JPH0326728A - Resin moldings - Google Patents

Resin moldings

Info

Publication number
JPH0326728A
JPH0326728A JP16238989A JP16238989A JPH0326728A JP H0326728 A JPH0326728 A JP H0326728A JP 16238989 A JP16238989 A JP 16238989A JP 16238989 A JP16238989 A JP 16238989A JP H0326728 A JPH0326728 A JP H0326728A
Authority
JP
Japan
Prior art keywords
resin particles
resin
conductive substance
particles
good
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16238989A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sato
喜昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junkosha Co Ltd
Original Assignee
Junkosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junkosha Co Ltd filed Critical Junkosha Co Ltd
Priority to JP16238989A priority Critical patent/JPH0326728A/en
Publication of JPH0326728A publication Critical patent/JPH0326728A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide resin moldings containing a reduced amount of a good conductive substance and having good mechanical strength and moldability by melt-adhering many thermoplastic resin particles coated with the good conductive substance in a state where the exposed resin surfaces of the adjacent resin particles are melt-adhered to each other. CONSTITUTION:The particles of a thermoplastic resin such as polyethylene covered with a good conductive substance such as carbon black are subjected to a press molding process, extrusion molding process, etc., to decompose the coating layer of the good conductive substance at the contact portions between the adjacent resin particles, partially expose the surfaces of the thermoplastic resin particles and melt-adhere the surface portions of the adjacent resin particles, thereby providing the objective moldings.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電気伝導性あるいは熱伝導性が付与された
樹脂成形体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a resin molded article imparted with electrical conductivity or thermal conductivity.

〔従来の技術〕[Conventional technology]

電気絶縁性の合成樹脂に導電性を付与し、これを戊形し
たものは、種々の分野で広< 1II用されているが、
その改質方法としてはカーボンブラックや金属粉末など
の導電性を有する添加材の混入が一般的である(特開昭
60−173027号、特開昭6 2−1 0 4 8
 7 0号等参照)。
Electrically insulating synthetic resins that are made conductive and shaped into hollow shapes are widely used in various fields.
As a modification method, it is common to mix conductive additives such as carbon black and metal powder (JP-A-60-173027, JP-A-62-1-04-8).
(See No. 7 0, etc.).

また、フッ素系樹脂等の耐薬品性に優れる樹脂に炭素繊
維、グラファイト等の熱伝導性の良好な添加材を配合し
た樹脂組成物をヂコ・一=ブ状に成形し、これを熱交換
器の伝熱管と1,て利用4−るなど(特公昭55−17
319号、特開昭63−194l95号参照)、電気あ
るいは熱の伝導性が良好な添加材(以下、これらを良伝
導性物質と称することもある)の混入により伝導性を向
−4二さ仕た樹脂組成物を用いて多くの樹脂成形体がつ
くられている。
In addition, a resin composition made by blending a resin with excellent chemical resistance such as a fluororesin with additives with good thermal conductivity such as carbon fiber and graphite is molded into a diagonal shape, and this is used for heat exchange. heat exchanger tubes, etc. (Special Publication Publication 1986-17)
319, JP-A No. 63-194195), conductivity can be improved by mixing additives with good electrical or thermal conductivity (hereinafter these may be referred to as good conductive substances). Many resin molded articles are made using a finished resin composition.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記したいずれの樹脂成形体にあっても
、電気伝導性や熱伝導性が顕杆に増大するほど良伝導性
物質を充填した場合には、戊形体の機械的強度が大幅に
低下1−て1−まうという課題があった。特に、熱可塑
性樹脂に適用したときは、溶融樹脂の急激な粘度L昇に
よーで流動性が低下し、成形加工性の悪いものとなって
j5まうなど、幾つかの課題が残されている。
However, in any of the above-mentioned resin molded bodies, when filled with a highly conductive substance that significantly increases electrical conductivity or thermal conductivity, the mechanical strength of the hollow body decreases significantly. There was a problem to solve. In particular, when applied to thermoplastic resins, several issues remain, such as a rapid increase in the viscosity of the molten resin, resulting in a decrease in fluidity and poor molding processability. .

