JPH03267337A - Hydrogen occlusion ni-zr alloy - Google Patents

Hydrogen occlusion ni-zr alloy

Info

Publication number
JPH03267337A
JPH03267337A JP2066173A JP6617390A JPH03267337A JP H03267337 A JPH03267337 A JP H03267337A JP 2066173 A JP2066173 A JP 2066173A JP 6617390 A JP6617390 A JP 6617390A JP H03267337 A JPH03267337 A JP H03267337A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
hydrogen
storage battery
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2066173A
Other languages
Japanese (ja)
Other versions
JP2762663B2 (en
Inventor
Hidekazu Doi
土井 英和
Tatsumori Yabuki
矢吹 立衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2066173A priority Critical patent/JP2762663B2/en
Publication of JPH03267337A publication Critical patent/JPH03267337A/en
Application granted granted Critical
Publication of JP2762663B2 publication Critical patent/JP2762663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make improvement in the corrosion resistance and durability in an alkaline electrolyte by specifying the contents of Zr, Ti, Mn, Fe, Co, and W in an Ni alloy and forming the alloy of an MgZn2 type crystal structure. CONSTITUTION:The hydrogen occlusion alloy is formed of the compsn. consisting, by weight %, of 10 to 37% Zr, 5 to 30% Ti, 5 to 30% Mn, 1 to 30% Fe, 0.5 to 20% Co, 0.01 to 15% W, and the balance Ni and unavoidable impurities and is made to have the MgZn2 type crystal structure. If necessary, 0.1 to 16% Cu and 0.05 to 10% Cr are incorporated therein. If this hydrogen occlusion alloy is used as a negative polarity active material of a hermetic type Ni-hydrogen storage battery, the storage battery having a high capacity is obtd. and the drop of the capacity in the case of repetition of charging and discharging cycles is low.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、M g Z n 2型結晶構造、すなわち
六方晶C14型結晶構造をもち、特に密閉型Ni水素蓄
電池の負極活物質として用いるのに適した水素吸蔵Ni
−Zr系合金に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to MgZn having a 2-type crystal structure, that is, a hexagonal C14-type crystal structure, and which is particularly suitable for use as a negative electrode active material of a sealed Ni-hydrogen storage battery. Hydrogen storage Ni suitable for
-This relates to Zr-based alloys.

〔従来の技術〕[Conventional technology]

一般に、密閉型Ni  −水素蓄電池が、水素吸蔵合金
を活物質として用いてなる負極と、Nl正極と、さらに
セパレータおよびアルカリ電解液で構成され、かつ前記
負極を構成する水素吸蔵合金には、 (a)  室温付近での水素吸蔵・放出能が大きい。
In general, a sealed Ni-hydrogen storage battery is composed of a negative electrode using a hydrogen storage alloy as an active material, an Nl positive electrode, a separator, and an alkaline electrolyte, and the hydrogen storage alloy constituting the negative electrode includes: a) High hydrogen absorption and release ability near room temperature.

(b)  PCT曲線における室温付近の温度でのプラ
トー圧に相当する平衡水素解離圧が比較的低い(5気圧
以下)。
(b) The equilibrium hydrogen dissociation pressure corresponding to the plateau pressure at a temperature near room temperature in the PCT curve is relatively low (5 atm or less).

(C)  アルカリ電解液中で耐食性および耐久性(耐
劣化性)がある。
(C) Corrosion resistance and durability (deterioration resistance) in alkaline electrolytes.

(d)  水素酸化能(触媒作用)が大きい。(d) High hydrogen oxidation ability (catalytic action).

(e)  水素の吸蔵・放出の繰返しに伴う微粉化が起
り難い。
(e) Pulverization due to repeated absorption and release of hydrogen is unlikely to occur.

(f)  無(低)公害である。(f) No (low) pollution.

(g)  低コストである。(g) It is low cost.

