JP2006144059A - Magnesium alloy sheet superior in press formability, and manufacturing method therefor - Google Patents

Magnesium alloy sheet superior in press formability, and manufacturing method therefor Download PDF

Info

Publication number
JP2006144059A
JP2006144059A JP2004334188A JP2004334188A JP2006144059A JP 2006144059 A JP2006144059 A JP 2006144059A JP 2004334188 A JP2004334188 A JP 2004334188A JP 2004334188 A JP2004334188 A JP 2004334188A JP 2006144059 A JP2006144059 A JP 2006144059A
Authority
JP
Japan
Prior art keywords
magnesium alloy
rolling
press
alloy sheet
press formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004334188A
Other languages
Japanese (ja)
Other versions
JP4780601B2 (en
Inventor
Sukenori Nakaura
祐典 中浦
Koichi Ohori
紘一 大堀
Takeshi Sakagami
武 坂上
Akira Watabe
晶 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2004334188A priority Critical patent/JP4780601B2/en
Publication of JP2006144059A publication Critical patent/JP2006144059A/en
Application granted granted Critical
Publication of JP4780601B2 publication Critical patent/JP4780601B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnesium alloy sheet superior in press formability, which is superior in a cost/performance ratio and can be press-formed into a complicated shape, and to provide a manufacturing method therefor. <P>SOLUTION: The magnesium alloy sheet has a composition comprising, by mass%, 1-6.5% Al, 0.2-0.2% Zn, 0.1-0.5% Mn and the balance Mg with unavoidable impurities and has a grain size of 5 μm or smaller. The method for manufacturing the magnesium alloy sheet comprises the steps of: producing a belt-shaped cast plate from a molten metal of a magnesium alloy having the above composition through a twin-roll process; homogenizing it; then warm-rolling it, or hot-rolling and warm-rolling it; cold-rolling it into a predetermined thickness; and then rapidly annealing it in a short period of time. The magnesium alloy sheet can be efficiently manufactured, has improved press-formability, and can be press-formed into more complicated shape. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プレス成形性に優れたマグネシウム合金板およびその製造方法に関するものである。   The present invention relates to a magnesium alloy plate excellent in press formability and a method for producing the same.

マグネシウム合金の結晶構造は稠密六方晶であることから、そうしたマグネシウム合金は、常温で塑性変形しにくく冷間加工性が悪い材料として知られている。そのため、従来は、マグネシウム合金が塑性変形しやすい熱間または温間で圧延し、所定の厚さのマグネシウム合金板を製造している。こうした方法は、特許文献1にも開示されており、マグネシウム合金からなる厚いスラブを熱間圧延や温間圧延することにより加熱と圧延を繰り返し、所望の厚さのマグネシウム合金板を製造している。
特開平6−293944号公報
Since the crystal structure of a magnesium alloy is a dense hexagonal crystal, such a magnesium alloy is known as a material that hardly undergoes plastic deformation at room temperature and has poor cold workability. For this reason, conventionally, a magnesium alloy sheet having a predetermined thickness is manufactured by rolling hot or warm in which the magnesium alloy is easily plastically deformed. Such a method is also disclosed in Patent Document 1, and a magnesium alloy sheet having a desired thickness is manufactured by repeating heating and rolling by hot rolling or warm rolling a thick slab made of a magnesium alloy. .
JP-A-6-293944

しかしながら、従来の製造方法においては、加熱と圧延が繰り返されることから、得られるマグネシウム合金板の結晶粒組織も粗大となる。このような結晶粒組織は、そのマグネシウム合金板を加温した状態でプレス成形する際のプレス成形性を低下させる。特に、プレス速度を高速にした場合においては、絞り加工時にコーナー部分がくびれたり割れが発生したりして、所望の形状を確保できないことがあった。
また、上述した従来の方法では、所定の厚さのマグネシウム合金板を製造するための過熱と圧延が繰り返されることから、非常に多くの時間と労力を必要とし、生産性向上の障害にもなっていた。こうしたことは、マグネシウム合金板の製造コストにも反映し、マグネシウム合金板から成形されたプレス成形品の価格にも大きく影響していた。
However, in the conventional manufacturing method, since heating and rolling are repeated, the crystal grain structure of the obtained magnesium alloy sheet becomes coarse. Such a crystal grain structure reduces the press formability when the magnesium alloy plate is press-formed in a heated state. In particular, when the press speed is increased, the corner portion may be constricted or cracked during drawing, and a desired shape may not be ensured.
Further, in the above-described conventional method, since overheating and rolling for producing a magnesium alloy plate having a predetermined thickness are repeated, much time and labor are required, which is an obstacle to improvement in productivity. It was. This has also reflected the manufacturing cost of the magnesium alloy plate and has had a great influence on the price of the press-formed product formed from the magnesium alloy plate.

本発明は、上記事情を背景としてなされたものであり、プレス成形性に優れたマグネシウム合金板を極めて効率よく製造することができる方法を提供するとともに、コストパフォーマンスに優れ且つ複雑な形状にプレス成形可能なマグネシウム合金板を提供するものである。   The present invention has been made against the background of the above circumstances, and provides a method capable of extremely efficiently producing a magnesium alloy plate excellent in press formability, and is excellent in cost performance and press-formed into a complicated shape. A possible magnesium alloy sheet is provided.

