JPH03267145A - Absorbent using allophane-based clay mineral and its production - Google Patents

Absorbent using allophane-based clay mineral and its production

Info

Publication number
JPH03267145A
JPH03267145A JP6493790A JP6493790A JPH03267145A JP H03267145 A JPH03267145 A JP H03267145A JP 6493790 A JP6493790 A JP 6493790A JP 6493790 A JP6493790 A JP 6493790A JP H03267145 A JPH03267145 A JP H03267145A
Authority
JP
Japan
Prior art keywords
zeolite
allophane
clay mineral
alkali
based clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6493790A
Other languages
Japanese (ja)
Other versions
JPH0616834B2 (en
Inventor
Hajime Tanaka
田中 甫
Biyou Fujisato
藤郷 ▲ひろし▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6493790A priority Critical patent/JPH0616834B2/en
Publication of JPH03267145A publication Critical patent/JPH03267145A/en
Publication of JPH0616834B2 publication Critical patent/JPH0616834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To obtain the subject multifunctional adsorbent by treating an powdery allophane-based clay mineral in a strong alkaline condition to form a zeolite, weakening the alkalinity with dilution and then adding the powdery allophane- based clay mineral to the zeolite. CONSTITUTION:The zeolite is synthesized by the alkaline treatment to the powdery allophane-based clay mineral with <=3N NaOH solution. Then the supernanant liquor constituted of the unreacted NaOH solution treated with the alkali is adjusted to the weaker alkaline solution of 0.1-3N at 20-60 deg.C temp. Next by adding the excess of the fresh powdery allophane-based clay mineral, the zeolite precursor and the unreacted allophane are formed. Thus, by combining the common alkaline treatments the zeolite and the zeolite precursor are produced and the multifunctional adsorbent is provided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鹿沼土等のアロフェン系粘土鉱物を用いた吸
着剤の製造法に間し、更に詳細には、リン酸等の陰イオ
ンの吸着に優れるアロフェンと、メチレンフルー等の大
型イオンの吸着に優れるゼオライト前駆体と、アンモニ
ウム等の陽イオンの吸着に優れるゼオライトとの夫々の
吸着能に優れた三種の吸着剤を、条件の異なるアルカリ
処理を組み合わせて一連の工程で得ることができる製造
法を提供するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing an adsorbent using allophane clay minerals such as Kanuma soil, and more specifically, to Three types of adsorbents with excellent adsorption ability were used: allophane, which has excellent adsorption ability, zeolite precursor, which has excellent adsorption of large ions such as methylene flue, and zeolite, which has excellent adsorption ability of cations such as ammonium. It provides a manufacturing method that can be obtained in a series of steps by combining treatments.

(従来の技術) 栃木県鹿沼軽石層から得られる鹿沼土に代表されるアロ
フェン系粘土鉱物は、新世代第四紀末に噴出した火山灰
から生成されたゲル状粘土層で、火山国である我が国各
地にあり、全国踏査の結果約10億トン埋蔵されている
ことが知られる未利用資源の−っである。この火山灰層
は、地表近くに1−4mの厚さをもち、磁鉄鉱、長石、
石英なとの造岩鉱物と軽石類を含むが、これらを除いて
得られたものはゲル状のアロフェンを主成分とするもの
で、多孔性であり、表面にアルミナケルを随伴した構造
を有し、吸湿性、吸着力の便れた表面をもつものである
。特にそのアルミナゲル表面は、水溶液中でリン酸や重
金属イオン等のマイナスの電荷をもつものをよく吸着し
、有機酸や微酸性物質を選択的に良く捕集する能力をも
っている。
(Prior technology) Allophane clay minerals, represented by Kanuma soil obtained from the Kanuma pumice layer in Tochigi Prefecture, are a gel-like clay layer produced from volcanic ash erupted at the end of the Quaternary period. It is an untapped resource that is found in various places, and as a result of a nationwide survey, it is known that there are about 1 billion tons of reserves. This volcanic ash layer is 1-4 m thick near the surface and contains magnetite, feldspar,
It contains rock-forming minerals such as quartz and pumice, but the material obtained after excluding these is mainly composed of gel-like allophane, which is porous and has a structure with alumina gel attached to the surface. , has a surface with good hygroscopicity and adsorption power. In particular, the alumina gel surface has the ability to adsorb negatively charged substances such as phosphoric acid and heavy metal ions in an aqueous solution, and to selectively collect organic acids and slightly acidic substances.