そこで、この発明はこれら従来技術の課題に鑑み、機械
的強度および成形加工性が良好で、電気伝導性あるいは
熱伝導性の向上した樹脂成形体の提供をその目的とする
Therefore, in view of these problems of the prior art, the object of the present invention is to provide a resin molded article having good mechanical strength and moldability, and improved electrical conductivity or thermal conductivity.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、この発明では、表面融合によ
り良伝導性物質が被覆された多数の熱可塑性樹脂粒子が
、隣り合う樹脂粒子間の露出した樹脂表面部において融
着してなる樹脂成形体を構成する。
In order to achieve the above object, the present invention provides a resin molded article in which a large number of thermoplastic resin particles coated with a highly conductive material are fused at exposed resin surface areas between adjacent resin particles by surface fusion. Configure.

ここで表面融合とは、複数の異なる素材粒子にある種の
機械的エネルギーを加えてメカノケミカル的な反応を起
こさせるコーティング技術(例えばホソカワミクロン社
のメ〜カノフユージリンシステム)で、この場合、カー
ボンブラックあるいはグラファイト等の良伝導性物質粉
末と熱可塑性樹脂粉末とを上記方法で処理することによ
り、熱可塑性樹脂粒子の表面にそれら良伝導性物質の被
膜を形成することができる。そして、これらの被覆され
た樹脂粒子は、プレス成形、押出成形などの際に受ける
外力により、隣接する樹脂粒子間の接触部分において、
表面に存在する良伝導性物質の被膜が破れて熱可塑性樹
脂粒子が部分的に露出し、これら露出部分を介して融着
一体化する。
Here, surface fusion is a coating technology that applies a certain type of mechanical energy to multiple different material particles to cause a mechanochemical reaction (for example, Hosokawa Micron's Mechano-Fujilin system). In this case, By treating a powder of a highly conductive substance such as carbon black or graphite with a thermoplastic resin powder in the above-described method, a film of the highly conductive substance can be formed on the surface of the thermoplastic resin particles. These coated resin particles are then exposed to external forces during press molding, extrusion molding, etc. at the contact areas between adjacent resin particles.
The film of the highly conductive material present on the surface is torn, and the thermoplastic resin particles are partially exposed, and are fused and integrated via these exposed portions.

本発明において、熱可塑性樹脂粒子の表面に融合される
良伝導性物質としては、カーボンプラック、金属微粉末
等の電気伝導性物質、あるいはグラファイト、窒化ホウ
素、窒化アルミニウム等の熱伝導性物質が挙げられる。
In the present invention, examples of the good conductive substance fused to the surface of the thermoplastic resin particles include electrically conductive substances such as carbon plaque and fine metal powder, and thermally conductive substances such as graphite, boron nitride, and aluminum nitride. It will be done.

なお、これらの良伝導性物質は、熱可塑性樹脂粒子の表
面に直接被覆してもよいが、他の物質を介して被覆する
ことも可能である。
Note that these highly conductive substances may be directly coated on the surface of the thermoplastic resin particles, but they can also be coated via another substance.

また、本発明で用いられる樹脂粒子としては、各種フッ
素系樹脂、ポリエチレン、ボリプロビレン、ボリカーボ
ネート、ポリエステル、ボリアミド、ポリアセタール、
ポリ塩化ビニル、ポリウレタン、ボリスチレン、ポリメ
チルベンタン、変性ボリフェニレンオキサイド、エチレ
ンー酢ビ共重合体、アクリヒロニトリルースチレン共重
合体のごとき熱可塑性樹脂が挙げられるが、もちろんこ
れに限定されるものではない。
In addition, the resin particles used in the present invention include various fluororesins, polyethylene, polypropylene, polycarbonate, polyester, polyamide, polyacetal,
Examples include, but are not limited to, thermoplastic resins such as polyvinyl chloride, polyurethane, polystyrene, polymethylbentane, modified polyphenylene oxide, ethylene-vinyl acetate copolymer, and acrylonitrile-styrene copolymer. do not have.

〔作用〕[Effect]

従来の伝導性樹脂成形体では、マトリクス樹脂に混入し
た良伝導性物質粒子の分散性によって伝導性が左右され
る。ところが、カーボンブラック等の微粒子状の良伝導
性物質は均一分散がきわめて難しいため、伝導性を高め
ようとする場合には、多量に混入する必要がある。そし
て、このことが原因で成形体の機械的強度や成形加工性
が低下しているものと考えられる。
In conventional conductive resin molded bodies, the conductivity is influenced by the dispersibility of the particles of good conductivity mixed into the matrix resin. However, since it is extremely difficult to uniformly disperse fine particulate materials with good conductivity such as carbon black, it is necessary to mix a large amount in order to increase the conductivity. This is considered to be the cause of the decrease in the mechanical strength and moldability of the molded article.

これに対し本発明による樹脂成形体では、良伝導性物質
で表面を覆われた熱可塑性樹脂粒子が、成形加工の際の
圧縮力等の外力により、隣り合う樹脂粒子間の接触部分
において、良伝導性物質の被膜が破れて樹脂が露出し、
該露出部分を介して融着一体化している。そして、融着
に伴なって各樹脂粒子間の非融着部分の表面に残る良伝
導性物質の被膜同志が接触して連続層となり、その結果
、樹脂成形体の内部に良伝導性物質の三次元的な網目構
造が形成される。この網目構造により、従来のものに比
べて良伝導性物質が有効に活用されることとなり、少な
い含有量で成形体の電気伝導性等を向上させることがで
きる。このため、成形体の機械的強度および成形加工性
の低下はわずかである。
On the other hand, in the resin molded article according to the present invention, the thermoplastic resin particles whose surfaces are covered with a highly conductive substance have a good conductivity at the contact areas between adjacent resin particles due to external forces such as compressive force during molding. The conductive material coating is torn and the resin is exposed.
They are fused and integrated via the exposed portion. Then, as the resin particles are fused together, the coatings of the good conductive substance remaining on the surface of the unfused parts between each resin particle come into contact with each other to form a continuous layer, and as a result, a layer of the good conductive substance is formed inside the resin molded body. A three-dimensional network structure is formed. Due to this network structure, a highly conductive substance can be used more effectively than in conventional ones, and the electrical conductivity of the molded article can be improved with a small content. Therefore, the mechanical strength and moldability of the molded article are only slightly reduced.

〔実施例〕〔Example〕

次に、図面に基づいて本発明をさらに詳しく説明する。 Next, the present invention will be explained in more detail based on the drawings.

図は、この発明による樹脂成形体の内部構造の断面を模
式的に示す説明図である。図示の樹脂成形体■は、表面
融合によりカーボンブラック等の良伝導性物質2が表面
に熱可塑性樹脂粒子3の集合体である。これら良伝導性
物質2で覆われた熱可塑性樹脂粒子3は、プレス成形、
押出成形などの成形加工時に受ける外力により、隣り合
う樹脂粒子間の接触部分において、表面に存在する良伝
導性物質の被膜2が破れて内側の樹脂粒子3が部分的に
露出し、これら露出部分を介して融着一体化している。
The figure is an explanatory view schematically showing a cross section of the internal structure of the resin molded article according to the present invention. The illustrated resin molded body (2) is an aggregate of thermoplastic resin particles 3 on the surface of which a highly conductive substance 2 such as carbon black is formed by surface fusion. The thermoplastic resin particles 3 covered with these good conductive substances 2 are press-molded,
Due to the external force received during molding processing such as extrusion molding, the coating 2 of the highly conductive material existing on the surface is torn at the contact areas between adjacent resin particles, and the inner resin particles 3 are partially exposed. They are fused and integrated via .

そして、樹脂粒子3同志の融着に伴ない、各樹脂粒子3
の非融着部分の表面に残る良伝導性被膜2同志が接触し
て連続層となり、その結果、樹脂成形体lの内部には良
伝導性物質2の三次元的な網目構造が形成された構成と
なっている。
Then, as the resin particles 3 are fused together, each resin particle 3
The good conductive coatings 2 remaining on the surface of the non-fused parts of the resin molded material 2 came into contact with each other to form a continuous layer, and as a result, a three-dimensional network structure of the good conductive material 2 was formed inside the resin molded body l. The structure is as follows.

さらに、具体間をもって説明するが、本発明はもちろん
これに限定されるものではない。熱可塑性樹脂粒子とし
てテトラフルオロエチレンーバフルオロアルキルビニル
エーデル共重合樹II! ( 1’FA)の粉末、良伝
導性物質としてアセチレンブラック粉末を用い、両者を
表面融合しさ11てPFA粒子の表面にアセチレンブラ
ックの被膜を形成した。なお、PFA粉末に対するアセ
チレンブランクの付着量は5vt%であった。そして、
コーティングされたPFA粉末を熱プレスによりシート
状に或形(,、その電気伝導度と30℃での引張強度に
ついて測定したところ、それぞれ10”Ω・c一と2 
6 3 Kg/c@’であった。
Furthermore, although the details will be explained briefly, the present invention is of course not limited thereto. Tetrafluoroethylene-bafluoroalkyl vinyl ether copolymer tree II as thermoplastic resin particles! (1'FA) powder and acetylene black powder as a good conductive substance, the two were surface fused to form an acetylene black coating on the surface of the PFA particles. Note that the amount of acetylene blank attached to the PFA powder was 5vt%. and,
The coated PFA powder was heat-pressed into a sheet shape, and its electrical conductivity and tensile strength at 30°C were measured to be 10"Ω・c and 2, respectively.
6 3 Kg/c@'.

これに対し、」−記実施例で用いたものと同じ種類のP
 F A粉末にアセチレンブラック粉末を加えて混練し
、これをシート状に成形した場合には、同様な導電性を
付与するためには多II(約lowt%)のカーボンブ
ラックが必要となり、その引張強度は235Kg/c一
で、本発明のものよりもlO%以−L低い値であった。
On the other hand, P of the same type as that used in the embodiment
When acetylene black powder is added to F A powder and kneaded and this is formed into a sheet, a large amount of carbon black (approximately low %) is required to provide the same conductivity, and its tensile strength The strength was 235 kg/c, which was more than 10% lower than that of the present invention.

特に、成形加工性については、樹脂の流れ性が不均一に
なり、これにより実施例のものに比べてきわめて取り扱
いにくいらのとなっている。
In particular, regarding moldability, the flowability of the resin is non-uniform, which makes it extremely difficult to handle compared to the examples.

なお、上記実施例では、良伝導性物質が被覆された樹脂
粒子のみを用いて樹脂成形体を形成した場合について説
明したが、これらの樹脂粒子を通常の良伝導性添舶材と
同じように、各種の高分子材料に混入させてもよい。こ
の場合においては、良伝導性物質が被覆された樹脂粒子
の三次元的な網目+f4造が形成され、母材となる高分
−r材料はそれらの隙間に入り込んだ状態で樹脂成形体
が形成される。したがって、良伝導性物質粒子をそのま
ま高分子材料に混入するものに比べると、少ない含有儀
で同じような伝導性を得ることができ、このため機械的
強度や成形加−[性の低下が少1;, < 71;る。
In the above example, a case was explained in which a resin molded body was formed using only resin particles coated with a good conductive material. , may be mixed into various polymeric materials. In this case, a three-dimensional network +F4 structure of resin particles coated with a highly conductive substance is formed, and a resin molded body is formed with the polymer-r material serving as the base material entering the gaps between them. be done. Therefore, compared to a method in which particles of a highly conductive material are directly mixed into a polymeric material, the same conductivity can be obtained with fewer inclusions, resulting in less deterioration in mechanical strength and moldability. 1;, <71;

〔発明の効果〕〔Effect of the invention〕

以上説明(2たように、この発明による樹脂成形体では
、表面融合により良伝導性物質が被覆された多数の熱可
塑性樹脂粒子が、隣り合う樹脂粒子間の露出した樹脂表
面部にむいて融着した構成であるから、良伝噂性物質を
そのまま混入する従来の成形体に比べると、良広導性物
質の配合量を少なくすることができ、このため成形加工
性や機械的強度を良&fに維持できるという優れた効果
かある。
As explained above (2), in the resin molded article according to the present invention, a large number of thermoplastic resin particles coated with a highly conductive material by surface fusion are fused toward the exposed resin surface between adjacent resin particles. Compared to conventional molded products in which materials with good conductivity are mixed in as they are, the amount of the material with good conductivity can be reduced, which improves moldability and mechanical strength. It has the excellent effect of being able to maintain

なお、この発明はL記実施例に限定されるものではなく
、例えば異なる種類の良伝導性物質で被覆された樹脂拉
fを組み合わせて使用1るなど、この発明の技術思想内
での種々の変更はもちろん可能である。
Note that this invention is not limited to the embodiment described in L, and various modifications may be made within the technical idea of this invention, such as using a combination of resin plates coated with different types of good conductivity substances. Changes are of course possible.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明による樹脂成形体の内部構造の断面を模式
的に示4一説明図である。 2 良伝専性物質披膜、3.熱可塑性樹脂粒子。
The figure is an explanatory view schematically showing a cross section of the internal structure of the resin molded article according to the present invention. 2. Ryoden exclusive substance arytenoid, 3. Thermoplastic particles.

Claims (1)

【特許請求の範囲】[Claims] (1)表面融合により良伝導性物質が被覆された多数の
熱可塑性樹脂粒子が、隣り合う樹脂粒子間の露出した樹
脂表面部において融着してなる樹脂成形体。
(1) A resin molded article formed by surface fusion of a large number of thermoplastic resin particles coated with a highly conductive substance, fused at the exposed resin surface areas between adjacent resin particles.
JP16238989A 1989-06-23 1989-06-23 Resin moldings Pending JPH0326728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16238989A JPH0326728A (en) 1989-06-23 1989-06-23 Resin moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16238989A JPH0326728A (en) 1989-06-23 1989-06-23 Resin moldings

Publications (1)

Publication Number Publication Date
JPH0326728A true JPH0326728A (en) 1991-02-05

Family

ID=15753654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16238989A Pending JPH0326728A (en) 1989-06-23 1989-06-23 Resin moldings

Country Status (1)

Country Link
JP (1) JPH0326728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225882A (en) * 2011-05-09 2011-11-10 Toyota Motor Corp Thermally conductive insulating resin molding
US8075988B2 (en) 2006-08-07 2011-12-13 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075988B2 (en) 2006-08-07 2011-12-13 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US8137798B2 (en) 2006-08-07 2012-03-20 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US8394491B2 (en) 2006-08-07 2013-03-12 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US9221955B2 (en) 2006-08-07 2015-12-29 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US9822228B2 (en) 2006-08-07 2017-11-21 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US9828477B2 (en) 2006-08-07 2017-11-28 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
JP2011225882A (en) * 2011-05-09 2011-11-10 Toyota Motor Corp Thermally conductive insulating resin molding

Similar Documents

Publication Publication Date Title
CN101358004B (en) IXPE electron radiation on crosslinking polyethylene conductive foam and preparation method thereof
CN102775755B (en) Polyaryl ether nitrile (PEN) and carbonyl iron powder (Fe(CO)5) composite magnetic material and preparation method thereof
CN105504749A (en) Polycarbonate composite material for 3D printing and preparation method thereof
JPH03289004A (en) Conductive resin composite
JPH0326728A (en) Resin moldings
EP1246285A2 (en) Fuel cell separator and method for manufacturing the same
JP2847829B2 (en) Expanded graphite dispersed composite resin molding
JPS5846508A (en) Conductive material and method of producing same
JPS6043874B2 (en) Conductive resin composition
CN112745550B (en) Neutron-shielding polymer composite material, preparation method, wire and application
JPH0785722A (en) Uniform semiconductive composition
JP2022034985A (en) Manufacturing method of rotary molded product, rotary molded product and molding material for rotary molding
JPS6142568A (en) Electromagnetic wave-shielding resin mixture
JPS63189208A (en) Manufacture of electrically conductive polyvinyl chloride resin pellet
JP2593684B2 (en) Ultra high molecular weight polyethylene composition
JP2004115722A (en) Conductive molded product
JPS6157626A (en) Production of molded article of plastic having electromagnetic wave shielding property
JPH0550391B2 (en)
JPS59182819A (en) Electrically conductive molding material
JPH03261513A (en) Fiber molded body for reinforcing and its manufacture
JPS61209120A (en) Manufacture of electrically conductive termoplastic resin molding
JPS6172060A (en) Electromagnetic wave-shielding plastic material
JP3192455B2 (en) Olefin-based resin compound and method for producing the same
JPH0819262B2 (en) Conductive resin composition
JP4333861B2 (en) Multilayer plastic molded product and method for producing the same