すなわち、請求項1記載の本発明のうちプレス成形性に優れたマグネシウム合金板の発明は、質量%で、Al:1〜6.5%、Zn:0.2〜2.0%、Mn:0.1〜0.5%を含有し、残部がMgおよび不可避不純物からなる組成を有し、かつ結晶粒径が5μm以下であることを特徴とする。   That is, the invention of the magnesium alloy plate excellent in press formability of the present invention according to claim 1 is mass%, Al: 1 to 6.5%, Zn: 0.2 to 2.0%, Mn: It is characterized by containing 0.1 to 0.5%, the balance being composed of Mg and inevitable impurities, and a crystal grain size of 5 μm or less.

また、請求項2記載のプレス成形性に優れたマグネシウム合金板の製造方法の発明は、質量%で、Al:1〜6.5%、Zn:0.2〜2.0%、Mn:0.1〜0.5%を含有し、残部がMgおよび不可避不純物からなる組成を有するマグネシウム合金溶湯を板厚3〜10mmの帯状板に連続鋳造圧延した後、均質化熱処理を施し、その後、温間圧延または熱間および温間圧延をし、さらに冷間圧延をし、その後、急速短時間加熱焼鈍を行うことを特徴とする。   The invention of the method for producing a magnesium alloy sheet excellent in press formability according to claim 2 is mass%, Al: 1 to 6.5%, Zn: 0.2 to 2.0%, Mn: 0 A magnesium alloy melt containing 1 to 0.5%, with the balance being composed of Mg and inevitable impurities, was continuously cast and rolled into a strip having a thickness of 3 to 10 mm, and then subjected to a homogenization heat treatment, It is characterized by performing hot rolling or hot and warm rolling, further cold rolling, and then performing rapid and short heating annealing.

請求項3記載のプレス成形性に優れたマグネシウム合金板の製造方法の発明は、請求項2記載の発明において、前記急速短時間加熱焼鈍は、10℃/秒の加熱速度で昇温させて250〜450℃で30秒以下保持するものであることを特徴とする。   The invention of the method for producing a magnesium alloy sheet excellent in press formability according to claim 3 is the invention according to claim 2, wherein the rapid short-time heating annealing is performed by increasing the temperature at a heating rate of 10 ° C./sec. It is characterized by being held at ˜450 ° C. for 30 seconds or less.

請求項4記載のプレス成形性に優れたマグネシウム合金板の製造方法の発明は、請求項2または3に記載の発明において、前記温間圧延または熱間および温間圧延工程途中に中間焼鈍工程を有することを特徴とする。   The invention of the method for producing a magnesium alloy sheet excellent in press formability according to claim 4 is the invention according to claim 2 or 3, wherein an intermediate annealing step is performed during the warm rolling or hot and warm rolling steps. It is characterized by having.

すなわち、本発明のプレス成形性に優れたマグネシウム合金板によれば、質量%で、Al:1〜6.5%、Zn:0.2〜2.0%、Mn:0.1〜0.5%を含有し、残部がMgおよび不可避不純物からなる組成を有し、かつ結晶粒径が5μm以下であるので、従来材よりも結晶粒径が小さいことにより、そのマグネシウム合金板を加温した状態でプレス成形する際のプレス成形性を向上させ、より複雑形状のプレス成形が可能となる。
したがって、従来不可能とされてきたような複雑な形状からなる成形体をプレス成形することができる。その結果、マグネシウム合金からなるプレス成形品の適用範囲を著しく拡大でき、軽量で構造強度の高い形成体を提供することができる。
That is, according to the magnesium alloy plate excellent in press formability of the present invention, by mass%, Al: 1 to 6.5%, Zn: 0.2 to 2.0%, Mn: 0.1 to 0.00. 5% is contained, the balance is composed of Mg and inevitable impurities, and the crystal grain size is 5 μm or less, so that the magnesium alloy plate is heated by having a crystal grain size smaller than that of the conventional material. The press formability at the time of press molding in the state is improved, and press molding with a more complicated shape becomes possible.
Therefore, it is possible to press-mold a molded body having a complicated shape that has been impossible in the past. As a result, the applicable range of the press-formed product made of a magnesium alloy can be remarkably expanded, and a formed body that is lightweight and has high structural strength can be provided.

また、本発明のプレス成形性に優れたマグネシウム合金板の製造方法の発明によれば、質量%で、Al:1〜6.5%、Zn:0.2〜2.0%、Mn:0.1〜0.5%を含有し、残部がMgおよび不可避不純物からなる組成を有するマグネシウム合金溶湯を板厚3〜10mmの帯状板に連続鋳造圧延した後、均質化熱処理を施し、その後、温間圧延または熱間および温間圧延をし、さらに冷間圧延をし、その後、急速短時間加熱焼鈍を行うので、従来の厚いスラブから加熱と熱間圧延や温間圧延を繰り返す方法に比べて加熱と熱間圧延の回数が少なくマグネシウム合金板を製造でき、微細な結晶粒からなるマグネシウム合金板を極めて効率的に製造することができる。そうして得られたマグネシウム合金板は、プレス成形性に優れ、複雑な形状の成形品を容易に成形することができる。   Moreover, according to the invention of the manufacturing method of the magnesium alloy plate excellent in press formability of the present invention, by mass%, Al: 1 to 6.5%, Zn: 0.2 to 2.0%, Mn: 0 A magnesium alloy melt containing 1 to 0.5%, with the balance being composed of Mg and inevitable impurities, was continuously cast and rolled into a strip having a thickness of 3 to 10 mm, and then subjected to a homogenization heat treatment, Hot rolling or hot and warm rolling, followed by cold rolling, followed by rapid and short heating annealing, compared to the conventional method of repeating heating and hot rolling or warm rolling from a thick slab A magnesium alloy plate can be manufactured with few heating and hot rolling, and a magnesium alloy plate made of fine crystal grains can be manufactured very efficiently. The magnesium alloy sheet thus obtained is excellent in press formability and can easily form a molded product having a complicated shape.

以下に、本発明のプレス成形性に優れたマグネシウム合金板(以下「マグネシウム合金板」という。)の製造方法の一実施形態について説明する。   Below, one Embodiment of the manufacturing method of the magnesium alloy plate (henceforth a "magnesium alloy plate") excellent in the press-formability of this invention is described.

本発明のマグネシウム合金板は、質量%で、Al:1〜6.5%、Zn:0.2〜2.0%、Mn:0.1〜0.5%を含有し、残部がMgおよび不可避不純物からなる組成を有し、その結晶粒径が5μm以下であることを特徴とするものである。その成分および結晶粒径の限定理由を以下に説明する。   The magnesium alloy plate of the present invention contains, in mass%, Al: 1 to 6.5%, Zn: 0.2 to 2.0%, Mn: 0.1 to 0.5%, with the balance being Mg and It has a composition composed of inevitable impurities and has a crystal grain size of 5 μm or less. The reasons for limiting the components and the crystal grain size will be described below.

Al:1〜6.5%
Alは、1〜6.5%の範囲内で添加されていることが望ましく、2〜4%の範囲内で添加されていることがより好ましい。Alは、鋳造性、強度等の機械的性質および耐食性の向上を目的として積極的に添加されるものであるが、Alの添加量が6.5%を超えると、圧延工程における加工性が低下する。また、Alの添加量が1%未満では、十分な鋳造性、強度および耐食性が得られない。
Al: 1 to 6.5%
Al is desirably added within a range of 1 to 6.5%, and more preferably within a range of 2 to 4%. Al is positively added for the purpose of improving mechanical properties such as castability and strength, and corrosion resistance. However, if the amount of Al exceeds 6.5%, workability in the rolling process decreases. To do. Moreover, if the addition amount of Al is less than 1%, sufficient castability, strength and corrosion resistance cannot be obtained.

Zn:0.2〜2.0%
Znは、0.2〜2.0%の範囲内で添加されていることが好ましい。Znは、Alと同様に、鋳造性と強度等の機械的性質の向上に寄与するものであるが、Znの添加量が2.0%を超えると、鋳造性が低下する。また、Znの添加量が0.2%未満では、強度が低下することがあり、その結果としてプレス成形性が低下することがある。
Zn: 0.2-2.0%
Zn is preferably added in the range of 0.2 to 2.0%. Zn, like Al, contributes to improvement of mechanical properties such as castability and strength. However, if the added amount of Zn exceeds 2.0%, castability deteriorates. Further, if the added amount of Zn is less than 0.2%, the strength may decrease, and as a result, the press formability may decrease.

Mn:0.1〜0.5%
Mnは、0.1〜0.5%の範囲内で添加されていることが好ましい。Mnは、耐食性を低下させる元素の影響を緩和する効果を有するものである。すなわち、Mnを添加することによって、耐食性を低下させる不純物元素であるFeの影響を緩和することができ、上記の範囲内で添加することによって、その効果を最も発揮することができ、0.5%を超えると連続鋳造圧延時に粗大な金属間化合物が生成し、圧延性が悪化する。
Mn: 0.1 to 0.5%
Mn is preferably added in the range of 0.1 to 0.5%. Mn has an effect of alleviating the influence of elements that lower the corrosion resistance. That is, by adding Mn, the influence of Fe, which is an impurity element that lowers the corrosion resistance, can be mitigated, and by adding within the above range, the effect can be most exerted. If it exceeds 100%, a coarse intermetallic compound is produced during continuous casting and rolling, and the rollability deteriorates.

結晶粒径:5μm以下
マグネシウム合金の機械的性質は結晶粒径に強く依存し、結晶粒径が小さいほど強度も伸びも高くなる。結晶粒径が5μm超では十分なプレス成形性が得られない。
Crystal grain size: 5 μm or less The mechanical properties of magnesium alloys strongly depend on the crystal grain size, and the smaller the crystal grain size, the higher the strength and elongation. If the crystal grain size exceeds 5 μm, sufficient press formability cannot be obtained.

次に、本発明のマグネシウム合金板の製造方法は、図1に示すように、マグネシウム合金溶湯を双ロール法などにより、板厚3〜10mmの帯状板に連続鋳造圧延し、次いで均質化熱処理を施し、その後、温間圧延または熱間および温間圧延と、冷間圧延により所定の厚さとした後、急速短時間加熱焼鈍を行うことに特徴を有するものである。   Next, as shown in FIG. 1, the magnesium alloy sheet manufacturing method of the present invention continuously casts and rolls molten magnesium alloy into a strip-shaped sheet having a thickness of 3 to 10 mm by a twin roll method or the like, and then homogenized heat treatment. It is characterized in that it is subjected to rapid annealing for a short time after applying a predetermined thickness by performing cold rolling or hot and warm rolling and cold rolling.

連続鋳造圧延工程は、後述するマグネシウム合金の溶湯を、例えば水冷された一対のロールの間に供給し、連続的に薄い帯状板に鋳造圧延する工程である。本発明においては、連続鋳造圧延工程によって、極めて効率的なマグネシウム合金板の製造を可能にしたものである。本発明としては双ロールによる連続鋳造圧延方法が好適なものとして挙げられるが、特定の方法に限定されるものではない。また、双ロール法においては、例えば溶解炉で得られるマグネシウム合金溶湯をタンディッシュに供給し、該タンディッシュから供給されるマグネシウム合金溶湯を双ロールで圧延する。   The continuous casting and rolling step is a step in which a molten magnesium alloy described later is supplied between, for example, a pair of water-cooled rolls and continuously cast and rolled into a thin strip. In the present invention, a highly efficient magnesium alloy sheet can be produced by a continuous casting and rolling process. As the present invention, a continuous casting and rolling method using twin rolls may be mentioned as a suitable method, but the present invention is not limited to a specific method. In the twin roll method, for example, molten magnesium alloy obtained in a melting furnace is supplied to a tundish, and the molten magnesium alloy supplied from the tundish is rolled with a twin roll.