以上(a)〜(g)の性質を具備することが望まれ、さ
らにこのような性質を具備した水素吸蔵合金を負極の活
物質として用いてなる密閉型Ni  −水素蓄電池は、
大きな放電容量、長い充・放電サイクル寿命、すぐれた
急速光・放電特性、および低自己放電などの好ましい性
能を発揮するようになることも良く知られるところであ
る。
A sealed Ni-hydrogen storage battery is desired to have the properties (a) to (g) above, and further uses a hydrogen storage alloy having such properties as the active material of the negative electrode.
It is also well known that they exhibit favorable performances such as large discharge capacity, long charge/discharge cycle life, excellent rapid light/discharge characteristics, and low self-discharge.

したがって、特に密閉型NI  −水素蓄電池の負極を
構成する活物質として用いるのに適した水素吸蔵合金の
開発が盛んに行なわれ、例えば特開昭61〜45563
号公報に記載されるM g Z n Z型結晶構造、す
なわち六方晶C14型結晶構造をもった水素吸蔵合金は
じめ、多数の水素吸蔵合金が提案されている。
Therefore, the development of hydrogen storage alloys particularly suitable for use as active materials constituting the negative electrode of sealed NI-hydrogen storage batteries has been actively carried out.
A large number of hydrogen storage alloys have been proposed, including a hydrogen storage alloy having a M g Z n Z type crystal structure, that is, a hexagonal C14 type crystal structure, described in the above publication.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、すでに提案されているいずれの水素吸蔵合金も
密閉型Ni  −水素蓄電池の負極活物質として用いる
場合に要求される上記の性質をすべて満足して具備する
ものではなく、より一層の開発か望まれているのか現状
である。
However, none of the hydrogen storage alloys that have already been proposed satisfies all of the above properties required for use as negative electrode active materials in sealed Ni-hydrogen storage batteries, and further development is desired. This is the current situation.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、特に密
閉型Ni  −水素蓄電池の負極活物質として用いるの
に適した水素吸蔵合金を開発すべく研究を行なった結果
、重量%で(以下%は重量%を示す)、 Zr:10〜37%、  Ti:5〜30%、Mn :
 5〜30%、  Fe:1〜30%、Co : 0.
5〜20%、 W:O,01〜15%、を含有し、さら
に必要に応じて、 Cu : 0.1〜16%、 Cr : 0.05〜1
0%、を含有し、残りがNiと不可避不純物からなる組
成を有する水素吸蔵Ni −Zr系合金は、M g Z
 n 2型結晶構造(六方晶C14型結晶構造)をもち
、密閉型Ni−  −水素蓄電池の負極活物質として用
いる場合に要求される上記(a)〜(g)の性質を十分
満足した状態で具備し、したがってこれを負極活物質と
して用いた密閉型Ni  −水素蓄電池は、大きなエネ
ルギー密度と電気容量をもち、かつ長いサイクル寿命を
示すようになるほか、自己放電が小さくなり、さらに高
率光・放電特性にもすぐれ、無公害および低コストと合
わせて、すぐれた性能を発揮するようになるという研究
結果を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a hydrogen storage alloy particularly suitable for use as a negative electrode active material of a sealed Ni-hydrogen storage battery. % indicates weight%), Zr: 10-37%, Ti: 5-30%, Mn:
5-30%, Fe: 1-30%, Co: 0.
5 to 20%, W: O, 01 to 15%, and if necessary, Cu: 0.1 to 16%, Cr: 0.05 to 1
The hydrogen-absorbing Ni-Zr alloy has a composition of 0%, and the remainder consists of Ni and unavoidable impurities.
n 2 type crystal structure (hexagonal C14 type crystal structure) and fully satisfies the above properties (a) to (g) required when used as a negative electrode active material of a sealed Ni-hydrogen storage battery. Therefore, a sealed Ni-hydrogen storage battery using this as the negative electrode active material has large energy density and electric capacity, and has a long cycle life.・Research results have shown that it has excellent discharge characteristics, is non-polluting, and low cost, and exhibits excellent performance.