又、アルミナとケイ酸から成るアロフェン構造にアルカ
リ処理を施すと、このゲル構造のため反応が活発に進み
、かごめ構造を有する合成ゼオライトが生成されること
が知られており、この合成ゼオライトは、冷媒、水分除
去等の乾燥剤、イオン交換剤、触媒等として用途が広が
っている。
Furthermore, it is known that when an allophane structure consisting of alumina and silicic acid is treated with an alkali, the reaction proceeds actively due to this gel structure and a synthetic zeolite having a kagome structure is produced. Its uses are expanding as refrigerants, desiccants for moisture removal, ion exchange agents, catalysts, etc.

ところで、本発明者がこのアロフェンがらゼオライトの
合成反応過程を探究したところ、アルカリが強い場合に
はゼオライトが合成されるが、比較的アルカリが弱い特
定条件下では結晶性ゼオライトには至らず、結晶性をも
たない謂わばゼオライト前駆体といえる構造が現出し、
これがアロフェン及びゼオライトにはないメチレンブル
ー等の比較的大型イオンの吸着性に優れる特性を有する
活性表面であることを見い出した。
By the way, when the present inventor investigated the reaction process for synthesizing zeolite from this allophane, it was found that when the alkali is strong, zeolite is synthesized, but under specific conditions where the alkali is relatively weak, crystalline zeolite is not produced, and crystalline zeolite is not produced. A structure that can be called a zeolite precursor that has no properties appears,
It was discovered that this is an active surface that has excellent adsorption properties for relatively large ions such as methylene blue, which are not found in allophane and zeolite.

(発明の解決しようとする課B) そこで、本発明はかかる新たな知見に基づき研究をすす
め、このゼオライト前駆体及びゼオライトの合成が条件
を異にするも共通のアルカリて処理されることに着目し
、夫々のアルカリ処理を最も効率良く朝み立て、特性の
異なる優れた吸着力を有するゼオライト前駆体、ゼオラ
イト及びアロフェンを一連の処理で得られるよう工夫し
たものである。
(Question B to be solved by the invention) Therefore, the present invention advances research based on this new knowledge, and focuses on the fact that the zeolite precursor and zeolite are synthesized under different conditions but are treated with a common alkali. However, each alkali treatment is carried out most efficiently in the morning, and a zeolite precursor, zeolite, and allophane having different characteristics and excellent adsorption power can be obtained through a series of treatments.

更に、本発明のもう一つの目的は、その排水処理か未反
応アルカリを含んで廃棄され公害問題を惹起することの
ないよう、アルカリ反応を完全化することを狙いとして
いる。
Furthermore, another object of the present invention is to complete the alkaline reaction so that the wastewater is not disposed of containing unreacted alkali, causing a pollution problem.

(t1題を解決するための手段) 先ず、対象となるアロフェン系粘土鉱物には、鹿沼土の
他、長野県で味噌玉、鳥取県て水土等と呼ばれる各地の
火山軽石層の鉱物が含まれる。
(Means for solving problem t1) First, the target allophane clay minerals include minerals from volcanic pumice layers in various places, such as Kanuma soil, which is called misodama in Nagano prefecture, mizuto in Tottori prefecture, etc. .

〈ゼオライトの合成〉 そして、このアロフェン系粘土鉱物を、比較的強い具体
的には3規定以上の濃度のNap)(溶液で、望まし・
くは80°C以上の温度でアルカリ処理すると、先ず表
面からアルミナゲルが溶脱され、中心本体をつくるアル
ミナとケイ酸とに反応か及びアルミノケイ酸塩に結晶化
し、三改元骨組みのかこめ構造を有するゼオライトが合
成される。
<Synthesis of zeolite> Then, this allophane clay mineral is mixed with a relatively strong solution, specifically Nap at a concentration of 3N or higher, as desired.
When treated with alkali at a temperature of 80°C or higher, the alumina gel is first leached from the surface, reacts with the alumina and silicic acid that make up the central body, and crystallizes into aluminosilicate, which has a three-layer structure. Zeolite is synthesized.

この合成ゼオライトは、その特異な構造により、水分、
アンモニウムイオン等に対し強い選択的吸着力を有し、
乾燥剤、空気清浄化の吸着剤、又は排水中のアンモニア
吸着剤として有効である。
This synthetic zeolite has a unique structure that allows it to absorb water and
It has strong selective adsorption power for ammonium ions, etc.
It is effective as a desiccant, an adsorbent for air purification, or an ammonia adsorbent in wastewater.

〈ゼオライト前駆体とその生成条件〉 次いで、ゼオライト前駆体の合成反応に移るが、その前
にこのゼオライト前駆体の特異な吸着能の発見について
説明する。
<Zeolite precursor and its production conditions> Next, we will move on to the synthesis reaction of the zeolite precursor, but before that, we will explain the discovery of the unique adsorption ability of this zeolite precursor.

即ち、アロフェン系粘土鉱物に比較的強いNaOH溶液
でアルカリ処理すると、結晶性のゼオライトが合成され
るのは前述の通りであるが、この反応過程を本発明者が
探究したところ、比較的アルカリが弱い特定条件下では
、結晶性ゼオライトには至らず、結晶性をもたない謂わ
ばゼオライト前駆体といえる構造が現出し、これがアロ
フェン及びゼオライトにはないメチレンブルー等の比較
的大型イオンの吸着性に優れる特性を有する活性表面で
あることを見い出したのである。
That is, as mentioned above, crystalline zeolite is synthesized when allophane clay minerals are treated with a relatively strong alkali solution of NaOH, but when the present inventor investigated this reaction process, it was found that a relatively alkali-based zeolite is synthesized. Under weak specific conditions, a crystalline zeolite does not develop, but instead a non-crystalline structure, which can be called a zeolite precursor, appears, and this has the ability to adsorb relatively large ions such as allophane and methylene blue, which zeolite does not have. They discovered that it is an active surface with excellent properties.

以下にその詳細を説明する。The details will be explained below.

先ず、反応処理温度とアンモニウムイオン吸着量とX線
の回折強度の変化を追ったところ、表−1の通りであっ
た。
First, the changes in reaction treatment temperature, ammonium ion adsorption amount, and X-ray diffraction intensity were as shown in Table 1.

表−1から、アルカリ処理と共にPO4イオンの吸着能
が急激に減するが、反対にNH4イオンの吸着能が増大
し、且つ、一定値域ではX線の回折ピークが立ち上がら
ない段階で、NH4イオンの吸着能が増大している。こ
のことは、結晶性ゼオライトの生成前に、アロフェンて
なくゼオライトでもない、新しい構造の層が現出してい
ることをボす。
Table 1 shows that with alkali treatment, the adsorption capacity for PO4 ions decreases rapidly, but on the contrary, the adsorption capacity for NH4 ions increases, and at the stage where the X-ray diffraction peak does not rise in a certain value range, the adsorption capacity for NH4 ions decreases rapidly. Adsorption capacity is increased. This indicates that a new structural layer, neither allophane nor zeolite, appears before the formation of crystalline zeolite.

そこで、この新しい層についてその吸着特性を検討した
ところ、表−2の如く、メチレンブルーイオン(イオン
径17.OX7.6X3.25A°)等の比較的大型イ
オンの吸着性に優れることが判明した。
Therefore, we investigated the adsorption properties of this new layer, and as shown in Table 2, it was found that it has excellent adsorption properties for relatively large ions such as methylene blue ions (ion diameter: 17.0x7.6x3.25A).

この新しい層の構造は、メチレンブルーイオンのような
大きなイオンを取り込めることから、ゼオライトのよう
な細い孔ではなく、粒子内祁は太い孔を有するものと推
定され、この活性表面層は、ゼオライトが生成すると判
断される80℃以上の温度領域でメチレンブルーイオン
の吸着能を失うことから、謂わばゼオライト前駆体と考
えることがてきる。
The structure of this new layer is able to take in large ions such as methylene blue ions, so it is assumed that the particles have thick pores instead of narrow pores like zeolite, and this active surface layer is formed by the zeolite. Since it loses its ability to adsorb methylene blue ions in a temperature range of 80°C or higher, it can be considered as a so-called zeolite precursor.

そこで、このゼオライト前駆体が吸着活性でメチレンブ
ルーイオン等の大型イオンの吸着性に優れることに着目
し、更にアロフェン及びゼオライトとは異なる新たな吸
着剤とし・て応用すへく処理法を研究した。
Therefore, we focused on the fact that this zeolite precursor has adsorption activity and is excellent in adsorbing large ions such as methylene blue ions, and further researched the application of this zeolite precursor as a new adsorbent different from allophane and zeolite.

その結論から先に述べると、濃度0.1〜3規定で、温
度約20〜60℃温度の弱アルカリ溶液て、原料アロフ
ェン系粘土を処理することが生成鉱物の適合条件である
ことが判明した。その実験結果を示すと、処理液濃度と
吸着能の関係を検討した表−3、及び処理温度と吸着能
との関係を検討した表−4の通りである。
To explain the conclusion first, it was found that processing the raw allophane clay with a weak alkaline solution at a concentration of 0.1 to 3N and a temperature of approximately 20 to 60 degrees Celsius is a suitable condition for the produced minerals. . The experimental results are shown in Table 3, which examines the relationship between treatment liquid concentration and adsorption capacity, and Table 4, which examines the relationship between treatment temperature and adsorption capacity.

表−3及び表−4から、メチレンアル−イオンのように
大きなイオン径を有する吸着質に対する吸着能はINを
過ぎろと直線的に減少し・、3Nになると半減してしま
う傾向を示すから、1度は高濃度を避けて3N以下が適
当である。又、処理温度は、20℃以上てNH4イオン
の吸着能が増大し、80℃からX線回折ピークが急激に
立ち上がってしまうから、メチレンブルーイオンが最大
の吸着能を示す20〜60℃が最適となる。よって、前
記の通りゼオライト前駆体の生成条件は、濃度0.1〜
3規定で、温度的20〜60”C温度の弱アルカリ溶液
で処理するのが最適環境となる。
Tables 3 and 4 show that the adsorption capacity for adsorbates with large ionic diameters, such as methylene al-ion, decreases linearly after IN and then decreases by half when it reaches 3N. , once, it is appropriate to avoid high concentration and use 3N or less. In addition, as the treatment temperature is 20°C or higher, the adsorption capacity for NH4 ions increases, and the X-ray diffraction peak rises rapidly from 80°C, so the optimal treatment temperature is 20 to 60°C, where methylene blue ions have the maximum adsorption capacity. Become. Therefore, as mentioned above, the conditions for producing the zeolite precursor are a concentration of 0.1 to
The optimum environment is treatment with a weak alkaline solution at a temperature of 20 to 60''C under 3N.

く上澄液の利用と調整〉 さて、このゼオライト前駆体の生成条件は上記の通りで
あるが、本発明は一歩進んで、前記ゼオライトの合成に
用いた強アルカリの反応後の温源に多分の未反応アルカ
リが残存することに看目し・て、この未反応アルカリを
利用する一連の工程を開発した。
Utilization and Adjustment of Supernatant Solution Now, the conditions for producing this zeolite precursor are as described above, but the present invention goes one step further by adding a heat source to the temperature source after the reaction of the strong alkali used in the synthesis of the zeolite. Recognizing that unreacted alkali remains, we developed a series of processes to utilize this unreacted alkali.

即ち、前記七オライドの合成反応は高濃度アルカリであ
るのに対し、ゼオライト前駆体は比較的低濃度で良く、
前記ゼオライトの合成反応後の未反応アルカリを含む上
澄液を用い、これを分離し・て・又は、その反応槽のま
まで、これに新たなアルカリを加えるか、或いは未だ高
濃度であるときは希釈し、濃度0.1〜3規定で、温度
約20〜60℃温度の弱アルカリ溶液に調整する。そし
、て、この調整液にアロフェン系粘土鉱物を投入して反
応させると、前述の条件に適合して、アルミナケルを溶
脱し、非晶質の七オライド前駆体が生成する。この結果
、未反応のアルカリを再度ゼオライト前駆体の合成に用
いることかでき、アルカリの収率を大幅に向上させるこ
とができる。
That is, whereas the heptaolide synthesis reaction requires a high concentration of alkali, the zeolite precursor can be used at a relatively low concentration.
After the zeolite synthesis reaction, use the supernatant containing unreacted alkali and separate it, or add new alkali to it in the reaction tank, or when the concentration is still high. is diluted and adjusted to a weak alkaline solution with a concentration of 0.1 to 3N and a temperature of about 20 to 60°C. Then, when an allophane clay mineral is added to this prepared solution and reacted, the alumina kel is leached out and an amorphous heptaolide precursor is produced, meeting the above-mentioned conditions. As a result, unreacted alkali can be used again to synthesize the zeolite precursor, and the yield of alkali can be significantly improved.

と同時に、この反応の際に、アルカリに対しアロフェン
系粘土鉱物の量は予想反応量より相当量余剰に投入する
。すると、この余剰のアロフェン系粘土鉱物によって対
応するアルカリか全て反応し、未反応アルカリを廃棄す
る場合に生しる公害問題を未然に防ぐことができる。更
に、過剰に存在するアロフェン系粘土鉱物が、そのまま
反発せずに残り、ゼオライト前駆体と混在する状態とな
り、そのアロフェン系粘土鉱物の持つ独自の吸着特性を
生かすことができろ。即ち、ゼオライト前駆体は、比較
的大型のイオン吸着性に優れ、染料、洗剤の排水用吸着
剤等に利用され、アロフェン系粘土鉱物はリン酸イオン
、重金属イオン等のマイナスイオンの吸着性に優れるの
で、双方の長所を発揮するように作用する。
At the same time, during this reaction, the amount of allophane-based clay mineral relative to the alkali is added in an amount that is considerably in excess of the expected reaction amount. Then, all of the corresponding alkali reacts with this surplus allophane clay mineral, and it is possible to prevent the pollution problem that would occur when unreacted alkali is discarded. Furthermore, the excessive allophane clay minerals remain without being repelled and become mixed with the zeolite precursor, making it possible to take advantage of the unique adsorption properties of the allophane clay minerals. In other words, zeolite precursors have excellent adsorption properties for relatively large ions and are used as adsorbents for drainage of dyes and detergents, while allophane clay minerals have excellent adsorption properties for negative ions such as phosphate ions and heavy metal ions. Therefore, it works to bring out the best of both worlds.

この混合物は、前記合成ゼオライトと分離させて用いて
も良いか、これらを混ぜて三者の混合物としても良い。
This mixture may be used separately from the synthetic zeolite, or may be mixed to form a mixture of the three.

又、対象とされる排液等に含まれる除去すべき吸着質に
応して、これら三者の配合比を調節し1、製造すること
もてきる。
In addition, the blending ratio of these three components can be adjusted according to the adsorbent to be removed contained in the target wastewater, etc. 1.

(発明の効果) 以上の構成に基つく本吸着剤製造法は、一連のアルカリ
処理によって、冷媒、水分除去等の乾燥剤、イオン交換
剤、触媒等に利用できる合成ゼオライトと、染料、洗剤
の排水用吸着剤等に利用できるゼオライト前駆体と、水
溶液中でリン酸や重金属イオン等のマイナスの電荷の吸
着性に優れるなアロフェン系粘土鉱物と夫々特性の異な
る吸着剤を製造することができ、多機能な吸着剤を得る
ことができるという優れた効果をもたらす。
(Effects of the Invention) The present adsorbent manufacturing method based on the above structure uses a series of alkali treatments to produce synthetic zeolite, which can be used as a refrigerant, a desiccant for removing water, an ion exchange agent, a catalyst, etc., and a dye and detergent. It is possible to produce adsorbents with different characteristics, including zeolite precursors that can be used as adsorbents for wastewater, etc., and allophane clay minerals that have excellent adsorption properties for negative charges such as phosphoric acid and heavy metal ions in aqueous solutions. This has the excellent effect of making it possible to obtain a multifunctional adsorbent.

又、その手法が一連のアルカリ処理で行なうため、未反
応のアルカリを再度ゼオライト前駆体の合成に用いるこ
とができ、アルカリ溶液の反応収率を最大にするとかで
きるという効率上の効果も発揮する。
In addition, since the method involves a series of alkali treatments, unreacted alkali can be used again to synthesize the zeolite precursor, which also has the effect of increasing efficiency by maximizing the reaction yield of the alkaline solution. .

更に、余剰分に加えたのアロフェン系粘土鉱物によって
アルカリの反応を完結させることができ、未反応アルカ
リを廃棄する場合に生じる公害問題を未然に防ぐことが
できる点ても有利である。
Furthermore, it is advantageous in that the alkali reaction can be completed by the allophane clay mineral added to the surplus, and the pollution problem that would occur when unreacted alkali is discarded can be prevented.

(実施例) 原料アロフェン系粘土鉱物として鹿沼土100グラムを
用い、これを200メツシュ程度に微粉末化した。そし
て、濃度の3Nで温度80℃のNaOH溶液200 m
 lを調整し、これに鹿沼土をゆっくり攪拌しながら投
入し、約2時間反応させた。次いで、このNaOH溶液
の上澄液を採取し、これを0.5N濃度、40℃の弱ア
ルカリ溶液に調整した0次いで、該調整液に、再度鹿沼
土を200グラム投入し、30分程度反応させた。そし
て、調整溶液から反応後の粉末を取り出して乾燥し、三
者を混合させて1mmφの顆粒状の製品とした。この製
品のイオン除去率は、表−5の通り、三種のイオンに対
し優れた値を示し・た。
(Example) 100 grams of Kanuma soil was used as a raw material allophane clay mineral, and it was pulverized to about 200 mesh. Then, 200 m of NaOH solution with a concentration of 3N and a temperature of 80°C
1 was adjusted, Kanuma soil was added thereto with slow stirring, and the mixture was allowed to react for about 2 hours. Next, the supernatant liquid of this NaOH solution was collected and adjusted to a weak alkaline solution with a concentration of 0.5N and a temperature of 40°C.Next, 200 grams of Kanuma soil was again added to the adjusted liquid and reacted for about 30 minutes. I let it happen. Then, the powder after the reaction was taken out from the adjusted solution and dried, and the three components were mixed to form a granular product with a diameter of 1 mm. As shown in Table 5, the ion removal rate of this product showed excellent values for three types of ions.

【図面の簡単な説明】 図面は本発明製造法の実施例を示すフローチャート図。[Brief explanation of drawings] The drawing is a flowchart showing an embodiment of the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  粉末状アロフェン系粘土鉱物を濃度3規定以上のNa
OH溶液でアルカリ処理してゼオライトを合成し、次い
で、該アルカリ処理した未反応のNaOHを含む上澄液
を用い、これを0.1〜3規定の濃度、約20〜60℃
温度の弱アルカリ溶液に調整し、該調整溶液に新に過剰
量の粉末状アロフェン系粘土鉱物を投入してゼオライト
前駆体と未反応アロフェンとを得ることを特徴とする吸
着剤の製造法。
Powdered allophane clay mineral with a concentration of 3N or higher
Zeolite is synthesized by alkali treatment with an OH solution, and then, using the alkali-treated supernatant containing unreacted NaOH, it is heated at a concentration of 0.1 to 3N at about 20 to 60°C.
A method for producing an adsorbent, which comprises adjusting the temperature to a weakly alkaline solution and adding an excess amount of powdered allophane clay mineral to the adjusted solution to obtain a zeolite precursor and unreacted allophane.
JP6493790A 1990-03-15 1990-03-15 Production method of adsorbent using allophane clay mineral Expired - Lifetime JPH0616834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6493790A JPH0616834B2 (en) 1990-03-15 1990-03-15 Production method of adsorbent using allophane clay mineral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6493790A JPH0616834B2 (en) 1990-03-15 1990-03-15 Production method of adsorbent using allophane clay mineral

Publications (2)

Publication Number Publication Date
JPH03267145A true JPH03267145A (en) 1991-11-28
JPH0616834B2 JPH0616834B2 (en) 1994-03-09

Family

ID=13272443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6493790A Expired - Lifetime JPH0616834B2 (en) 1990-03-15 1990-03-15 Production method of adsorbent using allophane clay mineral

Country Status (1)

Country Link
JP (1) JPH0616834B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2725956A1 (en) * 1994-10-25 1996-04-26 Zeau Anthony Absorbent skin wipe for drying perspiration
JP2008247640A (en) * 2007-03-29 2008-10-16 Denki Kagaku Kogyo Kk Method for synthesizing lithium-containing edi-type zeolite
JP2012188577A (en) * 2011-03-11 2012-10-04 Takuma Co Ltd Refining apparatus and refining process for producing diesel fuel oil and production system and production process for diesel fuel oil using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2725956A1 (en) * 1994-10-25 1996-04-26 Zeau Anthony Absorbent skin wipe for drying perspiration
JP2008247640A (en) * 2007-03-29 2008-10-16 Denki Kagaku Kogyo Kk Method for synthesizing lithium-containing edi-type zeolite
JP2012188577A (en) * 2011-03-11 2012-10-04 Takuma Co Ltd Refining apparatus and refining process for producing diesel fuel oil and production system and production process for diesel fuel oil using the same

Also Published As

Publication number Publication date
JPH0616834B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
Wen et al. application of zeolite in removing salinity/sodicity from wastewater: A review of mechanisms, challenges and opportunities
Hokkanen et al. Adsorption of Ni2+, Cd2+, PO43− and NO3− from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite
Shiao et al. Phosphate removal from aqueous solution from activated red mud
Wang et al. Removal of phosphate from aqueous solution by SiO 2–biochar nanocomposites prepared by pyrolysis of vermiculite treated algal biomass
Zendehdel et al. Removal of fluoride from aqueous solution by adsorption on NaP: HAp nanocomposite using response surface methodology
JPH0417097B2 (en)
JPWO2010026975A1 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
Rongshu et al. Study of a new adsorbent for fluoride removal from waters
Li et al. Performance investigation of struvite high-efficiency precipitation from wastewater using silicon-doped magnesium oxide
Kim et al. Removal of fluoride from water using thermally treated dolomite and optimization of experimental conditions using response surface methodology
JP6707743B2 (en) Method for manufacturing desiccant
KR101629910B1 (en) Manufacturing method for deodorant compounding using the waste coal ash
Mei et al. Phosphorus adsorption/desorption kinetics of bioretention
JPH03267145A (en) Absorbent using allophane-based clay mineral and its production
US7097772B2 (en) Method of purifying a waste stream using a microporous composition
CN103771452B (en) A kind of square beta-molecular sieve and preparation method thereof
JPH06305724A (en) Synthetic porous material and its production
KR20180107364A (en) Manufafcturing method of zeolite with mesopore and micropore for metal absorption
WO2013027807A1 (en) Phosphorous recovery agent, and method for producing same
JP2001220129A (en) Method for highly concentrated synthesis of tubular aluminum silicate by continuous addition of precursor
KR100301790B1 (en) Aaaaa
JPS5986687A (en) Preparation of zeolite-based soil conditioner from coal ash
Kuwahara et al. Synthesis of hydroxyapatite–zeolite composite material from disposed steel slag and investigation of its structural and physicochemical characteristics
JP2005029453A (en) Method of manufacturing glass having zeolitized surface
JP4631022B2 (en) Novel aluminum silicate and its synthesis method