均質化熱処理工程は急冷凝固された連続鋳造圧延板におけるAl、Zn溶質元素のデンドライト・セル境界および板厚中心部での高密度の偏析を解消する熱処理である。熱処理条件としては370〜470℃の温度範囲で1時間以上行うのが好ましい。この熱処理により上記偏析が解消され、その後の圧延性とプレス成形性に優れたマグネシウム合金板を得ることができる。   The homogenization heat treatment step is a heat treatment for eliminating high-density segregation at the dendrite cell boundary and central portion of the plate thickness of the Al and Zn solute elements in the rapidly cast and solidified continuous cast and rolled plate. As heat treatment conditions, it is preferable to carry out at a temperature range of 370 to 470 ° C for 1 hour or longer. By this heat treatment, the segregation is eliminated, and a magnesium alloy sheet excellent in the subsequent rollability and press formability can be obtained.

熱間/温間圧延工程は、所定の厚さの連続鋳造圧延板を所定の厚さのマグネシウム合金板に加工するための工程である。ここで、300℃以上での圧延を熱間圧延、300℃未満での圧延を温間圧延とする。最終温間圧延工程での圧下率としては、50%以上の圧下率を特に好ましく適用できる。この圧下率は、一回(一パス)の圧延であっても複数回の圧延であってもよく特に限定されない。   The hot / warm rolling process is a process for processing a continuous cast rolled sheet having a predetermined thickness into a magnesium alloy sheet having a predetermined thickness. Here, rolling at 300 ° C. or higher is hot rolling, and rolling at less than 300 ° C. is warm rolling. As the rolling reduction in the final warm rolling step, a rolling reduction of 50% or more can be particularly preferably applied. This rolling reduction may be one time (one pass) or a plurality of times of rolling, and is not particularly limited.

中間焼鈍工程は、熱間圧延工程と温間圧延工程の間に、あるいは温間圧延工程の途中に設けることができる。温間圧延工程では、温間圧延での圧下率が80%を超える場合に設けるのが好ましい。一の温間圧延工程での圧下率が80%以下であっても、二以上の温間圧延工程でのトータルの圧下率が80%を超える場合には、中間焼鈍工程を設け、その後に最終温間圧延工程を設けることが好ましい。
なお、中間焼鈍の条件としては、300〜350℃の温度範囲で1〜8時間または350〜450℃の温度範囲で1分以下を例示することができる。中間焼鈍は、バッチ炉、連続炉のいずれであってもよい。
The intermediate annealing process can be provided between the hot rolling process and the warm rolling process or in the middle of the warm rolling process. In the warm rolling step, it is preferably provided when the rolling reduction in warm rolling exceeds 80%. Even if the reduction ratio in one warm rolling process is 80% or less, if the total reduction ratio in two or more warm rolling processes exceeds 80%, an intermediate annealing process is provided, and then the final It is preferable to provide a warm rolling process.
In addition, as conditions of intermediate annealing, 1 minute or less can be illustrated in the temperature range of 1 to 8 hours in the temperature range of 300-350 degreeC, or 350-450 degreeC. The intermediate annealing may be either a batch furnace or a continuous furnace.

冷間圧延工程は蓄積ひずみエネルギーを高めることにより再結晶の駆動力を増すと同時に、板厚精度を上げるための工程であり、合金組成により5〜10%の圧下率が望ましい。   The cold rolling process is a process for increasing the driving force of recrystallization by increasing the accumulated strain energy and at the same time increasing the sheet thickness accuracy, and a reduction ratio of 5 to 10% is desirable depending on the alloy composition.

上記工程を経たマグネシウム合金板には、常法と異なる特殊な熱処理を施す。急速短時間加熱焼鈍における昇温速度は10℃/秒以上とするのが望ましい。これはこの範囲で急速加熱することにより結晶粒細微化の効果があり、一方、10℃/秒未満では結晶粒が粗大となり、成形性が低下するためである。また、加熱温度は250〜450℃とするのが望ましい。これは250℃未満では全面再結晶が起こらず、一方、450℃超では結晶粒が粗大化し、成形性が低下するためである。さらに、上記温度に到達した後は、30秒以内に冷却するのが望ましい。これは30秒を超えて上記温度域に到達すると、結晶粒が粗大となり、成形性が低下するためである。なお、上記冷却過程では急冷(例えば強制空冷以上)するのが望ましく、少なくとも250℃に低下するまでは、10℃/秒以上の冷却速度で冷却するのが望ましい。   The magnesium alloy sheet that has undergone the above process is subjected to a special heat treatment different from the ordinary method. It is desirable that the rate of temperature increase in rapid and short heating annealing is 10 ° C./second or more. This is because rapid heating in this range has the effect of refining the crystal grains, while if it is less than 10 ° C./second, the crystal grains become coarse and the moldability deteriorates. The heating temperature is preferably 250 to 450 ° C. This is because recrystallization does not occur on the entire surface at temperatures lower than 250 ° C., whereas on the other hand, crystal grains become coarser and the moldability deteriorates when the temperature exceeds 450 ° C. Furthermore, it is desirable to cool within 30 seconds after reaching the above temperature. This is because when the temperature reaches the above temperature range for more than 30 seconds, the crystal grains become coarse and the moldability deteriorates. In the above cooling process, it is desirable to perform rapid cooling (for example, forced air cooling or more), and it is desirable to cool at a cooling rate of 10 ° C./second or more until the temperature decreases to at least 250 ° C.

こうした本発明のマグネシウム合金板の製造方法により、所望の厚さのマグネシウム合金板を極めて効率的に製造することができる。製造されるマグネシウム合金板は、従来材よりも高強度、高延性のものとなり、加温して絞り加工するに最適な状態を実現でき、難易度の高い部品形状の成形が可能となる。その結果、複雑な形状からなる電子部品ケース等の用途に好ましく適用することができる。   By such a method for producing a magnesium alloy plate of the present invention, a magnesium alloy plate having a desired thickness can be produced very efficiently. The manufactured magnesium alloy sheet has higher strength and higher ductility than the conventional material, can realize an optimum state for heating and drawing, and can form a highly difficult part shape. As a result, it can be preferably applied to applications such as an electronic component case having a complicated shape.

以下に、実施例と比較例によって本発明を更に詳しく説明する。
(実施例)
双ロール法により、表1に示す合金組成からなるマグネシウム合金溶湯から、厚さ5mmの帯状板を連続鋳造圧延した。得られた鋳造圧延板に450℃で8時間の均質化処理を施した後、一部は熱間圧延(圧延後板厚2.0mm)、温間圧延(圧延後板厚0.64mm)と冷間圧延により厚さ0.60mmの板とした。その後、昇温速度約20℃/秒の急速加熱により350℃まで加熱し、この温度で5秒保持し、強制空冷することにより本発明に係るマグネシウム合金板を得た(実施例1)。また、一部は上記と同様にして厚さ2mmまで熱間圧延し、次いで300℃で1時間の中間焼鈍を行った後、温間圧延(圧延後板厚0.64mm)と冷間圧延により厚さ0.60mmの板とし、その後上記と同条件の急速短時間加熱焼鈍することにより本発明に係るマグネシウム合金板を得た(実施例2)。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
(Example)
A strip-like plate having a thickness of 5 mm was continuously cast and rolled from a molten magnesium alloy having an alloy composition shown in Table 1 by a twin roll method. After subjecting the obtained cast and rolled plate to a homogenization treatment at 450 ° C. for 8 hours, a part thereof is hot-rolled (plate thickness after rolling 2.0 mm), warm-rolled (plate thickness after rolling 0.64 mm) A plate having a thickness of 0.60 mm was formed by cold rolling. Then, it heated to 350 degreeC by rapid heating with the temperature increase rate of about 20 degrees C / second, and hold | maintained at this temperature for 5 seconds, and obtained the magnesium alloy board which concerns on this invention by forced air cooling (Example 1). Also, a part is hot-rolled to a thickness of 2 mm in the same manner as described above, followed by intermediate annealing at 300 ° C. for 1 hour, followed by warm rolling (sheet thickness after rolling 0.64 mm) and cold rolling. A magnesium alloy plate according to the present invention was obtained by performing rapid and short-time heat annealing under the same conditions as described above (Example 2).

Figure 2006144059
Figure 2006144059

こうして得られたマグネシウム合金板を、長さ87mm×幅84mm×コーナーR10mmのプレス成形用の試験片に加工した。   The magnesium alloy plate thus obtained was processed into a test piece for press molding having a length of 87 mm, a width of 84 mm, and a corner R of 10 mm.

(比較例1)
実施例1に示した製造工程における最終焼鈍を350℃、1時間で行った以外は同条件にて供試材を作製した。
(Comparative Example 1)
A specimen was prepared under the same conditions except that the final annealing in the manufacturing process shown in Example 1 was performed at 350 ° C. for 1 hour.

(比較例2)
通常の溶解法により、表1に示す成分組成からなるマグネシウム合金を溶製し、厚さ60mmのスラブを作製した。このスラブを460℃に加熱した後、1パス当たり5〜30%の圧下率で厚さ30mmになるまで熱間圧延を行った。このときの熱間圧延においては、材料温度が400℃以上になるように維持させた。次に、熱間圧延された板材を研削した後、パス間に設けた加熱炉により、その板厚を340〜380℃の温度に維持させつつ圧延を行い、厚さ3mmの板材に加工した。さらに、温度200〜230℃、1パス当たりの圧下率2〜5%の温間圧延を繰り返し行い、厚さ0.60mmのマグネシウム合金板を得た。
こうして得られた比較例1、2のマグネシウム合金板に上記と同条件の急速短時間加熱焼鈍を施した後、長さ87mm×幅84mm×コーナーR10mmのプレス成形用の試験片に加工した。
(Comparative Example 2)
A magnesium alloy having a component composition shown in Table 1 was melted by a normal melting method to produce a slab having a thickness of 60 mm. The slab was heated to 460 ° C. and then hot-rolled at a reduction rate of 5 to 30% per pass until the thickness reached 30 mm. In the hot rolling at this time, the material temperature was maintained at 400 ° C. or higher. Next, after the hot-rolled plate material was ground, it was rolled by a heating furnace provided between passes while maintaining the plate thickness at a temperature of 340 to 380 ° C., and processed into a plate material having a thickness of 3 mm. Further, warm rolling at a temperature of 200 to 230 ° C. and a reduction rate of 2 to 5% per pass was repeated to obtain a magnesium alloy plate having a thickness of 0.60 mm.
The magnesium alloy plates of Comparative Examples 1 and 2 thus obtained were subjected to rapid and short-time heat annealing under the same conditions as described above, and then processed into a test piece for press molding of length 87 mm × width 84 mm × corner R 10 mm.

(プレス成形性の評価)
プレス成形性を評価するプレス成形型としては、0.2mmのコーナーRを有し且つその中心部分に深さ0.5mmのエンボス文字を成形品に形成できるエンボス成形部を有する、深さ7mmの角型のプレス成形型を用いた。
プレス成形については、上記のプレス成形型を使用し、上述の実施例および比較例であられたプレス成形用の試験試料を、表2に示す温度で所定時間保持した状態で、120mm/分のプレス速度でプレス成形した。なお、プレス成形用の試験試料の加温は、プレス成形型に埋め込んだ1kW×4本のヒーターによって行い、試験試料の表面に最も近い側のプレス成形型に埋め込んだ熱電対によって測定した。
プレス成形性は、加工量が最も大きくなるコーナー部分に割れが発生するか否かによって評価した。割れが発生しない場合には○とし、割れが発生した場合には×とした。その結果を表2に示した。
(Evaluation of press formability)
The press mold for evaluating press moldability has a corner R of 0.2 mm and an embossed part having a depth of 0.5 mm in the center of which can form an embossed character with a depth of 7 mm. A square press mold was used.
For press molding, a press mold of 120 mm / min was used, using the above-mentioned press mold and holding the test samples for press molding in the above-mentioned examples and comparative examples at the temperatures shown in Table 2 for a predetermined time. Press molded at speed. In addition, the heating of the test sample for press molding was performed by a 1 kW × 4 heater embedded in the press mold and was measured by a thermocouple embedded in the press mold closest to the surface of the test sample.
The press formability was evaluated based on whether or not cracking occurred at the corner portion where the processing amount was the largest. When the crack did not occur, it was marked as ◯, and when the crack occurred, it was marked as x. The results are shown in Table 2.

Figure 2006144059
Figure 2006144059

(評価結果)
表2の結果からも明らかなように、本発明のマグネシウム合金板の製造方法によって製造されたプレス成形用の試験試料(実施例1、2)は、加温した状態でプレス成形を行った際の割れの発生は見られなかった。一方、急速短時間加熱焼鈍を採用しなかったプレス成形用の試験材料(比較例1)と、従来のマグネシウム合金板の製造方法によって製造されたプレス成形用の試験試料(比較例2)は、加温した状態でプレス成形を行った際の割れの発生が見られた。
(Evaluation results)
As is clear from the results in Table 2, the test samples for press forming (Examples 1 and 2) manufactured by the method for manufacturing a magnesium alloy plate of the present invention were subjected to press forming in a heated state. There was no occurrence of cracking. On the other hand, a test material for press molding (Comparative Example 1) that did not employ rapid and short heating annealing, and a test sample for press molding (Comparative Example 2) manufactured by a conventional method for manufacturing a magnesium alloy plate, Generation of cracks was observed when press molding was performed in a heated state.

本発明の一実施形態の製造工程を示す図である。It is a figure which shows the manufacturing process of one Embodiment of this invention.

Claims (4)

質量%で、Al:1〜6.5%、Zn:0.2〜2.0%、Mn:0.1〜0.5%を含有し、残部がMgおよび不可避不純物からなる組成を有し、かつ結晶粒径が5μm以下であることを特徴とするプレス成形性に優れたマグネシウム合金板。   In mass%, Al: 1 to 6.5%, Zn: 0.2 to 2.0%, Mn: 0.1 to 0.5%, with the balance being composed of Mg and inevitable impurities And a magnesium alloy plate excellent in press formability, wherein the crystal grain size is 5 μm or less. 質量%で、Al:1〜6.5%、Zn:0.2〜2.0%、Mn:0.1〜0.5%を含有し、残部がMgおよび不可避不純物からなる組成を有するマグネシウム合金溶湯を板厚3〜10mmの帯状板に連続鋳造圧延した後、均質化熱処理を施し、その後、温間圧延または熱間および温間圧延をし、さらに冷間圧延をし、その後、急速短時間加熱焼鈍を行うことを特徴とするプレス成形性に優れたマグネシウム合金板の製造方法。   Magnesium containing Al: 1 to 6.5%, Zn: 0.2 to 2.0%, Mn: 0.1 to 0.5%, the balance being composed of Mg and inevitable impurities The molten alloy is continuously cast and rolled into a strip having a thickness of 3 to 10 mm, and then subjected to a homogenizing heat treatment, followed by warm rolling or hot and warm rolling, followed by cold rolling, and then rapid shortening. A method for producing a magnesium alloy plate excellent in press formability, characterized by performing time-heating annealing. 前記急速短時間加熱焼鈍は、10℃/秒の加熱速度で昇温させて250〜450℃で30秒以下保持するものであることを特徴とする請求項2記載のプレス成形性に優れたマグネシウム合金板の製造方法。   The magnesium having excellent press formability according to claim 2, wherein the rapid short-time heat annealing is performed by heating at a heating rate of 10 ° C / second and holding at 250 to 450 ° C for 30 seconds or less. Manufacturing method of alloy plate. 前記温間圧延または熱間および温間圧延工程途中に中間焼鈍工程を有することを特徴とする請求項2または3に記載のプレス成形性に優れたマグネシウム合金板の製造方法。   The method for producing a magnesium alloy sheet excellent in press formability according to claim 2 or 3, further comprising an intermediate annealing step in the middle of the warm rolling or hot and warm rolling steps.
JP2004334188A 2004-11-18 2004-11-18 Magnesium alloy plate excellent in press formability and manufacturing method thereof Expired - Fee Related JP4780601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334188A JP4780601B2 (en) 2004-11-18 2004-11-18 Magnesium alloy plate excellent in press formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334188A JP4780601B2 (en) 2004-11-18 2004-11-18 Magnesium alloy plate excellent in press formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006144059A true JP2006144059A (en) 2006-06-08
JP4780601B2 JP4780601B2 (en) 2011-09-28

Family

ID=36624103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334188A Expired - Fee Related JP4780601B2 (en) 2004-11-18 2004-11-18 Magnesium alloy plate excellent in press formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4780601B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069421A (en) * 2006-09-15 2008-03-27 Nachi Fujikoshi Corp Magnesium alloy for wrought product, sheet material for press forming made of the alloy, and its production method
JP2008163361A (en) * 2006-12-27 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
JP2008163402A (en) * 2006-12-28 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy thin sheet
JP2008163398A (en) * 2006-12-28 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy thin sheet
WO2009001516A1 (en) * 2007-06-28 2008-12-31 Sumitomo Electric Industries, Ltd. Magnesium alloy plate
KR100921118B1 (en) 2007-10-02 2009-10-12 현대자동차주식회사 Improving device magnesium board
JP2010070821A (en) * 2008-09-19 2010-04-02 Osaka Prefecture Univ Magnesium alloy sheet having excellent room temperature formability and method for treating magnesium alloy sheet
WO2010110505A1 (en) * 2009-03-23 2010-09-30 주식회사 지알로이테크놀로지 Magnesium-zinc based alloy materials having excellent high-speed formability at low temperature, and manufacturing method for alloy plate
WO2010150651A1 (en) * 2009-06-26 2010-12-29 住友電気工業株式会社 Magnesium alloy plate
WO2011004672A1 (en) * 2009-07-07 2011-01-13 住友電気工業株式会社 Magnesium alloy plate
US7879165B2 (en) 2005-03-28 2011-02-01 Sumitomo Electric Industries, Ltd. Method for producing magnesium alloy plate and magnesium alloy plate
KR101078308B1 (en) 2008-05-19 2011-10-31 포항공과대학교 산학협력단 Magnesium alloy panel having high strength and manufacturing method for the same
KR101170453B1 (en) * 2009-07-28 2012-08-07 한국기계연구원 The method for preparing of Al-Mg-Mn alloy strip using twin roll cast and Al-Mg-Mn alloy strip
CN103008346A (en) * 2012-12-26 2013-04-03 南京理工大学 Magnesium alloy polyhedral circulation rolling method
WO2014106989A1 (en) * 2013-01-04 2014-07-10 한국기계연구원 Method for manufacturing extruded magnesium alloy and extruded magnesium alloy manufactured thereby
JP2015004134A (en) * 2014-08-08 2015-01-08 住友電気工業株式会社 Magnesium alloy sheet, magnesium alloy member and method for producing magnesium alloy sheet
WO2018117632A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Magnesium alloy having excellent corrosion resistance and method for manufacturing same
CN110959046A (en) * 2017-07-10 2020-04-03 国立研究开发法人物质·材料研究机构 Magnesium-based alloy wrought material and method for producing same
CN112371847A (en) * 2020-10-23 2021-02-19 昆山智盛精密铸造有限公司 High-heat-dissipation alloy notebook computer shell forming die and production method
US11268178B2 (en) 2016-12-22 2022-03-08 Posco Magnesium alloy sheet and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266057A (en) * 2001-03-08 2002-09-18 Mitsubishi Alum Co Ltd Method for producing magnesium alloy sheet having excellent press formability
JP2003328063A (en) * 2002-05-10 2003-11-19 Toyo Kohan Co Ltd Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
JP2004107743A (en) * 2002-09-19 2004-04-08 Sumitomo Metal Ind Ltd Magnesium alloy sheet and its manufacturing method
WO2004076097A1 (en) * 2003-02-28 2004-09-10 Commonwealth Scientific And Industrial Research Organisation Magnesium alloy sheet and its production
JP2005281848A (en) * 2004-03-02 2005-10-13 Toyo Kohan Co Ltd Magnesium thin sheet for flattening having excellent formability, and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266057A (en) * 2001-03-08 2002-09-18 Mitsubishi Alum Co Ltd Method for producing magnesium alloy sheet having excellent press formability
JP2003328063A (en) * 2002-05-10 2003-11-19 Toyo Kohan Co Ltd Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
JP2004107743A (en) * 2002-09-19 2004-04-08 Sumitomo Metal Ind Ltd Magnesium alloy sheet and its manufacturing method
WO2004076097A1 (en) * 2003-02-28 2004-09-10 Commonwealth Scientific And Industrial Research Organisation Magnesium alloy sheet and its production
JP2005281848A (en) * 2004-03-02 2005-10-13 Toyo Kohan Co Ltd Magnesium thin sheet for flattening having excellent formability, and its production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中浦祐典他: "双ロール法によるAZ31マグネシウム合金板の特性", 軽金属学会大会講演概要, vol. 第105回, JPN6010025928, 11 November 2003 (2003-11-11), JP, pages 21 - 22, ISSN: 0001949141 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879165B2 (en) 2005-03-28 2011-02-01 Sumitomo Electric Industries, Ltd. Method for producing magnesium alloy plate and magnesium alloy plate
JP2008069421A (en) * 2006-09-15 2008-03-27 Nachi Fujikoshi Corp Magnesium alloy for wrought product, sheet material for press forming made of the alloy, and its production method
JP2008163361A (en) * 2006-12-27 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
JP2008163402A (en) * 2006-12-28 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy thin sheet
JP2008163398A (en) * 2006-12-28 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy thin sheet
JP2014080690A (en) * 2007-06-28 2014-05-08 Sumitomo Electric Ind Ltd Magnesium alloy sheet material, magnesium alloy molded body, and method for producing the magnesium alloy sheet material
JP2011214156A (en) * 2007-06-28 2011-10-27 Sumitomo Electric Ind Ltd Magnesium alloy plate
JPWO2009001516A1 (en) * 2007-06-28 2010-08-26 住友電気工業株式会社 Magnesium alloy sheet
US9499887B2 (en) 2007-06-28 2016-11-22 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
US8828158B2 (en) 2007-06-28 2014-09-09 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
WO2009001516A1 (en) * 2007-06-28 2008-12-31 Sumitomo Electric Industries, Ltd. Magnesium alloy plate
TWI427157B (en) * 2007-06-28 2014-02-21 Sumitomo Electric Industries Magnesium alloy plate material
JP2012041637A (en) * 2007-06-28 2012-03-01 Sumitomo Electric Ind Ltd Magnesium alloy sheet
JP4873078B2 (en) * 2007-06-28 2012-02-08 住友電気工業株式会社 Magnesium alloy sheet
AU2008268813B2 (en) * 2007-06-28 2011-08-04 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
CN102191418A (en) * 2007-06-28 2011-09-21 住友电气工业株式会社 Magnesium alloy plate, its manufacturing method, and worked member
JP2011214155A (en) * 2007-06-28 2011-10-27 Sumitomo Electric Ind Ltd Magnesium alloy plate
KR100921118B1 (en) 2007-10-02 2009-10-12 현대자동차주식회사 Improving device magnesium board
KR101078308B1 (en) 2008-05-19 2011-10-31 포항공과대학교 산학협력단 Magnesium alloy panel having high strength and manufacturing method for the same
JP2010070821A (en) * 2008-09-19 2010-04-02 Osaka Prefecture Univ Magnesium alloy sheet having excellent room temperature formability and method for treating magnesium alloy sheet
WO2010110505A1 (en) * 2009-03-23 2010-09-30 주식회사 지알로이테크놀로지 Magnesium-zinc based alloy materials having excellent high-speed formability at low temperature, and manufacturing method for alloy plate
JP2011006754A (en) * 2009-06-26 2011-01-13 Sumitomo Electric Ind Ltd Magnesium alloy sheet
WO2010150651A1 (en) * 2009-06-26 2010-12-29 住友電気工業株式会社 Magnesium alloy plate
US9334554B2 (en) 2009-07-07 2016-05-10 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
JP2011017041A (en) * 2009-07-07 2011-01-27 Sumitomo Electric Ind Ltd Magnesium alloy sheet
WO2011004672A1 (en) * 2009-07-07 2011-01-13 住友電気工業株式会社 Magnesium alloy plate
KR101170453B1 (en) * 2009-07-28 2012-08-07 한국기계연구원 The method for preparing of Al-Mg-Mn alloy strip using twin roll cast and Al-Mg-Mn alloy strip
CN103008346A (en) * 2012-12-26 2013-04-03 南京理工大学 Magnesium alloy polyhedral circulation rolling method
WO2014106989A1 (en) * 2013-01-04 2014-07-10 한국기계연구원 Method for manufacturing extruded magnesium alloy and extruded magnesium alloy manufactured thereby
JP2015004134A (en) * 2014-08-08 2015-01-08 住友電気工業株式会社 Magnesium alloy sheet, magnesium alloy member and method for producing magnesium alloy sheet
US11268178B2 (en) 2016-12-22 2022-03-08 Posco Magnesium alloy sheet and method for manufacturing same
WO2018117632A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Magnesium alloy having excellent corrosion resistance and method for manufacturing same
CN110959046A (en) * 2017-07-10 2020-04-03 国立研究开发法人物质·材料研究机构 Magnesium-based alloy wrought material and method for producing same
CN112371847A (en) * 2020-10-23 2021-02-19 昆山智盛精密铸造有限公司 High-heat-dissipation alloy notebook computer shell forming die and production method

Also Published As

Publication number Publication date
JP4780601B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4780601B2 (en) Magnesium alloy plate excellent in press formability and manufacturing method thereof
KR101455606B1 (en) Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet
JP6206322B2 (en) Aluminum alloy fin material for heat exchanger excellent in brazing and sag resistance and method for producing the same
JP5671422B2 (en) Method for producing high strength 7000 series aluminum alloy member and high strength 7000 series aluminum alloy member
JP5870791B2 (en) Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
JPWO2005056859A1 (en) Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP4476787B2 (en) Method for producing magnesium alloy sheet with excellent press formability
JP4780600B2 (en) Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof
CN100482834C (en) Easily-workable magnesium alloy and method for preparing same
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP4429877B2 (en) Method for producing magnesium alloy sheet having fine crystal grains
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2002266057A (en) Method for producing magnesium alloy sheet having excellent press formability
JP2006037139A (en) 6000 series aluminum alloy sheet for superplastic forming having excellent paint baking hardenability and its production method
KR20150042099A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
JP3867569B2 (en) Aluminum foil for containers and manufacturing method thereof
KR20160091863A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
KR20160012231A (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP6335745B2 (en) High strength aluminum alloy plate excellent in formability and method for producing the same
JP2004315913A (en) Aluminum alloy sheet for high temperature forming, and method of producing aluminum alloy panel
JP3835707B2 (en) Method for producing Al-Mg alloy plate for forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees