重量%になる
とやや加工性が低下した。これは、Sn量が15重量%
のりん青銅合金ではα相に比べて加工性が劣るβ相が多
く生じるためと考えられる。
From the above, unidirectionally solidified phosphor bronze ingots not only have significantly superior workability compared to ingots manufactured by the conventional water-cooled casting method, but also avoid material loss due to the side surface. . However, even the unidirectionally solidified ingots had excellent workability when the Sn content was up to 13.5% by weight, as in Nos. 1 to 4, or the workability slightly decreased when 5nffi reached 15% by weight, as in No. 5. This means that the Sn content is 15% by weight.
This is thought to be because in the phosphor bronze alloy, a large amount of β phase, which has inferior workability compared to α phase, is generated.

実施例2 前述した第1表中のNo2及びNo4の鋳塊をそれぞれ
10%、30%、50%、70%の減面率て冷間圧延し
た。つづいて、圧延された各条材を種々の温度及び保持
時間で均質化処理を施し、ミクロ組織観察によりδ相か
消滅しているか否かの判定を行って適正な均質化処理条
件を求めた。
Example 2 The ingots No. 2 and No. 4 in Table 1 described above were cold rolled with area reduction ratios of 10%, 30%, 50%, and 70%, respectively. Next, each rolled strip was subjected to homogenization treatment at various temperatures and holding times, and by microstructural observation, it was determined whether the δ phase had disappeared or not, and appropriate homogenization treatment conditions were determined. .

また、比較例としてのNo6、No7の鋳塊は既述した
ように表面を面側除去したのみの状態では冷間圧延が困
難であったことから、圧延前に均質化処理を施し、ミク
ロ組織観察によりクサビ状のδ相が球状化して圧延可能
となる適正な条件を求めた。
In addition, as mentioned above, it was difficult to cold-roll the ingots No. 6 and No. 7 as comparative examples when only the surface side was removed, so we homogenized the ingots before rolling to improve the microstructure. Through observation, we determined the appropriate conditions under which the wedge-shaped δ phase became spheroidal and could be rolled.

求められた適正均質化処理条件を下記第2表に示す。The determined appropriate homogenization treatment conditions are shown in Table 2 below.

上記第2表から明らかなように本実施例では、圧延後に
均質化処理を行うことが可能であることから、従来法に
よる比較例のように圧延前に均質化処理を行う場合に比
べて低温かつ短時間の処理が可能となり、熱エネルギー
を大幅に低減することができる。
As is clear from Table 2 above, in this example, it is possible to perform homogenization treatment after rolling, so the temperature is lower than in the case where homogenization treatment is performed before rolling as in the comparative example using the conventional method. Moreover, it becomes possible to perform the treatment in a short time, and the thermal energy can be significantly reduced.

更に、圧延後に均質化処理を行うことによって同時に再
結晶組織となり、焼鈍も完了することから中間焼鈍を省
略することも可能となる。
Furthermore, by performing homogenization treatment after rolling, a recrystallized structure is formed at the same time, and annealing is also completed, making it possible to omit intermediate annealing.

実施例3 前述した第1表中のNol〜No4の鋳塊を冷間圧延に
より厚さ 2.4mm (減面率80%)とした後、下
記第3表に示す適正な均質化処理を行い、更に冷間圧延
を行って厚さ 0.5mmの4種の条材を製造した。な
お、No3、No4については均質化処理後の圧延途中
で1回の中間焼鈍を行った。
Example 3 The ingots No. 1 to No. 4 in Table 1 described above were cold-rolled to a thickness of 2.4 mm (area reduction rate of 80%), and then subjected to appropriate homogenization treatment shown in Table 3 below. Then, cold rolling was further performed to produce four types of strips each having a thickness of 0.5 mm. Note that for No. 3 and No. 4, intermediate annealing was performed once during rolling after the homogenization treatment.

一方、比較例としての前述した第1表中のNo6、No
7の鋳塊の上下面を面側し、逆偏析層を除去して厚さ1
0mmとした後、下記第3表に示す適正な均質化処理を
行い、ひきつづき冷間圧延と焼鈍を繰り返して0.5■
の2種の条材を製造した。なお、No6の鋳塊では前記
厚さの条材を得るのに5回の中間焼鈍を、No7の鋳塊
では前記厚さの条材を得るのに6回の中間焼鈍を、それ
ぞれ要した。
On the other hand, No. 6 and No. 6 in Table 1 mentioned above as comparative examples
The top and bottom surfaces of the ingot No. 7 were turned side-by-side, the reverse segregation layer was removed, and the thickness was 1.
After reducing the thickness to 0 mm, appropriate homogenization treatment shown in Table 3 below was performed, followed by repeated cold rolling and annealing to reduce the thickness to 0.5 mm.
Two types of strip materials were manufactured. It should be noted that the No. 6 ingot required 5 intermediate annealings to obtain a strip of the above thickness, and the No. 7 ingot required 6 intermediate annealing to obtain a strip of the above thickness.

このような方法により製造された条材の特性(引張強さ
、伸び)を測定した。これらの結果を下記第3表に併記
した。なお、同第3表中には最終焼鈍からの減面率も併
記した。
The properties (tensile strength, elongation) of the strip manufactured by such a method were measured. These results are also listed in Table 3 below. In addition, in Table 3, the area reduction rate from the final annealing is also listed.