この発明は、上記研究結果にもとづいてなされたもので
あって、以下に上記水素吸蔵Ni−Zr系合金の成分組
成を上記の通りに限定した理由を説明する。
This invention has been made based on the above research results, and the reason why the composition of the hydrogen storage Ni-Zr alloy is limited as described above will be explained below.

(a)  ZrおよびTi これらの成分には、共存した状態で合金に望ましい水素
吸蔵・放出特性を具備せしめると共に、室温における平
衡水素解離圧(プラトー圧)を、例えば5気圧以下に低
下させる作用があるが、その含有量がそれぞれZr:1
0%未満およびT1:5%未満では前記作用に所望の効
果が得られず、一方Zrの含有量が37%を越えると、
放電容量の水素解離圧依存の点では問題はないが、水素
吸蔵・放出能が低下するようになり、またTiの含有量
が30%を越えると、平衡水素解離圧が例えば5気圧以
上に上昇するようになり、大きな放電容量を確保するた
めには高い水素解離圧を必要とするようになって蓄電池
として好ましくないものとなることから、その含有量を
、それぞれZr:10〜37%、TI:5〜30%と定
めた。
(a) Zr and Ti These components, when coexisting, provide the alloy with desirable hydrogen storage and desorption properties, and also have the effect of lowering the equilibrium hydrogen dissociation pressure (plateau pressure) at room temperature to, for example, 5 atm or less. However, the content is Zr:1
If the Zr content is less than 0% and T1:5%, the desired effect cannot be obtained, while if the Zr content exceeds 37%,
There is no problem in terms of the dependence of the discharge capacity on the hydrogen dissociation pressure, but the hydrogen storage and desorption capacity begins to decline, and when the Ti content exceeds 30%, the equilibrium hydrogen dissociation pressure increases to, for example, 5 atm or more. In order to ensure a large discharge capacity, a high hydrogen dissociation pressure is required, making it undesirable as a storage battery. : 5 to 30%.

(b)  Mn Mn成分には、水素吸蔵・放出能を向上させ、かつアル
カリ電解液中での合金の耐食性および耐久性を向上させ
るほか、蓄電池の負極活物質として用いた場合に自己放
電を抑制する作用があるが、その含有量が5%未満では
前記作用に所望の効果が得られず、一方その含有量が3
0%を越えると、水素吸蔵・放出特性が損なわれるよう
になることから、その含有量を5〜30%と定めた。
(b) Mn The Mn component not only improves hydrogen storage and release ability, but also improves the corrosion resistance and durability of the alloy in alkaline electrolytes, and suppresses self-discharge when used as a negative electrode active material in storage batteries. However, if its content is less than 5%, the desired effect cannot be obtained; on the other hand, if its content is less than 3%,
If it exceeds 0%, the hydrogen storage and release characteristics will be impaired, so the content was set at 5 to 30%.

(c)  Fe Fe成分には、水素化物を一段と安定化し、もって蓄電
池性能の安定化に寄与する作用があるほか、Niの一部
代替成分として用いてもNiによってもたらされる作用
効果が損なわれることがないので、経済性を考慮して含
有されるが、その含有量が1%未満では前記作用に所望
の効果か得られず、一方その含有量が30%を越えると
、水素吸蔵能が低下するようになることから、その含有
量を1〜30%と定めた。
(c) Fe The Fe component has the effect of further stabilizing the hydride, thereby contributing to the stabilization of storage battery performance, and even if it is used as a partial substitute for Ni, the effects brought about by Ni will be impaired. However, if the content is less than 1%, the desired effect will not be obtained, while if the content exceeds 30%, the hydrogen storage capacity will decrease. Therefore, its content was set at 1 to 30%.

(d)  C。(d) C.

Co成分には、水素吸蔵能を一段と増大させ、もってN
i  −水素蓄電池の負極活物質として用いた場合に放
電容量を増加させて、その使用寿命の著しい延命化に寄
与する作用があるが、その含有量が0.5%未満では前
記作用に所望の効果が得られず、一方その含有量が20
%を越えても前記作用により一層の向上効果が見られな
いことから、経済性を考慮して、その含有量を0.5〜
20%と定めた。
The Co component further increases hydrogen storage capacity and
When used as a negative electrode active material in i-hydrogen storage batteries, it has the effect of increasing the discharge capacity and significantly extending its service life, but if its content is less than 0.5%, the desired effect may not be achieved. No effect was obtained, while the content was 20
Even if the content exceeds 0.5%, no further improvement effect is observed due to the above action.
It was set at 20%.

(e)  W W成分には、アルカリ電解液中での合金の耐食性を一段
と向上させると共に、耐久性も向上させ、さらに蓄電池
の負極活物質としての実用に際して自己放電を抑制する
作用があるが、その含有量が0.01%未満では前記作
用に所望の効果が得られず、一方、その含有量が15%
を越えると、水素吸蔵・放出特性が損なわれるようにな
ることから、その含有量をQ、0l−15%と定めた。
(e) W The W component has the effect of further improving the corrosion resistance of the alloy in an alkaline electrolyte, improving durability, and suppressing self-discharge when used as a negative electrode active material for storage batteries. If its content is less than 0.01%, the desired effect cannot be obtained; on the other hand, if its content is less than 15%
If it exceeds this, the hydrogen storage and desorption properties will be impaired, so the content was set as Q, 0l-15%.

(f’)  Cu Cu成分には、水素吸蔵・放出量の増大および平衡水素
圧の適正化を一段と促進する作用があるので、必要に応
じて含有されるが、その含有量が0.1%未満では前記
作用に所望の向上効果が得られず、一方その含有量が1
6%を越えると、水素吸蔵・放出量の低下を招き、放電
容量が低下するようになることから、その含有量を0.
1〜16%と定めた。
(f') Cu The Cu component has the effect of further promoting an increase in the amount of hydrogen storage and release and optimization of the equilibrium hydrogen pressure, so it is included as necessary, but the content is 0.1%. If the content is less than 1, the desired effect of improving the above action cannot be obtained;
If it exceeds 6%, the amount of hydrogen absorbed and released will decrease, and the discharge capacity will decrease, so the content should be reduced to 0.
It was set at 1 to 16%.

(g)  Cr Cr成分には、水素吸蔵・放出能を低下させることなく
、アルカリ電解液中での耐食性を一段と向上させる作用
があるので、必要に応じて含有されるが、その含有量が
0,05%未満では前記作用に所望の向上効果が得られ
ず、一方その含有量が10%を越えると、水素吸蔵・放
出能が低下するようになることから、その含有量を0.
05〜10%と定めた。
(g) Cr The Cr component has the effect of further improving corrosion resistance in an alkaline electrolyte without reducing the hydrogen absorption/desorption ability, so it is included as necessary, but if the content is 0. If the content is less than 0.05%, the desired effect of improving the above-mentioned action cannot be obtained, while if the content exceeds 10%, the hydrogen storage and desorption ability will decrease, so the content is reduced to 0.05%.
It was set at 0.05 to 10%.

〔実 施 例〕〔Example〕

つぎに、この発明の水素吸蔵Ni−−Zr系合金を実施
例により具体的に説明する。
Next, the hydrogen storage Ni--Zr alloy of the present invention will be specifically explained with reference to Examples.

通常の高周波誘導溶解炉を用い、Ar雰囲気中にてそれ
ぞれ第1表に示される成分組成をもったNi −Zr系
合金溶湯を調製し、銅鋳型に鋳造してインゴットとした
後、このインゴットをAr雰囲気中、900〜1000
℃の範囲内の所定温度に5時間保持の条件で焼鈍し、つ
いでショークラッシャを用い、粗粉砕して直径二2m+
s以下の粗粒とし、さらにボールミルを用いて微粉砕し
て350mesh以下の粒度とすることによりいずれも
MgZn2型結晶構造をもった本発明水素吸蔵合金1〜
23、比較水素吸蔵合金1〜10、および従来水素吸蔵
合金をそれぞれ製造した。
Molten Ni-Zr alloys having the compositions shown in Table 1 are prepared in an Ar atmosphere using an ordinary high-frequency induction melting furnace, and cast into a copper mold to form an ingot. In Ar atmosphere, 900-1000
Annealed at a predetermined temperature within the range of °C for 5 hours, then coarsely crushed using a show crusher to give a diameter of 22m+.
Hydrogen storage alloys 1 to 1 of the present invention each have a MgZn2 type crystal structure by forming coarse particles of s or less and further finely pulverizing them using a ball mill to obtain a particle size of 350 mesh or less.
No. 23, comparative hydrogen storage alloys 1 to 10, and conventional hydrogen storage alloys were manufactured, respectively.

ついで、この結果得られた各種の粉末状水素吸蔵合金を
活物質として用い、ます、これにポリビニールアルコー
ル(PVA)の2%水溶液を添加してペースト化した後
、95%の多孔度を有する市販のNiウィスカー不織布
に充填し、乾燥し、さらに加圧して、平面寸法+ 42
mm X 35m+eにして、厚さ: 0.6C1〜0
,65mmの形状(活物質充填M:約2.8g)とし、
これの−辺にリードとなるNi薄板を溶接により取付け
て負極を製造し、一方正極として同寸法のNi焼結板を
2枚用意し、これを前記負極の両側に配置し、30%K
OH水溶液を装入することにより密閉型Ni  −水素
蓄電池を製造した。
Next, various powdered hydrogen storage alloys obtained as a result are used as active materials, and a 2% aqueous solution of polyvinyl alcohol (PVA) is added thereto to form a paste, which has a porosity of 95%. It is filled into a commercially available Ni whisker nonwoven fabric, dried, and further pressurized to achieve a planar dimension of +42
mm x 35m+e, thickness: 0.6C1~0
, 65 mm in shape (active material filling M: about 2.8 g),
A thin Ni plate serving as a lead is attached to the negative side of this by welding to produce a negative electrode, while two Ni sintered plates of the same size are prepared as positive electrodes and placed on both sides of the negative electrode.
A sealed Ni-hydrogen storage battery was manufactured by charging an OH aqueous solution.

なお、この結果得られた各種の蓄電池を、いずれも開放
電池とし、かつ正極の容量を負極の容量より著しく大き
くすることにより負極の容量を測定し易くした。
The various storage batteries obtained as a result were all open batteries, and the capacity of the positive electrode was made significantly larger than the capacity of the negative electrode, thereby making it easier to measure the capacity of the negative electrode.

また、上記比較水素吸蔵合金1〜lOは、いずれも構成
成分のうちのいずれかの成分含有量(第1表に※印を付
す)かこの発明の範囲から外れた組成をもつものである
In addition, the comparative hydrogen storage alloys 1 to 1O all have the content of one of the constituent components (marked with * in Table 1) or have a composition outside the scope of the present invention.

つぎに、これらの各種の蓄電池について、充放電速度:
0.2C1充電電気量:負極容量の130%の条件で充
・放電試験を行い、1回の充電と放電を1サイクルとし
、120サイクル後、240サイクル後、および360
サイクル後における放電容量をそれぞれ測定した。
Next, for these various storage batteries, the charging and discharging speed:
0.2C1 charge electricity amount: A charge/discharge test was conducted under the condition of 130% of the negative electrode capacity, one charge and discharge was considered as one cycle, and after 120 cycles, 240 cycles, and 360 cycles.
The discharge capacity after each cycle was measured.

また、さらに第1表に示される組成をもった各種の粉末
状水素吸蔵合金を用い、平面サイズを90mm+X40
mm、厚さ: 0.60〜0.65mmとして、容量=
1450〜1500mAh(活物質充填量:約6g)と
する以外は、上記の充・放電試験で用いた蓄電池の負極
板と同一の条件で負極板を製造し、一方正極板は、95
%の多孔度を有するNiウィスカー不織布に水酸化ニッ
ケルCN ] (OH) 2 ]を活物質として充填し
、乾燥し、さらにプレス加工した後、リードを取付けて
、平面寸法+ 70+n+a X 40+n+a、厚さ
二〇、65〜0.70mmの形状(容ffi : 10
00〜1050105Oとすることにより製造し、この
結果得られた負極板と正極板を、セパレータを介してう
す巻き状にした状態で、電解液と共にケース(これはe
端子と兼用)の中に収容した構造の密閉型Ni  −水
素蓄電池とした。なお、この蓄電池においては、正極容
量より負極容量を大きくして正極律則の蓄電池を構成し
た。
In addition, various powdered hydrogen storage alloys having the compositions shown in Table 1 were used, and the planar size was 90 mm + x 40 mm.
mm, thickness: 0.60 to 0.65 mm, capacity =
The negative electrode plate was manufactured under the same conditions as the negative electrode plate of the storage battery used in the above charging/discharging test, except that it was 1450 to 1500 mAh (active material filling amount: approximately 6 g), while the positive electrode plate was manufactured under the same conditions as the negative electrode plate of the storage battery used in the above charge/discharge test.
A Ni whisker nonwoven fabric with a porosity of 20. Shape of 65-0.70 mm (volume ffi: 10
00 to 1050105O, and the resulting negative and positive electrode plates are thinly wound with a separator in between and placed in a case (this is e
This is a sealed Ni-Hydrogen storage battery that is housed in a terminal (also used as a terminal). In addition, in this storage battery, the negative electrode capacity was made larger than the positive electrode capacity to constitute a positive electrode regulation storage battery.

また、これらの蓄電池に対する自己放電試験は、まず室
温で0.2C(200mA)で7時間充電し、ついで蓄
電池を45℃に温度セットしである恒温槽中に開路状態
(電池に負荷をかけない状態)で、1週問および2週間
放置し、放置後、とり出して、室温で0.2C(200
mA)放電を行ない、容量残存率を求めることにより行
なった。
In addition, in the self-discharge test for these storage batteries, first charge them at room temperature for 7 hours at 0.2C (200mA), then set the temperature of the storage battery at 45℃ and place it in a thermostatic oven in an open circuit state (no load is applied to the battery). condition) for one week and two weeks, then take it out and heat it at room temperature at 0.2C (200℃).
This was performed by discharging (mA) and determining the capacity remaining rate.

さらに、同じく第1表に示される成分組成をもった各種
の水素吸蔵合金について、一般にI u e Y試験と
呼ばれている方法を用い、試験片を上記のインゴットよ
り切り出してプラスチック樹脂に埋め込み、腐食面をエ
メリーペーパー#600て研磨仕上げした状態で、コー
ルドフィンガー型コンデンサー付三角フラスコに装入し
、沸騰した30%KOH水溶液中に240時間保持の条
件でアルカリ電解液腐食試験を行ない、試験後の腐食減
量を測定した。これらの測定結果を第1表に示した。
Furthermore, for various hydrogen storage alloys having the compositions shown in Table 1, test pieces were cut out from the above ingot and embedded in plastic resin using a method generally called the I u e Y test. After polishing the corroded surface with #600 emery paper, the sample was placed in a cold finger type condenser-equipped Erlenmeyer flask and subjected to an alkaline electrolyte corrosion test under the condition of being held in a boiling 30% KOH aqueous solution for 240 hours. The corrosion loss was measured. The results of these measurements are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明水素吸蔵合金1〜2
3は、いずれも従来水素吸蔵合金に比して、アルカリ電
解液に対してすぐれた耐食性を示し、さらにこれを密閉
型Ni− −水素蓄電池の負極活物質として用いた場合
、蓄電池は高容量をもつようになり、従来水素吸蔵合金
を用いた蓄電池に比して充・放電サイクルを縁り返した
場合の容量低下か著しく小さいという好ましい結果を示
すことが明らかであり、一方比較水素吸蔵合金1〜10
に見られるように、構成成分のうちのいずれかの成分含
有量でもこの発明の範囲から外れると、本発明水素吸蔵
合金に比して、アルカリ電解液に対する耐食性、並びに
これを蓄電池の負極活物質として用いた場合の蓄電池の
放電容量および自己放電のうちの少なくともいずれかの
特性か劣ったものになることか明らかである。
From the results shown in Table 1, hydrogen storage alloys 1 to 2 of the present invention
All of No. 3 exhibited superior corrosion resistance against alkaline electrolytes compared to conventional hydrogen storage alloys, and furthermore, when used as the negative electrode active material of a sealed Ni-hydrogen storage battery, the storage battery had a high capacity. It is clear that compared to storage batteries using conventional hydrogen storage alloys, the capacity decrease is significantly smaller when charging and discharging cycles are repeated, which is a favorable result. ~10
As can be seen in the figure, if the content of any of the constituent components is outside the scope of the present invention, the corrosion resistance to alkaline electrolytes and the corrosion resistance of the hydrogen storage alloy of the present invention may be lower than that of the hydrogen storage alloy of the present invention. It is clear that when used as a storage battery, at least one of the discharge capacity and self-discharge characteristics of the storage battery will be inferior.

上述のように、この発明の水素吸蔵Ni−Zr系合金は
、アルカリ電解液に対する耐食性にすぐれているほか、
特に密閉型Ni  −水素蓄電池の負極活物質として用
いた場合に、負極活物質に要求される特性をすべて十分
満足する状態で具備しているので、蓄電池の自己放電か
著しく低減し、さらに長いサイクル寿命に亘って大きな
放電容量が確保されるようになるなど工業上有用な特性
を有するのである。
As mentioned above, the hydrogen-absorbing Ni-Zr alloy of the present invention has excellent corrosion resistance against alkaline electrolytes, and
In particular, when used as a negative electrode active material in a sealed Ni-Hydrogen storage battery, it fully satisfies all the characteristics required for a negative electrode active material, significantly reducing self-discharge of the storage battery and further extending the cycle time. It has industrially useful characteristics such as ensuring a large discharge capacity over its lifetime.

Claims (4)

【特許請求の範囲】[Claims] (1)Zr:10〜37%、Ti:5〜30%、Mn:
5〜30%、Fe:1〜30%、 Co:0.5〜20%、W:0.01〜15%、を含有
し、残りがNiと不可避不純物からなる組成(以上重量
%)を有することを特徴とするMgZn_2型結晶構造
をもった水素吸蔵Ni−Zr系合金。
(1) Zr: 10-37%, Ti: 5-30%, Mn:
5 to 30%, Fe: 1 to 30%, Co: 0.5 to 20%, W: 0.01 to 15%, and the remainder is Ni and inevitable impurities (weight %). A hydrogen-absorbing Ni-Zr alloy having a MgZn_2 type crystal structure.
(2)Zr:10〜37%、Ti:5〜30%、Mn:
5〜30%、Fe:1〜30%、 Co:0.5〜20%、W:0.01〜15%、を含有
し、さらに、 Cu:0.1〜16%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(2) Zr: 10-37%, Ti: 5-30%, Mn:
5 to 30%, Fe: 1 to 30%, Co: 0.5 to 20%, W: 0.01 to 15%, further contains Cu: 0.1 to 16%, and the remainder 1. A hydrogen-absorbing Ni-Zr alloy having a MgZn_2 type crystal structure, characterized in that it has a composition (the above weight %) consisting of Ni and unavoidable impurities.
(3)Zr:10〜37%、Ti:5〜30%、Mn:
5〜30%、Fe:1〜30%、 Co:0.5〜5%、W:0.01〜15%、を含有し
、さらに、 Cr:0.05〜10%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(3) Zr: 10-37%, Ti: 5-30%, Mn:
5 to 30%, Fe: 1 to 30%, Co: 0.5 to 5%, W: 0.01 to 15%, further contains Cr: 0.05 to 10%, and the remainder 1. A hydrogen-absorbing Ni-Zr alloy having a MgZn_2 type crystal structure, characterized in that it has a composition (the above weight %) consisting of Ni and unavoidable impurities.
(4)Zr:10〜37%、Ti:5〜30%、Mn:
5〜30%、Fe:1〜30%、 Co:0.5〜20%、W:0.01〜15%、を含有
し、さらに、 Cu:0.1〜16%、Cr:0.05〜10%、を含
有し、残りがNiと不可避不純物からなる組成(以上重
量%)を有することを特徴とするMgZn_2型結晶構
造をもった水素吸蔵Ni−Zr系合金。
(4) Zr: 10-37%, Ti: 5-30%, Mn:
5-30%, Fe: 1-30%, Co: 0.5-20%, W: 0.01-15%, further Cu: 0.1-16%, Cr: 0.05 A hydrogen-absorbing Ni-Zr alloy having a MgZn_2 type crystal structure, characterized in that it contains 10% of MgZn_2 type crystal structure, and the remainder consists of Ni and unavoidable impurities (weight%).
JP2066173A 1990-03-16 1990-03-16 Hydrogen storage Ni-Zr alloy Expired - Lifetime JP2762663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2066173A JP2762663B2 (en) 1990-03-16 1990-03-16 Hydrogen storage Ni-Zr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2066173A JP2762663B2 (en) 1990-03-16 1990-03-16 Hydrogen storage Ni-Zr alloy

Publications (2)

Publication Number Publication Date
JPH03267337A true JPH03267337A (en) 1991-11-28
JP2762663B2 JP2762663B2 (en) 1998-06-04

Family

ID=13308191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2066173A Expired - Lifetime JP2762663B2 (en) 1990-03-16 1990-03-16 Hydrogen storage Ni-Zr alloy

Country Status (1)

Country Link
JP (1) JP2762663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216591A (en) * 2017-07-06 2019-01-15 日立金属株式会社 Battery Ni material, cathode and battery shell material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216591A (en) * 2017-07-06 2019-01-15 日立金属株式会社 Battery Ni material, cathode and battery shell material
CN109216591B (en) * 2017-07-06 2022-02-01 日立金属株式会社 Ni material for battery, negative electrode and battery case material

Also Published As

Publication number Publication date
JP2762663B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP2805994B2 (en) Hydrogen storage Ni-Zr alloy
JP2762715B2 (en) Hydrogen storage Ni-Zr alloy
JPH03267337A (en) Hydrogen occlusion ni-zr alloy
JP2762717B2 (en) Hydrogen storage Ni-Zr alloy
JPH01290742A (en) Closed alkali storage battery
JP2762699B2 (en) Hydrogen storage Ni-Zr alloy
JP2762668B2 (en) Hydrogen storage Ni-Zr alloy
JP2762669B2 (en) Hydrogen storage Ni-Zr alloy
JP2806013B2 (en) Hydrogen storage Ni-Zr alloy
JP2762667B2 (en) Hydrogen storage Ni-Zr alloy
JPH03267336A (en) Hydrogen occlusion ni-zr alloy
JP2806011B2 (en) Hydrogen storage Ni-Zr alloy
JP2762713B2 (en) Hydrogen storage Ni-Zr alloy
JP2847931B2 (en) Hydrogen storage Ni-Zr alloy
JPH02194140A (en) Hydrogen storage ni-based alloy and closed ni-hydrogen battery
JP2762701B2 (en) Hydrogen storage Ni-Zr alloy
JP2762714B2 (en) Hydrogen storage Ni-Zr alloy
JP2806012B2 (en) Hydrogen storage Ni-Zr alloy
JPH0426735A (en) Hydrogen storage ni-zr series alloy
JP2762700B2 (en) Hydrogen storage Ni-Zr alloy
JP2762671B2 (en) Hydrogen storage Ni-Zr alloy
JP2806010B2 (en) Hydrogen storage Ni-Zr alloy
JPH02277738A (en) Ni-zr hydrogen storage alloy and hermetically sealed-type ni-hydrogen storage battery
JPH02263944A (en) Hydrogen storage ni-zr series alloy and closed-type ni-hydrogen storage battery
JPH02277739A (en) Ni-zr hydrogen storage alloy and hermetically sealed-type ni-hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

EXPY Cancellation because of completion of term