JPH0426735A - Hydrogen storage ni-zr series alloy - Google Patents

Hydrogen storage ni-zr series alloy

Info

Publication number
JPH0426735A
JPH0426735A JP2132253A JP13225390A JPH0426735A JP H0426735 A JPH0426735 A JP H0426735A JP 2132253 A JP2132253 A JP 2132253A JP 13225390 A JP13225390 A JP 13225390A JP H0426735 A JPH0426735 A JP H0426735A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
alloy
capacity
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2132253A
Other languages
Japanese (ja)
Other versions
JP2762702B2 (en
Inventor
Hidekazu Doi
土井 英和
Tatsumori Yabuki
矢吹 立衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2132253A priority Critical patent/JP2762702B2/en
Publication of JPH0426735A publication Critical patent/JPH0426735A/en
Application granted granted Critical
Publication of JP2762702B2 publication Critical patent/JP2762702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a hydrogen storage Ni-Zr series alloy having an MgZn2 type crystalline structure and excellent in corrosion resistance in an alkaline electrolyte and hydrogen occluding capacity by specifying the compsn. constituted of Zr, Ti, Mn, Fe, Co, V, Al, W and Ni. CONSTITUTION:This is a hydrogen storage Ni-Zr series allay having a compsn. contg., by weight, 10 to 37% Zr, 5 to 25% Ti, 4 to 20% Mn, 0.01 to 5% Fe, 0.5 to 20% Co, 0.1 to 15% V, 0.01 to 4.5% Al and 0.01 to 13% W, furthermore contg., at need, 1 to 7% Cu and/or 0.06 to 6% Cr and the balance Ni with inevitable impurities and having an MgZn2 type crystalline structure. The alloy is excellent in capacity and corrosion resistance in an alkaline electrolyte and is suitable particularly for the use as the negative active substance of a closed type Ni-hydrogen storage battery.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、M g Z n 2型結晶構造、すなわち
六方晶CI4型結晶構造をもち、特に密閉型N1水素蓄
電池の負極活物質として用いるのに適した水素吸蔵Ni
−Zr系合金に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention has a M g Z n type 2 crystal structure, that is, a hexagonal CI4 type crystal structure, and is particularly suitable for use as a negative electrode active material of a sealed N1 hydrogen storage battery. Hydrogen storage Ni suitable for
-This relates to Zr-based alloys.

〔従来の技術〕[Conventional technology]

一般に、密閉型N1−水素蓄電池が、水素吸蔵合金を活
物質として用いてなる負極と、N1正極と、さらにセパ
レータおよびアルカリ電解液で構成され、かつ前記負極
を構成する水素吸蔵合金には、 (a)  室温付近での水素吸蔵・放出能が大きい。
Generally, a sealed N1-hydrogen storage battery is composed of a negative electrode using a hydrogen storage alloy as an active material, an N1 positive electrode, a separator, and an alkaline electrolyte, and the hydrogen storage alloy constituting the negative electrode includes: a) High hydrogen absorption and release ability near room temperature.

(b)  PCT曲線における室温付近の温度でのプラ
トー圧に相当する平衡水素解離圧が比較的低い(5気圧
以下)。
(b) The equilibrium hydrogen dissociation pressure corresponding to the plateau pressure at a temperature near room temperature in the PCT curve is relatively low (5 atm or less).

(c)  アルカリ電解液中で耐食性および耐久性(耐
劣化性)がある。
(c) Corrosion resistance and durability (deterioration resistance) in alkaline electrolytes.

(d)  水素酸化能(触媒作用)が大きい。(d) High hydrogen oxidation ability (catalytic action).

(e)  水素の吸蔵・放出の繰返しに伴う微粉化が起
り難い。
(e) Pulverization due to repeated absorption and release of hydrogen is unlikely to occur.

(f)  無(低)公害である。(f) No (low) pollution.

(g)  低コストである。(g) It is low cost.

以上(a)〜(g)の性質を具備することが望まれ、さ
らにこのような性質を具備した水素吸蔵合金を負極の活
物質として用いてなる密閉型Ni−  −水素蓄電池は
、大きな放電容量、長い充・放電サイクル寿命、すぐれ
た急速光・放電特性、および低自己放電などの好ましい
性能を発揮するようになることも良く知られるところで
ある。
It is desirable to have the properties (a) to (g) above, and a sealed Ni-hydrogen storage battery that uses a hydrogen storage alloy with these properties as the active material of the negative electrode has a large discharge capacity. It is also well known that they exhibit favorable performances such as long charge/discharge cycle life, excellent rapid light/discharge characteristics, and low self-discharge.

したがって、特に密閉型Ni−  −水素蓄電池の負極
を構成する活物質として用いるのに適した水素吸蔵合金
の開発か盛んに行なわれ、例えば特開昭[il −45
563号公報に記載されるM g Z n Z型結晶構
造、すなわち六方晶C14型結晶構造をもった水素吸蔵
合金はじめ、多数の水素吸蔵合金が提案されている。
Therefore, efforts have been made to develop hydrogen storage alloys particularly suitable for use as active materials constituting the negative electrode of sealed Ni-hydrogen storage batteries.
A large number of hydrogen storage alloys have been proposed, including a hydrogen storage alloy having a M g Z n Z type crystal structure, that is, a hexagonal C14 type crystal structure, described in Japanese Patent No. 563.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、すでに提案されているいずれの水素吸蔵合金も
密閉型Ni−  −水素蓄電池の負極活物質として用い
る場合に要求される上記の性質をすべて満足して具備す
るものではなく、より一層の開発が望まれているのが現
状である。
However, none of the hydrogen storage alloys that have already been proposed satisfies all of the above properties required for use as negative electrode active materials in sealed Ni--hydrogen storage batteries, and further development is required. The current situation is what is desired.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、特に密
閉型Ni  −水素蓄電池の負極活物質として用いるの
に適した水素吸蔵合金を開発すべく研究を行なった結果
、重量%で(以下%は重量%を示す)、 Zr:10〜37%、  Ti :5〜25%、Mn+
4〜20%、  F O: 0.OL〜596、Co:
0.5〜20%、 V:0.1〜15%、Al1:0.
01〜4.5%、w  :0.01〜13%、を含有し
、さらに必要に応じて、 Cu : 1〜7%、    Cr  :0.05〜6
%、を含有し、残りがN1と不可避不純物からなる組成
を有する水素吸蔵Ni−Zr系合金は、M g Z n
 2型結晶構造(六方晶C14型結晶構造)をもち、密
閉型Ni  −水素蓄電池の負極活物質として用いる場
合に要求される上記(a)〜(g)の性質を十分満足し
た状態で具備し、したがってこれを負極活物質として用
いた密閉型Ni  −水素蓄電池は、大きなエネルギー
密度と電気容量をもち、かつ長いサイクル寿命を示すよ
うになるほか、自己放電が小さくなり、さらに高率光・
放電特性にもすぐれ、無公害および低コストと合わせて
、すぐれた性能を発揮するようになるという研究結果を
得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a hydrogen storage alloy particularly suitable for use as a negative electrode active material of a sealed Ni-hydrogen storage battery. % indicates weight%), Zr: 10-37%, Ti: 5-25%, Mn+
4-20%, FO: 0. OL~596, Co:
0.5-20%, V: 0.1-15%, Al1: 0.
Cu: 1-7%, Cr: 0.05-6 as necessary.
%, with the remainder consisting of N1 and unavoidable impurities.
It has a type 2 crystal structure (hexagonal C14 type crystal structure) and fully satisfies the above properties (a) to (g) required when used as a negative electrode active material of a sealed Ni-hydrogen storage battery. Therefore, a sealed Ni-hydrogen storage battery using this as the negative electrode active material has high energy density and electric capacity, has a long cycle life, has low self-discharge, and has a high rate of light
Research has shown that it has excellent discharge characteristics, is non-polluting and low cost, and exhibits excellent performance.

この発明は、上記研究結果にもとづいてなされたもので
あって、以下に上記水素吸蔵Ni−Zr系合金の成分組
成を上記の通りに限定した理由を説明する。
This invention has been made based on the above research results, and the reason why the composition of the hydrogen storage Ni-Zr alloy is limited as described above will be explained below.

(a)ZrおよびTi これらの成分には、共存した状態で合金に望ましい水素
吸蔵・放出特性を具備せしめると共に、室温におけるq
Z衡水素解離圧(プラトー圧)を、例えば5気圧以下に
低下させる作用があるが、その含有量がそれぞれZr:
10%未満およびTi:5%未満では前記作用に所望の
効果が得られず、一方Zrの含有量が37%を越えると
、放電容量の水素解離圧依存の点では問題はないが、水
素吸蔵・放出能が低下するようになり、またTiの含有
量が25%を越えると、平衡水素解離圧が例えば5気圧
以上に上昇するようになり、大きな放電容量を確保する
ためには高い水素解離圧を必要とするようになって蓄電
池として好ましくないものとなることから、その含有量
を、それぞれZr:10〜37%、Ti:5〜25%と
定めた。
(a) Zr and Ti These components, when coexisting, provide the alloy with desirable hydrogen absorption and desorption properties, and also provide q at room temperature.
Zr has the effect of lowering the hydrogen dissociation pressure (plateau pressure) to, for example, 5 atm or less, but the content is Zr:
If the Zr content is less than 10% and Ti: less than 5%, the desired effect cannot be obtained, while if the Zr content exceeds 37%, there is no problem in terms of the hydrogen dissociation pressure dependence of the discharge capacity, but the hydrogen absorption・If the release capacity decreases and the Ti content exceeds 25%, the equilibrium hydrogen dissociation pressure will rise to, for example, 5 atm or more, so high hydrogen dissociation is required to ensure a large discharge capacity. Since this requires pressure and is not desirable as a storage battery, the contents were determined to be Zr: 10-37% and Ti: 5-25%, respectively.

(b)  Mn Mn成分には、水素吸蔵・放出能を向上させ、かつアル
カリ電解液中での合金の耐食性および耐久性を向上させ
るほか、蓄電池の負極活物質として用いた場合に自己放
電を抑制する作用があるが、その含有量が4%未満では
前記作用に所望の効果が得られず、一方その含有量が2
0%を越えると、水素吸蔵・放出特性が損なわれるよう
になることから、その含有量を4〜20%と定めた。
(b) Mn The Mn component not only improves hydrogen storage and release ability, but also improves the corrosion resistance and durability of the alloy in alkaline electrolytes, and suppresses self-discharge when used as a negative electrode active material in storage batteries. However, if its content is less than 4%, the desired effect cannot be obtained; on the other hand, if its content is less than 2%,
If it exceeds 0%, the hydrogen storage and release characteristics will be impaired, so the content was set at 4 to 20%.

(c)  Fe Fc成分には、蓄電池の負極活物質として用いる場合な
どの粉末化に際して、形成された粉末を整粒化する作用
があるが、その含有量が0,01%未満では前記作用に
所望の効果が得られず、一方その含有量が5%を越える
と耐食性が低下し、蓄電池に適用した場合、これの自己
放電が進行するようになることから、その含有量を0.
01〜5%と定めた。
(c) Fe The Fc component has the effect of sizing the formed powder when it is powdered when used as a negative electrode active material of a storage battery, but if its content is less than 0.01%, the above effect will not be achieved. On the other hand, if the content exceeds 5%, the desired effect will not be obtained, and if the content exceeds 5%, the corrosion resistance will decrease, and when applied to a storage battery, self-discharge will proceed.
It was set as 0.01 to 5%.

(d)  C。(d) C.

CO酸成分は、水素吸蔵能を一段と増大させ、もってN
1−水素蓄電池の負極活物質として用いた場合に放電容
量を増加させて、その使用寿命の著しい延命化に寄与す
る作用があるが、その含有量が065%未満では前記作
用に所望の効果が得られず、一方その含有量が20%を
越えても前記作用により一層の向上効果が見られないこ
とから、経済性を考慮して、その含有量を0.5〜20
%と定めた。
The CO acid component further increases the hydrogen storage capacity, thereby increasing the N
1- When used as a negative electrode active material in a hydrogen storage battery, it has the effect of increasing the discharge capacity and significantly extending its service life, but if its content is less than 0.065%, the desired effect will not be achieved. On the other hand, even if the content exceeds 20%, no further improvement effect is seen due to the above action.
%.

(e)  V 上記のように密閉型Ni  −水素蓄電池には、室温に
おける平衡水素解離圧が過度に高くなく (例えば5気
圧以下)、かつ水素吸蔵・放出量ができるだけ大きいこ
とが望まれるが、■成分には、このような水素吸蔵・放
出量の増大および平衡水素圧の適正化に寄与する作用が
あるが、その含有量が0.1%未満では前記作用に所望
の効果が得られず、一方その含有量が15%を越えると
、平衡水素圧が高くなりすぎるようになるほか、電解液
中に溶は出して、自己放電が助長されるようになること
から、その含有量を0.1〜15%と定めた。
(e) V As mentioned above, it is desirable that the equilibrium hydrogen dissociation pressure at room temperature is not excessively high (e.g., 5 atm or less) and that the amount of hydrogen storage and release is as large as possible for a sealed Ni-hydrogen storage battery. ■Ingredients have the effect of contributing to increasing the amount of hydrogen storage and release and optimizing the equilibrium hydrogen pressure, but if the content is less than 0.1%, the desired effect cannot be obtained. On the other hand, if its content exceeds 15%, the equilibrium hydrogen pressure will become too high, and it will dissolve into the electrolyte, promoting self-discharge. .1 to 15%.

(r)  AΩ AΩ成分には、水素吸蔵・放出能を低下させることなく
、合金の耐食性を一段と向上させ、もって蓄電池の自己
放電を一層抑制する作用があるが、その含有量が0.旧
%未満では前記作用に所望の効果が得られず、一方その
含自°瓜が4.5%を越えると、水素吸蔵・放出能が目
立って低下するようになることから、その含有量を0.
01〜4.5%と定めた。
(r) AΩ The AΩ component has the effect of further improving the corrosion resistance of the alloy and thereby further suppressing the self-discharge of the storage battery without reducing the hydrogen absorption/desorption ability. If the content is less than 4.5%, the desired effect will not be obtained, while if the content exceeds 4.5%, the hydrogen storage and release ability will be noticeably reduced. 0.
It was set at 01 to 4.5%.

(g)  W W成分には、アルカリ電解液中での合金の耐食性を一段
と向上させると共に、耐久性も向上させさらに蓄電池の
負極活物質としての実用に際して、自己放電を抑制する
作用があるが、その含有量が0.01%未満では前記作
用に所望の効果が得られず、一方、その含有量が13%
を越えると、水素吸蔵・放出特性が損なわれるようにな
ることから、その含有量を0.旧〜13%と定めた。
(g) W The W component has the effect of further improving the corrosion resistance of the alloy in an alkaline electrolyte, improving durability, and suppressing self-discharge when used as a negative electrode active material for storage batteries. If the content is less than 0.01%, the desired effect cannot be obtained; on the other hand, if the content is less than 13%
If the content exceeds 0.0, the hydrogen storage and release characteristics will be impaired, so the content should be reduced to 0. The previous figure was set at 13%.

(g)  Cu Cu成分には、水素吸蔵・放出量の増大および平衡水素
圧の適正化を一段と促進する作用があるので、必要に応
じて含有されるが、その含有量が196未満では前記作
用に所望の向上効果が得られず、一方その含有量が7%
を越えると、水素吸蔵・放出量の低下を招き、放電容量
が低下するようになることから、その含有量を1〜7%
と定めた。
(g) Cu The Cu component has the effect of further promoting an increase in the amount of hydrogen storage and release and optimization of the equilibrium hydrogen pressure, so it is included as necessary, but if the content is less than 196%, the above effect will be reduced. However, the desired improvement effect was not obtained when the content was 7%.
If the content exceeds 1% to 7%, the amount of hydrogen absorbed and released will decrease and the discharge capacity will decrease.
It was determined that

(h)  Cr Cr成分には、水素吸蔵・放出能を低下させることなく
、アルカリ電解液中での耐食性を一段と向上させる作用
があるので、必要に応じて含有されるが、その含有量が
0.05%未満では前記作用に所望の向上効果が得られ
ず、一方その含有量が6%を越えると、水素吸蔵・放出
能が低下するようになることから、その含有量を0.0
5〜6%と定めた。
(h) Cr The Cr component has the effect of further improving corrosion resistance in an alkaline electrolyte without reducing the hydrogen storage/release ability, so it is included as necessary, but if the content is 0. If the content is less than 0.05%, the desired effect of improving the above-mentioned action cannot be obtained, while if the content exceeds 6%, the hydrogen storage and desorption ability will decrease, so the content should be reduced to 0.0%.
It was set at 5-6%.

〔実 施 例〕〔Example〕

つぎに、この発明の水素吸蔵Ni−−Zr系合金を実施
例により具体的に説明する。
Next, the hydrogen storage Ni--Zr alloy of the present invention will be specifically explained with reference to Examples.

通常の高周波誘導溶解炉を用い、A「雰囲気中にてそれ
ぞれ第1表に示される成分組成をもったNi−Zr系合
金溶湯を調製し、銅鋳型に鋳造してインゴットとした後
、このインゴットをAr雰囲気中、900〜1000℃
の範囲内の所定温度に5時間保持の条件で焼鈍し、つい
でショークラッシャを用い、粗粉砕して直径:2mm以
下の粗粒とし、さらにボールミルを用いて微粉砕して3
50mesh以下の粒度とすることによりいずれもMg
Zn2型結晶構造をもった本発明水素吸蔵合金1〜23
、比較水素吸蔵合金1〜11、および従来水素吸蔵合金
をそれぞれ製造した。
Using a normal high frequency induction melting furnace, prepare Ni-Zr alloy molten metals having the compositions shown in Table 1 in atmosphere A, and cast them into copper molds to make ingots. in an Ar atmosphere at 900-1000℃
Annealed at a predetermined temperature within the range of 5 hours, then coarsely crushed using a show crusher to obtain coarse particles with a diameter of 2 mm or less, and then finely crushed using a ball mill.
By setting the particle size to 50 mesh or less, both Mg
Hydrogen storage alloys 1 to 23 of the present invention having Zn2 type crystal structure
, comparative hydrogen storage alloys 1 to 11, and conventional hydrogen storage alloys were manufactured, respectively.

ついで、この結果得られた各種の粉末状水素吸蔵合金を
活物質として用い、まず、これにポリビニールアルコー
ル(PVA)の2%水溶液を添加してペースト化した後
、95%の多孔度を有する市販のNi ウィスカー不織
布に充填し、乾燥し、さらに加圧して、平面Ni法+ 
42+n+n X 35mmにして、厚さ: o、eo
〜0.65mmの形状(活物質充填量:約2.8g)と
し、これの−辺にリードとなるNi薄板を溶接により取
付けて負極を製造し、一方正極として同寸法のNi焼結
板を2枚用意し、これを前記負極の両側に配置し、30
%K OH水溶液を装入することにより密閉型NI  
−水素蓄電池を製造した。
Next, various powdered hydrogen storage alloys obtained as a result are used as active materials, and a 2% aqueous solution of polyvinyl alcohol (PVA) is added thereto to form a paste, which has a porosity of 95%. A commercially available Ni whisker nonwoven fabric was filled, dried, and further pressurized to form a planar Ni method+
42+n+n x 35mm, thickness: o, eo
~0.65 mm in shape (active material filling amount: approximately 2.8 g), and a thin Ni plate serving as a lead was attached to the negative side by welding to produce a negative electrode, while a Ni sintered plate of the same size was used as a positive electrode. Prepare two sheets, place them on both sides of the negative electrode, and
Closed type NI by charging %K OH aqueous solution
- Manufactured a hydrogen storage battery.

なお、この結果得られた各種の蓄電池を、いずれも開放
電池とし、かつ正極の容量を負極の容量より8ニジく大
きくすることにより負極の容量を測定し易くした。
The various storage batteries obtained as a result were all open batteries, and the capacity of the positive electrode was made 8 times larger than the capacity of the negative electrode, thereby making it easier to measure the capacity of the negative electrode.

また、上記比較水素吸蔵合金1〜11は、いずれも構成
成分のうちのいずれかの成分含有量(第1表に※印を付
す)がこの発明の範囲から外れた組成をもつものである
Moreover, the comparative hydrogen storage alloys 1 to 11 all have compositions in which the content of one of the constituent components (marked with * in Table 1) is outside the scope of the present invention.

つぎに、これらの各種の蓄電池について、充放電速度:
0.2C,充電電気量:負極容量の130%の条件で充
・放電試験を行い、1回の充電と放電を1サイクルとし
、110サイクル後、220サイクル後、および330
サイクル後における放電容量をそれぞれ測定した。
Next, for these various storage batteries, the charging and discharging speed:
A charge/discharge test was conducted under the conditions of 0.2C, charge amount of electricity: 130% of the negative electrode capacity, one charge and discharge was one cycle, and after 110 cycles, 220 cycles, and 330
The discharge capacity after each cycle was measured.

また、さらに第1表に示される組成をもった各種の粉末
状水素吸蔵合金を用い、平面サイズを90mm X 4
0mm、厚さ: 0.60〜0.65mmとして、容瓜
二1450〜1500mAh(活物質充填量、約6g)
とする以外は、上記の充・放電試験で用いた蓄電池の負
極板と同一の条件で負極板を製造し、一方正極板は、9
5%の多孔度を有するNi ウィスカー不織布に水酸化
ニッケルCN I(OH) 2 )を活物質として充填
し、乾燥し、さらにプレス加工した後、リ−ドを取付け
て、・1尺面寸法: 70mm X 40mm、厚さ0
.05〜0.70mmの形状(容量: 1000〜10
50105Oとすることにより製造し、この結果得られ
た負極板と正極板を、セパレータを介してうず巻き状に
した状態で、電解液と共にケース(これは○端子と兼用
)の中に収容した構造の密閉型Ni  −水素蓄電池と
した。なお、この蓄電池においては、正極容量より負極
容量を大きくして正極律則の蓄電池を構成した。
Further, various powdered hydrogen storage alloys having the compositions shown in Table 1 were used, and the planar size was 90 mm x 4.
0 mm, thickness: 0.60 to 0.65 mm, capacity 1450 to 1500 mAh (active material filling amount, approximately 6 g)
The negative electrode plate was manufactured under the same conditions as the negative electrode plate of the storage battery used in the above charge/discharge test, except that the positive electrode plate was
A Ni whisker nonwoven fabric with a porosity of 5% is filled with nickel hydroxide (CN I(OH) 2 ) as an active material, dried, and pressed, and then a lead is attached. 70mm x 40mm, thickness 0
.. 05~0.70mm shape (capacity: 1000~10
50105O, and the resulting negative and positive electrode plates are housed in a spiral shape with a separator in between and an electrolyte in a case (which also serves as the ○ terminal). It was made into a sealed Ni-hydrogen storage battery. In addition, in this storage battery, the negative electrode capacity was made larger than the positive electrode capacity to constitute a positive electrode regulation storage battery.

また、これらの蓄電池に対する自己放電試験は、まず室
温で0,2C(200mA)で7時間充電し、ついで蓄
電池を45℃に温度セットしである恒温槽中にrJn路
状態(電池に負荷をかけない状態)で、1週問および2
週間放置し、放置後、とり出して、室温で0,2C(2
00+nA)放電を行ない、容量残存率を求めることに
より行なった。
In addition, in the self-discharge test for these storage batteries, first charge them at room temperature for 7 hours at 0.2C (200mA), then set the temperature of the storage battery at 45℃ and place it in a thermostatic oven under rJn road conditions (load the battery). 1 week question and 2
Leave it for a week, then take it out and store it at room temperature at 0.2C (2
This was done by performing a discharge (00+nA) and determining the capacity remaining rate.

さらに、同じく第1表に示される成分組成をもった各種
の水素吸蔵合金について、一般にHuey試験と呼ばれ
ている方法を用い、試験片を上記のインゴットより切り
出してプラスチック樹脂に埋] 6 め込み、腐食面をエメリーペーパー#600で研磨仕上
げした状態で、コールドフィンガー型コンデンサー付三
角フラスコに装入し、沸騰した30%KOH水溶液中に
240時間保持の条件でアルカリ電解液腐食試験を行な
い、試験後の腐食減量を測定した。これらの測定結果を
第1表に示した。
Furthermore, using a method generally called the Huey test, test pieces were cut out from the above ingot and embedded in plastic resin for various hydrogen storage alloys having the compositions shown in Table 1]6. After polishing the corroded surface with #600 emery paper, the sample was placed in a cold-finger condenser-equipped Erlenmeyer flask, and an alkaline electrolyte corrosion test was conducted under the conditions of holding it in a boiling 30% KOH aqueous solution for 240 hours. The subsequent corrosion weight loss was measured. The results of these measurements are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明水素吸蔵合金1〜2
3は、いずれも従来水素吸蔵合金に比して、アルカリ電
解液に対してすぐれた耐食性を示し、さらにこれを密閉
mNI  −水素蓄電池の負極活物質として用いた場合
、蓄電池は高容量をもつようになり、従来水素吸蔵合金
を用いた蓄電池に比して充・放電サイクルを繰り返した
場合の容量低下が著しく小さいという好ましい結果を示
すことが明らかであり、一方比較水素吸蔵合金1〜11
に見られるように、構成成分のうちのいずれかの成分含
有量でもこの発明の範囲から外れると、本発明水素吸蔵
合金に比して、アルカリ電解液に対する耐食性、並びに
これを蓄電池の負極活物質とじて用いた場合の蓄電池の
放電容量および自己放電のうちの少なくともいずれかの
特性が劣ったものになることが明らかである。
From the results shown in Table 1, hydrogen storage alloys 1 to 2 of the present invention
All of No. 3 exhibited superior corrosion resistance to alkaline electrolytes compared to conventional hydrogen storage alloys, and when used as the negative electrode active material of a sealed mNI-hydrogen storage battery, the storage battery would have a high capacity. It is clear that compared to storage batteries using conventional hydrogen storage alloys, the capacity decrease is significantly smaller when repeated charge/discharge cycles are performed, which is a favorable result.On the other hand, comparative hydrogen storage alloys 1 to 11
As can be seen in the figure, if the content of any of the constituent components is outside the scope of the present invention, the corrosion resistance to alkaline electrolytes and the corrosion resistance of the hydrogen storage alloy of the present invention may be lower than that of the hydrogen storage alloy of the present invention. It is clear that when the storage battery is used in a closed manner, the discharge capacity and/or self-discharge characteristics of the storage battery become inferior.

上述のように、この発明の水素吸蔵Ni−Zr系合金は
、アルカリ電解液に対する耐食性にすぐれているほか、
特に密閉型N1−水素蓄電池の負極活物質として用いた
場谷に、負極活物質に要求される特性をすべて十分満足
する状態で具備しているので、蓄電池の自己放電が著し
く低減し、さらに長いサイクル寿命に亘って大きな放電
容量が確保されるようになるなど工業上有用な特性を有
するのである。
As mentioned above, the hydrogen-absorbing Ni-Zr alloy of the present invention has excellent corrosion resistance against alkaline electrolytes, and
In particular, Baya, which is used as the negative electrode active material of sealed N1-hydrogen storage batteries, has all the characteristics required of negative electrode active materials in a state that fully satisfies all the characteristics required for negative electrode active materials, so the self-discharge of the storage battery is significantly reduced, and the battery has a longer lifespan. It has industrially useful properties such as ensuring a large discharge capacity over the cycle life.

Claims (4)

【特許請求の範囲】[Claims] (1)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜5%、Co:0.5〜2
0%、V:0.1〜15%、Al:0.01〜4.5%
、W:0.01〜13%、を含有し、残りがNiと不可
避不純物からなる組成(以上重量%)を有することを特
徴とするMgZn_2型結晶構造をもった水素吸蔵Ni
−Zr系合金。
(1) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-5%, Co: 0.5-2
0%, V: 0.1-15%, Al: 0.01-4.5%
, W: 0.01 to 13%, and the remainder is Ni and unavoidable impurities (weight%).
-Zr alloy.
(2)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜5%、Co:0.5〜2
0%、V:0.1〜15%、Al:0.01〜4.5%
、W:0.01〜13%、を含有し、さらに、 Cu:1〜7%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZ_2型結晶
構造をもった水素吸蔵Ni−Zr系合金。
(2) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-5%, Co: 0.5-2
0%, V: 0.1-15%, Al: 0.01-4.5%
, W: 0.01 to 13%, and Cu: 1 to 7%, and the remainder is Ni and unavoidable impurities (weight %). A hydrogen-absorbing Ni-Zr alloy with a crystalline structure.
(3)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜5%、Co:0.5〜2
0%、V:0.1〜15%、Al:0.01〜4.5%
、W:0.01〜13%、を含有し、さらに、 Cr:0.06〜6%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(3) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-5%, Co: 0.5-2
0%, V: 0.1-15%, Al: 0.01-4.5%
, W: 0.01 to 13%, and Cr: 0.06 to 6%, with the remainder consisting of Ni and unavoidable impurities (weight %). A hydrogen-absorbing Ni-Zr alloy with a MgZn_2 type crystal structure.
(4)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fo:0.01〜5%、Co:0.5〜2
0%、V:0.1〜15%、Al:0.01〜4.5%
、W:0.01〜13%、を含有し、さらに、 Cu:1〜7%、Cr:0.06〜6%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(4) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fo: 0.01-5%, Co: 0.5-2
0%, V: 0.1-15%, Al: 0.01-4.5%
, W: 0.01 to 13%, and further contains Cu: 1 to 7%, Cr: 0.06 to 6%, and the remainder is Ni and unavoidable impurities (wt%) A hydrogen-absorbing Ni-Zr alloy having a MgZn_2 type crystal structure.
JP2132253A 1990-05-22 1990-05-22 Hydrogen storage Ni-Zr alloy Expired - Lifetime JP2762702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2132253A JP2762702B2 (en) 1990-05-22 1990-05-22 Hydrogen storage Ni-Zr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2132253A JP2762702B2 (en) 1990-05-22 1990-05-22 Hydrogen storage Ni-Zr alloy

Publications (2)

Publication Number Publication Date
JPH0426735A true JPH0426735A (en) 1992-01-29
JP2762702B2 JP2762702B2 (en) 1998-06-04

Family

ID=15076954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2132253A Expired - Lifetime JP2762702B2 (en) 1990-05-22 1990-05-22 Hydrogen storage Ni-Zr alloy

Country Status (1)

Country Link
JP (1) JP2762702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872594A (en) * 2020-07-22 2020-11-03 郑州机械研究所有限公司 Titanium-based brazing filler metal and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872594A (en) * 2020-07-22 2020-11-03 郑州机械研究所有限公司 Titanium-based brazing filler metal and preparation method and application thereof

Also Published As

Publication number Publication date
JP2762702B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP2762717B2 (en) Hydrogen storage Ni-Zr alloy
JP2762715B2 (en) Hydrogen storage Ni-Zr alloy
JP2805994B2 (en) Hydrogen storage Ni-Zr alloy
JPH0426735A (en) Hydrogen storage ni-zr series alloy
JP2762699B2 (en) Hydrogen storage Ni-Zr alloy
JP2762713B2 (en) Hydrogen storage Ni-Zr alloy
JP2762667B2 (en) Hydrogen storage Ni-Zr alloy
JP2806011B2 (en) Hydrogen storage Ni-Zr alloy
JP2762714B2 (en) Hydrogen storage Ni-Zr alloy
JP2762701B2 (en) Hydrogen storage Ni-Zr alloy
JP2762663B2 (en) Hydrogen storage Ni-Zr alloy
JP2762669B2 (en) Hydrogen storage Ni-Zr alloy
JP2762668B2 (en) Hydrogen storage Ni-Zr alloy
JP2806013B2 (en) Hydrogen storage Ni-Zr alloy
JP2806012B2 (en) Hydrogen storage Ni-Zr alloy
JP2762700B2 (en) Hydrogen storage Ni-Zr alloy
JP2806010B2 (en) Hydrogen storage Ni-Zr alloy
JP2847931B2 (en) Hydrogen storage Ni-Zr alloy
JP2762671B2 (en) Hydrogen storage Ni-Zr alloy
JP2762662B2 (en) Hydrogen storage Ni-Zr alloy
JPH02194140A (en) Hydrogen storage ni-based alloy and closed ni-hydrogen battery
JPH02277738A (en) Ni-zr hydrogen storage alloy and hermetically sealed-type ni-hydrogen storage battery
JPH02263944A (en) Hydrogen storage ni-zr series alloy and closed-type ni-hydrogen storage battery
JPH02263945A (en) Hydrogen storage ni-zr series alloy and closed-type ni-hydrogen storage battery
JPH02277739A (en) Ni-zr hydrogen storage alloy and hermetically sealed-type ni-hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13