上記第3表から明らかなように本実施例では優れた特性
を有する高Snりん青銅の条材を製造できることがわか
る。これに対し、従来の水冷鋳造法で得た鋳塊では実験
的には0.5mmの条材を得ることが可能であるか、面
側による材料ロス、高温、長時間の均質化処理、更に変
電なる焼鈍に要する熱エネルギー及びそれらの工程数か
ら工業的な規模の製造が困難となる。
As is clear from Table 3 above, this example shows that a high Sn phosphor bronze strip having excellent properties can be manufactured. On the other hand, it has been experimentally shown that it is possible to obtain strips of 0.5 mm with ingots obtained by the conventional water-cooled casting method. Manufacturing on an industrial scale is difficult due to the thermal energy required for annealing due to electrical transformation and the number of steps involved.

[発明の効果] 以上詳述した如く、本発明によれば優れたバネ特性、耐
食性及び耐摩耗性を有するが、従来法では材料ロス、多
大な工程数、熱エネルギーを要するために工業的な規模
の製造が困難であったSn含有量が9.0重量%を越え
る電子、電気機器用スイッチ、リレー コネクタや各種
の機械部品に好適なりん青銅の板及び条を極めて簡単か
つ高歩留り、工業的規模で製造し得る方法を提供できる
ものである。
[Effects of the Invention] As detailed above, the present invention has excellent spring characteristics, corrosion resistance, and wear resistance, but the conventional method requires material loss, a large number of steps, and thermal energy, so it is difficult to use industrially. Phosphor bronze plates and strips with a Sn content of over 9.0% by weight, which have been difficult to manufacture on a large scale and are suitable for switches, relay connectors, and various mechanical parts for electronic and electrical equipment, can be produced extremely easily, with high yield, and for industrial use. It is possible to provide a method that can be manufactured on a large scale.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で用いた加熱鋳型連続鋳造装置
を示す概略断面図である。 ■・・・溶湯、2・・・鋳造炉、4・・・鋳型、6・・
・冷却器。 5・・・鋳塊、
FIG. 1 is a schematic sectional view showing a hot mold continuous casting apparatus used in an embodiment of the present invention. ■... Molten metal, 2... Casting furnace, 4... Mold, 6...
·Cooler. 5... Ingot,

Claims (1)

【特許請求の範囲】[Claims] 9.0重量%を越え、13.5重量%以下のSn、0.
4重量%以下のP、残部Cu及び不可避的不純物からな
るりん青銅を一方向凝固させて鋳塊を作製する工程と、
この鋳塊を冷間圧延した後、均質化処理を施す工程とを
具備したことを特徴とする高Snりん青銅の板及び条の
製造方法。
More than 9.0% by weight and not more than 13.5% by weight of Sn, 0.
A step of producing an ingot by unidirectionally solidifying phosphor bronze consisting of 4% by weight or less of P, the balance of Cu, and unavoidable impurities;
A method for producing plates and strips of high Sn phosphor bronze, comprising the step of cold rolling the ingot and then subjecting it to a homogenization treatment.
JP6697790A 1990-03-19 1990-03-19 Production of sheet and bar of high-sn phosphor bronze Pending JPH03267356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6697790A JPH03267356A (en) 1990-03-19 1990-03-19 Production of sheet and bar of high-sn phosphor bronze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6697790A JPH03267356A (en) 1990-03-19 1990-03-19 Production of sheet and bar of high-sn phosphor bronze

Publications (1)

Publication Number Publication Date
JPH03267356A true JPH03267356A (en) 1991-11-28

Family

ID=13331595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6697790A Pending JPH03267356A (en) 1990-03-19 1990-03-19 Production of sheet and bar of high-sn phosphor bronze

Country Status (1)

Country Link
JP (1) JPH03267356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1056417C (en) * 1997-10-15 2000-09-13 封安钰 Method for making tin phosphor bronze parts
KR20030011995A (en) * 2001-07-30 2003-02-12 창덕금속 주식회사 Heat Treatment Method for Phosphorus Bronze Copper Strip Slab

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1056417C (en) * 1997-10-15 2000-09-13 封安钰 Method for making tin phosphor bronze parts
KR20030011995A (en) * 2001-07-30 2003-02-12 창덕금속 주식회사 Heat Treatment Method for Phosphorus Bronze Copper Strip Slab

Similar Documents

Publication Publication Date Title
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
CA2551599A1 (en) Manufacturing method for al-mg-si aluminum alloy sheets with excellent bake hardenability
JP2006144059A (en) Magnesium alloy sheet superior in press formability, and manufacturing method therefor
JP5945370B2 (en) Method for producing aluminum-zinc-magnesium-copper alloy sheet with refined crystal grains
JPH0569888B2 (en)
JP2004522585A (en) Manufacturing method of high strength aluminum alloy foil
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
KR900006690B1 (en) Method of producing thin sheet of high si-fe alloy
JP4780600B2 (en) Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof
JPS6358907B2 (en)
CN103103407B (en) High-thermal-stability wrought aluminium alloy and preparation method thereof
JPH03267356A (en) Production of sheet and bar of high-sn phosphor bronze
KR101757733B1 (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
CN112626380B (en) 8011 aluminum alloy foil for making cover and manufacturing method thereof
JPS6143425B2 (en)
KR20150042099A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
JPS6365402B2 (en)
JPS623228B2 (en)
JPS6326186B2 (en)
KR20160091863A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
JPH01259147A (en) Manufacture of al-cu-li-zr super plastic plate
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JP2527105B2 (en) Method for manufacturing thin plate duplex stainless steel slab
JPH0336246A (en) Production of phosphor bronze alloy
JPS6362836A (en) Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof