JPH0326672A - Group control device for elevator - Google Patents

Group control device for elevator

Info

Publication number
JPH0326672A
JPH0326672A JP1160714A JP16071489A JPH0326672A JP H0326672 A JPH0326672 A JP H0326672A JP 1160714 A JP1160714 A JP 1160714A JP 16071489 A JP16071489 A JP 16071489A JP H0326672 A JPH0326672 A JP H0326672A
Authority
JP
Japan
Prior art keywords
car
predicted
call
cars
empty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1160714A
Other languages
Japanese (ja)
Other versions
JPH0798619B2 (en
Inventor
Shintaro Tsuji
伸太郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1160714A priority Critical patent/JPH0798619B2/en
Priority to US07/538,359 priority patent/US5083640A/en
Priority to GB9014214A priority patent/GB2235312B/en
Priority to KR1019900009487A priority patent/KR930004754B1/en
Priority to CN90103320A priority patent/CN1019288B/en
Publication of JPH0326672A publication Critical patent/JPH0326672A/en
Priority to SG76794A priority patent/SG76794G/en
Priority to HK66794A priority patent/HK66794A/en
Publication of JPH0798619B2 publication Critical patent/JPH0798619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Elevator Control (AREA)

Abstract

PURPOSE:To reduce a wait time by dicision-comparing an estimated number of sets of cages in a predetermined floor area with the first and second predetermined values and limiting an estimated vacant cage to be assigned to a riding spot call or excepting the cage from the assigned object. CONSTITUTION:In a group control device 10, information from each cage control unit 11 to 14 is input, and an estimated vacant cage, placed in a door-closed condition with no call provided, is detected by a detecting means 10H, while in a number of sets of cages-estimating arithmetic means 10E, being based on an estimated cage position and an estimated cage direction from an estimating means 10D, presence of and an number of sets of cages, estimated in a predetermined floor area, are estimation-calculated. This estimated number of sets is decision-compared with the first and second predetermined values, and the estimated vacant cage is limited to be assigned to a riding spot call or excepted from the assigned object by an assignment limiting means 10J. Thus, by considering a change of cage arrangement following the lapse of time and possibility of providing a vacant cage, a wait time for the riding spot call can be reduced from the present point of time over to the near future.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は,複数台のエレベータのかごの中から乗場呼
びにに対するサービスかごを選択し割り当てるエレベー
タの群管理装置に関するものである. [従来の技術] 複数台のエレベータが併設された場合は.通常群管理運
転が行われる.この群管理運転の一つに割当方式がある
が.これは乗場呼びが登録されると直ちに各かご毎に割
当評価値を演算し,この評価値が最良のかごをサービス
すべきかごとして選択して割り当て,上記乗場呼びには
割当かごだけを応答させるようにして.運行効率の向上
.および乗場待時間の短縮を計るものである.また,こ
のような割当方式の群管理エレベータにおいては,一般
に各階の乗場に各かごおよび各方向毎に到着予報灯を設
置し.これにより乗場待客に対して割当かごの予報表示
を行うようにしているので.待客は安心して予報かどの
前でかごを待つことができる. さて,上記のような乗場呼びの割当方式における割当評
価値は,現在の状況がそのまま進展するとしたらどのか
ごに乗場呼びを割り当てら最適かという観点に基づいて
演算されている.すなわち,現在のかご位置とかご方向
.および現在登録されている乗場呼びやかご呼びに基づ
いて,かごが上記呼びに順次応答して各階の乗場に到着
するまでに要する時間の予測値(以下,これを到着予想
時間という)と.乗場呼びが登録されてから経過した時
間(以下,これを継続時間という)を求め,さらに上記
到着予想時間と上記継続時間を加算して現在登録されて
いるすべての乗場呼びの予測待時間を演算する.そして
,これらの予測待時間の総和もしくは予測待時間の2乗
値の総和を割当評価値として設定し,この割当評価値が
最小となるかごに上記乗場呼びを割り当てる.このよう
な従来の方式では,乗場呼びの割当を行う場合,現在の
状況の延長線上で最適か否かを判断しているためにその
割当の後に新たに登録された乗場呼びが長持ちになると
いう不具合が発生していた.この不具合発生の例を第1
2図〜第15図によって説明する.第12図において,
AおよびBは.それぞれ1号機および2号機のかこて,
1号機は6階のかこ呼び(6C)に応答すべく上昇中で
あり,2号機は5111の上り呼び(5u)に割り当て
られており,上り割当(5uB)に応答すべく上昇中で
ある.このような状況において.第13図のように9階
に下り呼び(9d)が登録されたとする.上記従来の割
当方式の割当評価値に従うと.全体として待時間が最小
になるようにかこAに9階の下り呼び(9d)を割り当
てるため.1号機は9階の下り割当(9dA)を持ち,
その結果2台とも上方に向かって走行することになる. もし,この9階の下り呼び(9d)の割当後しばらくし
て下方階に,例えば1階に上り呼び(1u)が登録され
たとすると,この1階の上り呼び(1u)はかごAおよ
びかごBの背後呼びとなり,いずれのかごに割り当てら
れたとしても応答されるまでに時間がかかり長待ちにな
ってしまうことになる.一方.9階の下り呼び(9d)
をかとBに割り当てた場合.約15秒後には第14図の
ようにかごAは6階で空かごになって待機状態になり,
かごBは5JIlでサービス中(この階で10階のかご
呼び(10c)が登録されたとする)と予想される.し
たがって.その後にIllifの上り呼び(1u》が登
録されたとしても.第15図に示すように6階で待機し
ているかごAが直行サービスするので長待ちになること
はない.このように長持ちを防止するには,近い将来の
かご配置がどうなるのか,空かごが生じる可能性はどう
かを考慮し,一時的に待時間が長くなる割当を行ってで
も,かごが1か所に集まらないように乗場呼びを割り当
てる必要がある. [発明が解決しようとする課題] 従来,かごが1か所に集まらないように乗場呼びを割り
当てる方式が次に述べるようにいろいろ提案されてきた
が,十分な効果が得られていない. 特公昭55−32625号公報に示されているエレベー
タの群管理装置は,上記ゾーン割当方式と同様に.かご
が1か所に集まることを防ぎ運転効率の向上を計るため
に,乗場呼びが登録されるとその呼びの近くの階床に停
止する予定のあるかごを割り当てるという割当方式であ
る.この割当方式においても.近接階への停止予定かご
の有無に注目しているのみで,停止予定かごがその階に
到着するまでにどのくらいの時間を要するのか.他の乗
場呼びがどのように分布して登録されていていつ頃応答
されそうであるのか,近い将来空がごになりそうなかご
はないのか,他のかごはどの階にいてどの方向に運行し
ようとしているのか,など時間経過に伴うかご配置の変
化などを適確にとらえた判断を行っていないので,やは
り長持ち呼びが発生するという問題点があった.さらに
また,特公昭62−56076号公報に示されたエレベ
ータの群管理制御方法は,乗り捨て位置にかごを待機さ
せるものにおいて,新たに乗場呼びが発生するとこの乗
場呼びを順次各かごに仮に割り当てて仮割当かごの乗り
捨て位置を予想し,仮割当かごの予想乗り捨て位置とそ
の他のかごの位置からかごの分散度を演算し.少なくと
も上記分散度を各割当かごの評価値として分散度が大き
いほど割り当てられやすくなるようにして,各かごの上
記評価値から割当かごを決定するようにした割当方式で
ある.これにより.乗場呼びにサービス終了後も分散配
置された状態となり,分散待機による空かごの無駄運転
を防止して省エネルギーに大きな効果を発揮すると共に
ビル居住者の不審感をなくすことができるという効果を
有するものである.しかし,この割当方式はその目的か
ら明らかなように,夜間などの閑散時を対象とするもの
で,かごが全て空かごて待機している状態で乗場呼びが
一つ登録された場合を前提としている.そのため,乗場
呼びが次々に登録され各かごが呼びに応答しながらそれ
ぞれ運行しているというような交通状態における乗場呼
び割当にはこの割当方式を適用できず.長待ちが発生す
るという問題点があった.すなわち,このような問題が
生じるのは,空かごの配置をバランスさせることを目的
としているため,仮割当かご以外のかごに対し時間経過
に伴うかご位置の変化を考慮する構成になっていない(
その前提からして他のがごのかご位置変化を考慮する必
要がない)こと.および上記仮割当かごが乗り捨てられ
る時点のがご位置(その時点には全てのかごが空がごと
なり待機状態となる〉にのみ着目して乗場呼び割当の判
断をしていることが原因である. さらにまた,昭1163年電気・情報間連学会(昭和6
3年10月3日〜5日開催.会場:新潟大学工学部)に
おいて発表された「エレベーターの群管理」 (予稿集
第2分冊P2−117〜120)では.ファジィ理論を
応用した新群管理方式が提案されている.これには.フ
ァジィルールの例として下記のものが示されている. (Rule  Rm) IF (上方階に乗場呼び発生) and (あるかご(A)に割り当てると上方階にかご
が集中する) THEN 《上記の性質(A)を持つかごを除いて割当候補かごと
する) (割当候補かごの中から評価値最小の かごを割り当てる) さらに.シミュレーション例として第16図に示すよう
な状況でIOFの下り呼びが登録されたときには.空か
ごてある2号機と4号機を温存し,上方階にかご呼びを
持つ1号機と3号機の中から評価値に最も良いかご(3
号構)を割当かごに選択することが良いとしている.こ
れに従えば近い将来の呼び発生を考慮した割当が行え長
待ちの発生を防止することができる.しかしながら,「
上方階にかごが集中する」という判定が単に「上方階に
かご呼びを持つ」,または「上方階に割当呼びを持つ」
という条件だけで行われており.時間経過に伴うかご相
互の位置関係の変化を考慮する構成になっていない.そ
のため,いずれは上方階に達するかもしれないが他のか
ごとの位置関係が明確に規定されていないため,実際に
かごが「上方附に集中』しない場合も十分考えられ,そ
の場合には空かごを温存したがためにかえって待時間を
長くするという問題点があった.また,さらに.近い将
来に呼びに答え終わったあと戸閉状態で待機するであろ
うというかごく=予測空かご〉の発生予測を全く考慮し
ていないため.近い将来の長待ちの発生の防止効果が十
分でないという問題点があった. この発明は.かかる問題点を解決するためになされたも
ので,時間経過に伴ったかご配置の変化と空かごになる
可能性とを考慮し,現時点から近い将来にわたって乗場
呼びの待時間を短縮することのできるエレベータの群管
理装置を得ることを目的とする. [課題を解決するための手段] この発明に係るエレベータの群管理装置は,乗場釦が操
作されると乗場呼びを登録する乗場呼゜び登録手段と,
前記乗場呼びに対して複数のかごの中からサービスすべ
きかごを選択して割り当てる割当手段と.かごの運行方
向決定.出発,停止.および戸開閉等の運転制御を行い
,かごをかご呼びと前記割当乗場呼びに応答させるかご
制御手段と,かごがすべての呼びに答え終わると答え終
わった階床で待機させるか.もしくは所定の階床へ走行
させて待機させる待機手段とを有するエレベータの群管
理装置において.現時点で応答すべき呼びを持っている
かごが呼びに順次応答して所定時間経過した後に応答す
べき呼びを持たす戸閉状態になっていると予測されるか
ごを予測空かごとして検出する予測空かご検出手段と.
かごが現時点から前記かご呼びと前記割当乗場呼びに順
次応答して所定時間経過後のかご位置とかご方向とをそ
れぞれ予測演算するかご位置予測手段と,前記予測かご
位置と前記予測かご方向に基づいて,前記所定時間経過
後に所定階もしくは所定階床域にいるであろうかごの有
無または台数を予測演算するかご台数予測手段と,前記
所定時間経過後に前記所定階もしくは前記所定階床域内
にいると予測されるかごの予測台数を第1の所定値と比
較判定する第1の判定手段と予測かごの台数を第2の所
定値と比較判定する第2の判定手段並びに前記第1の判
定手段と前記第2の判定手段の判定結果に基づいて前記
予測空かごが前記乗場呼びに割り当てるのを制限するか
もしくは割当対象から除外する指令を出力する第3の判
定手段とを有する割当制限手段とを備えたものである. [作用] この発明においては,乗場呼びに対する割当動作におい
て,所定時間経過後に所定階もしくは所定階床域にいる
であろうかごの台数の予測値と予測空かごの台数を使用
して所定の動作を行う.[実施例] 第1図〜第10図はこの発明の一実施例を示す図である
.なお,この実施例では12階建ての建物に4台のかご
が設置されているものとする.第1図は全体構成図で.
群管理装置(10)とこれによって嗣御される1号機〜
4号機用かご制御装置(11)〜《14)から構成され
ている.(10A)は乗場呼び登録手段で,各階の乗場
呼び(上り呼び.および下り呼び)の登録・解消を行う
と共に乗場呼びが登録されてからの経過時間,すなわち
継続時間を演算する.(IOB)は到着予想時間演算手
段で,各かごが各階の乗場(方向別)に到着するまでに
要する時間の予測値.すなわち到着予想時間を演算する
.(I OC)は乗場呼びにサービスするのに最良のか
ごを1台選択して割り当てる割当手段で,乗場呼びの予
測待時間と後述する割当制限手段による判定結果とに基
づいて割当演算を行う.(IOD)はかご位置予測手段
で,かごが現時点から所定時間T経過後のかご位置とか
ご方向とを予測演算する.(IOE)はかご台数予測手
段で,前記予測かご位置と予測かご方向に基づいて所定
時間T経過後に所定階床域にいるであろうかご台数を予
測演算する. (1 0 F)は待機手段で,かごが全
ての呼びに答え終わると答え終わった階床もしくは特定
階でかごを待機させる.(IOG)は空かご検出手段で
.応答すべき呼びを持っていず戸閉状態のかごを空かご
として検出する.《10H)は予測空かご検出手段で,
現時点で応答すべき呼びを持っているかご(呼びに応答
中のかごも含む)が所定時間T経過後に空かごになって
いると予想されるかごを予測空かごとして検出する.(
IOJ)は割当制限手段で,前記予測空かごに対して乗
場呼びの割当を制限するもしくは割当対象から除外する
かどうかを判定する. (11A)は周知の乗場呼び打消手段で.1号機用かご
制御装置(11)に設けられ,各階の乗場呼びに対する
乗場呼び打消信号を出力する.(11B)は周知のかご
呼び登録手段で.同じく各階のかご呼びを登録する.(
11C)は周知の到着予報灯制御手段で.同じく各階の
到着予報灯(図示しない)の点灯を制御する, (1 
1 D)は周知の運行方向制御手段で,かごの運行方向
を決定する.(11E》は周知の運転制御手段で,かご
呼びゃ割り当てられた乗場呼びに応答させるためにかご
の走行および停止を制御する. (1 1 F)は周知
の戸制御手段で,戸の開閉を制御する.なお.2号機〜
4号機用かご制御装置(12)〜(14)も1号機用か
ご制御装置(11)と同様に構成されている.第2図は
,群管理装置(10)の構戒ブロック図で,群管理装置
(10)はマイクロコンピュータ(以下.マイコンとい
う〉で構威され,MPU(マイクロプロセシングユニッ
ト)(1 0 1 ). ROM(102).RAM(
1 03),入力回路(104),および出力回路(1
05)を有している.入力回路(104)には.各階の
乗場釦からの乗場釦信号(19).および1号機〜4号
機用かご制御装置(11)〜(14)からの1号機〜4
号機の状態信号が入力され.出力回路(105)から各
乗場釦に内蔵された乗場釦灯への信号(20>.および
1号機〜4号機用かご制御装置(11)〜(14)への
指令信号が出力される. 次に,この実施例の動作を第3図〜第8図を参照しなが
ら説明する.第3図は群管理装置(1o)を構成するマ
イコンのROM(1 02)に記憶された群管理プログ
ラムを示すフローチャート.第4図はその空かご検出プ
ログラム(33)を表すフローチャート,第5図は同じ
くかご位置予測プログラム(35)を表すフローチャー
ト,第6図は同じくかご台数予測プログラム(36)を
表すフローチャート.第7図は同じく割当制限濱箪プロ
グラム〈37〉を表すフローチャート,第8図は建物を
複数の階床域(ゾーン)に分割した状態を表す図である
.まず.第3図の群管理動作の概要を説明する.ステッ
プ(31)の入力プログラムは,乗場釦信号(19),
1号機〜4号機用かご制御装置(11)〜(14)から
の状態信号《かご位置,方向.停止.走行,戸開閉状態
,かご負荷.かご呼び,乗場呼び打消信号など)を入力
するもので周知のものである. ステップ(33)の空かご検出プログラムでは,第4図
に示すように応答すべき呼びを持っていず戸閉状態のか
ごを空かごとして検出する.第4図において,ステップ
(46).すなわちステップ(42)〜(45)は,1
号機が現在空かごてあるかどうかを検出する手順を表す
.1号機がかご呼びまたは剖当乗場呼びを持っていす,
無方向で戸閉状態であれば,ステップ(42)→ステッ
プ(44〉→ステップ(45〉へと進み,ここで空かご
フラグAV1を「1』にセットする.上記以外は.ステ
ップ(43)で空かごフラグAVIを「0』にリセット
する.2号機〜4号機に対しても同様にステップ(47
〉〜(49)でかごの検出を行い,空かごフラグAV2
〜AV.を設定する. ステップ(34)の到着予想時間演算プログラムでは.
1号機〜4号機に対して各乗場i(1=1.2,3,・
・・,11は,それぞれB2,Bl.1,・・・.9階
の上り乗場.i=12.13,  ・・・21.22は
.それぞれ10.9. ・・・1,81階の下り方向乗
場を表す)への到着予想時間Aj〈1)をかごJ(J=
1.2.3.4)毎に演算する.到着予想時間は.例え
ばかごが1階床進むのに2秒,1停止するのに10秒を
要するものとして,かごが全乗場を順次一周運転するも
のとして演算される.なお,到着予想時間の演算は周知
のものである. ステップ(35〉のかご位置予測プログラムでは,1号
機〜4号機の所定時間T経過後の予測かご位置Fl(T
)〜F4(T)と予測かご方向D+(T)〜D4(T)
の各かごについてそれぞれ予測演算する.これを第5図
によって詳細に説明する.第1!Iのかご位置予測プロ
グラム(35)において,ステップ(65).すなわち
ステップ(51)〜(64)は.1号機の所定時間Tf
&の予測がご位置p+(’r)と予測かご方向Dt(T
)を演算する手順を表す.1号機に割り当てられた乗場
呼びがある時は,ステップ(51)→ステップ(53)
へと進み,ここで最遠方の割当乗場呼びの前方にある終
端階を1号機の最終呼び階と予測し,その階でのがごの
到着方向(最上階では下り方向.最下階では上り方向)
も考慮して最終呼び予測乗場h1として設定する.また
,1号機が割り当てられた乗場呼びを持たずにかご呼び
だけを持っている時は,ステップ(51)→ステップ(
52〉→ステップ(54)へと進み,ここで最遠方のか
ご呼び階を1号機の最終呼び階と予測し,そのときのか
ごの到着方向も考慮して最終呼び予測乗場h,として設
定する.さらに,また.1号機が割当乗場呼びもがご呼
びも持っていない時は,ステップ(51)→ステップ(
52)→ステップ(55)へと進み,ここで1号機のか
ご位置階を最終呼び階と予測し,そのときのかご方向も
考慮して最終呼び予測乗場h,として設定する. このようにして最終呼び予測乗場h1を求めると,次に
,ステップ(56)で1号機が空かごかどうかを判定す
る.1号機が空かごてない(AV1=「O」)時は.ス
テップ(57)で1号機が空かごになるまでに要する時
間の予測値(以下.空かご予測時間という)1+を求め
る.空かご予測時間t,は,最終呼び予測乗場h,への
到着予想時間AI(h1)にその乗場での停止時間の予
測値T g ( ” 10秒)を加算して求める.なお
.かご位置階を最終呼び予測乗場h1として設定した場
合は,がご状態(走行中,減速中.戸開動作中.戸開中
,戸閉動作中など)に応じて停止時間の残り時間を予測
し.これを空かご予測時間t,として設定する.次に,
ステップ(58》で所定時間Tを経過するまでに1号機
が空かごになるかどうかを判定する.1号機の空かご予
測時間t1が所定時間T以下の時は,所定時間Tを経過
するまでに1号機が空かごになるということを意味して
いるので,ステップ(58〉→ステップ(59)へと進
み,ここで最終呼び予測乗場h1に基づいてその乗場h
1の階床を所定時rtjJT経過後の予測かご位置F+
(T)として設定する.また,予測かご方向D+(T)
をrQJに設定する.なお,予測かご方向DI(T)は
,rQJの時は無方向,『1」の時は上り方向,「2」
の時は下り方向を表す.そして,ステップ(60)で1
号機の予測空かごフラグPAVIを「1』にセットする
. 一方.1号機のかご予測時間t,が所定時間Tよりも大
きい時は,所定時間を経過してもまだ空かごになってい
ないということを意味しているので.ステップ(58)
→ステップ(61)へと進み,ここで乗場1−1の到着
予想時間A+(i−1)と乗場lの到着予想時rWJ 
A t ( i )ffi ( A r ( i −1
 ) + T a ≦T< A I( i ) + T
 s }となるような乗場lの階床を所定時間T経過後
の予測かご位置F.(T)として設定し,この乗場iと
同じ方向を予測かご方向D,(T)として設定する.そ
して,ステップ(62)で1号機の予測空かごフラグP
AV,をrQJにリセットする. また,ステップ(56)で1号機が空かごくAV+− 
’ I J )の時は.ステップ(63)で空かご予測
時間t,をO秒に設定し,ステップ(64)で最終呼び
予測乗場h1に基づいてその乗堝h1の階床を所定時間
T経過後の予測かご位置Fl(T)として設定する.ま
た,予測かご方向D,(T)を『0」に設定する.そし
て.ステップ(62〉で1号機の予測空かごフラグP 
A V +を「O」にリセットする. このようにして.ステップ(65)で1号機に対する予
測かご位置Fl(T)と予測かご方向D+(T)の演算
と予測空かごの検出をするが,2号機〜4号機に対する
予測かご位置Ft(T)〜F4(T),予測かご方向o
x(’r)〜D4(T).および予測空かごフラグP 
A V z〜PAV4もステップ(65)と同じ手順か
らなるステップ{66}〜(68)でそれぞれ設定され
る. 再び第3図において.ステップ(36)のかご白数予測
プログラムでは,所定時rHIT経過後に所定階床もし
くは所定階床域にいるかご白数,例えば第8図に示すよ
うに,1階床または連続した複数階床からなる階床域(
ゾーン)21〜2.に対して予測かご白数N+(T)〜
N.(T)をそれぞれ演算する.これを第6rf!1に
よって詳細に説明する.第6図のかご台数予測プログラ
ム《36〉において.ステップ(71)で予測かご台数
N,(T)〜N@ (T)をそれぞれ「0」台に,号機
番号jおよびゾーン番号mをそれぞれ「1」に初期設定
する.ステップ(72)では,j号機の予測かご位置F
J(T)と予測かご方向DJ(T)に基づいて,所定時
間T経過後にj号機がゾーンZmにいるかどうかを判定
する.j号機がゾーンZmにいると予測されると.ステ
ップ(73)でゾーンZmの予測かご台数Nm(T)を
1台増加させる.ステップ(74)では号機番号jを一
つ増加させ.ステップ(75)で全号機について判定し
終わったかどうがをチェックする.終了していなければ
ステップ(72)に戻り.上述の処理を繰り返す. ゾーン番号mのゾーンZmについてステップ(72)お
よびステップ(73)の処理を全号機終了すると,次に
.ステップ〈76〉で,ゾーン番号mを一つ増加させる
と共に号機番号jを「1」に初期設定する.そして.同
じようにステップ(72〉〜(75〉の処理を号機番号
j>4となるまで繰り返す.すべてのゾーン21〜Z.
について上述の処理を終わるとステップ(77〉でゾー
ン番号m>6となり,ゾーンz1〜2.についてのかご
台数予測の処理を終了する. ステップ(78)〜(84)では.空かごの白数NAV
と予測空かごの台数NPAVをカウントする.ステップ
(78〉で台数NAV.白数NPAVをそれぞれ「0」
台に.号機番号jを「1」に初期設定する.j号機が空
かごてあれば,ステップ(79)→ステップ(80)と
進み.ここで空かごの台数NAVを1台増加する.また
.j号機が予測空かごてあれば,ステップ(79)→ス
テップ(81)→ステップ(82)と進み,ここで予測
空かごの台数NPAVを増加する.ステップ(83)で
は号機番号jを一つ増加させ.ステップ(84)で全号
機について判定し終わったかどうかをチェックする.終
了していなければステップ(79〉に戻り.上述の処理
を繰り返す. このようにして.ゾーン毎の予測かご台数N,(T) 
〜Ns(’r),空かごの白数NAV, および予測空
かごの台数NPAVをカウントし.かご台数予測プログ
ラム(36)の処理を終了する.第3図の群管理1ログ
ラム<10)におけるステップ(37)の割当制限プロ
グラムでは,新たに乗場呼びCが登録されると,その乗
場呼びCの階床位置,その時の上記予測かご白数Nl(
T)〜N6(T),空かどの白数NAV,および予測空
かごの台数NPAVに基づいて,上記乗場呼びCに対し
て1号機〜4号機の割当を制限するかどうかを判定し,
上記新規乗場呼び5Cに割り当てにくくするための割当
制限評価値21〜P,をそれぞれ設定する.なお.w4
当制限評価値P,〜P4は大きな値になるほど割当制限
の程度が上がることを意味し.この値が無限大になれば
最初から割当の対象から除くことと等価になる.この判
定手順を第7図によって詳細に説明する. 第7図の割当制限プログラムにおいて.上記新規乗場呼
びCが上方階ゾーン(ZsまたはZ.)に属し,空かご
が1台もいな<(NAV<1)て.所定時間T経過後に
上方階ゾーン(Z3またはZ4)にいると予想されるか
ごの台数が多< (N 3(T )”N 4(T)≧N
a)て,予測空かごはいるが多くはな<(1≦NAV≦
Nb)で,かつ下方階ゾーン(Ztまたはz6)で乗場
呼びが発生しやすい交通状態であれば,ステップ(81
)→ステップ(82)→ステップ(83)→ステップ(
84)→ステップ〈85)→ステップ(86〉と進み,
ここで予測空かごk(kε(1,2,3.4))の割当
制限評価値Pkを「99999』に.予測空かごでない
かごn(nε(1,2,3.4)かつn≠k〉の割当制
限評価値PnをrQJに設定する.上記以外は.ステッ
プ(87)で全てのかごの割当制限評価値P,〜P,を
rO』に設定する.このようにして割当制限評価値P1
〜P,が設定される.第3図の群管理プログラム(10
)におけるステップ(38〉の待時間評価プログラムで
は.新規乗場呼びCを1号機〜4号機にそれぞれ仮割当
した時の各乗場呼びの待時間に関する評価値Wl〜W4
を演寡する.この待時間評価値W1〜W,の演算につい
ては周知であるので詳細な説明は省略するが,例えば1
号機を仮割当した場合は.1号機を仮割当した時の各乗
場呼びiの予測待時間U(i)(i=1.2.  ・・
・.22:乗場呼びが登録されていなければr01秒と
する)を求め,これらの2乗値の総和,すなわち待時間
評価値W,・U(1)”+ U (2 >”+・・・+
U(22)宜でもって演算する.次に.ステップ(39
)の割当かご選択プログラムでは,上記割当制限評価値
P+〜P,と待時間評価値W,−W.に基づいて割当か
ごを1台選択する.この実施例では,j号機に新規乗場
呼びCを仮割当した時の総合評価値EJを,Ej=Wj
+k−PJ(k:定数)で求め.この総合評価値EJが
最小となるかごを正規の割当かごとして選択するもので
ある.割当かごには乗場呼びCに対応した割当指令と予
報指令を設定する. さらに.ステップ《40〉の待機動作プログラムでは,
すべて乗場呼びに答え終わった空かごが生じると,かご
が1か所に固まらないようにするため.上記空かごを最
終呼びの階でそのまま待機させるか,または特定階で待
機させるかを判定し,特定階で待機すると判定した時は
その特定階へ走行させるための待機指令を上記空かごに
設定する.最後に.ステップ(41〉の出力プログラム
では,上記のようにして設定された乗場釦灯信号(20
)を乗場に送出すると共に.割当信号,予報信号,およ
び待機指令などを1号機〜4号機用かご制御装置(11
)〜〈14)に送出する.このような手順で上記群管理
プログラム(31〉〜(4]》を繰り返し実行する. 次に,この実施例における群管理プログラム(10)の
動作を第9図.および第105?Iによって,さらに具
体的に説明する.なお,簡単のために第12図〜第15
図で用いた例を使用して説明する.第12図に示す状態
において,第9図に示すように91I1の下り呼び(9
d〉が登録されたものとする.なお.5階上り呼び(5
u〉の継続時間は10秒とする.この時.かごAに9階
の下り呼び(9d)を仮割当した時の9階の下り呼び(
9d)および5階上り呼び(5u)の予測待時間はそれ
ぞれ24秒と16秒となり.この時の待時間評価値WA
は,WA=24”+16”=832となる.一方,かご
Bに仮割当した時の9ll1の下り呼び(9d)および
5階上り呼び(5u)の予測待時間はそれぞれ28秒と
16秒となり,この時の待時間評価値W.は,W.=2
8”+16’=1040となる.したがって.従来の割
当方式であれば,WA<W.であるので9階下り呼び(
9d)はかごAに割り当てられる.さて.かごAおよび
かごBの所定時間T(T=20秒)経過後のかご位置は
第10図に示すようにかごA′およびかごB′のように
なる.シタがって,この時の予測かご台数は,N.(T
)=2台,Nl(T)=N1(T)=N4(T)=Ns
(T)=N@(T)・0台となり.空かご台数NAV=
O台,予測空かご台数NPAV=1台となる.なお.こ
の例では無方向のかごは上り方向とみなしたが,かご位
置に応じて適宜方向を決めればよい.また.この例にお
いて.一定値Na=2台,Nb=1台とすれば.N3(
T)=2台は一つのゾーンに全てのかごがいる場合に相
当するので.第7図の割当制限プログラム(37)のス
テップ(86〉においてかごAの割当制限評価値PA=
99999.かごBの割当制限評価値P.=0と設定さ
れる.したがって.総合評価値は,EA=WA+PA=
99999=10831,E.=W.+Ps=1040
+O=1040.でEA>E−となるので.最終的に9
階下り呼び(9d)はかごBに割り当てられる. 従来の割当方式だとかごAに割り当てられて近い将来に
かごはだんご運転となり長待ち呼びが発生しやすくなる
.しかし.所定時間T経過後のかご配置を考慮してかご
Bに割当することにより,このようなだんご運転を防止
することができる.以上説明したように.上記実施例で
は.かごが現時点から呼びに順次応答して所定時間経過
後のかご位置とかご方向とを予測演算し.さらにこれら
に基づいて予測空かごの台数と各ゾーンにおける所定時
間経過後のかご台数を予測演算し,これらの予測かご台
数に応じて予測空かごに対する劃当制限動作を行わせる
ようにしたので,かごが1か所に集中することがなくな
り,現時点から近い将来にわたって乗場呼びの待時間を
短縮することができる. なお.上記実施例では,所定時間T経過後のかご位置と
かご方向を予測する時,まずかごが最終呼びに答え終わ
って空かごになるであろう階床とそれまでに要する時間
を予測し,その上で所定時間T経過後のかご位置とかご
方向を予測するようにした.これは,かごが空かごにな
るとその階でそのまま待機するものと仮定したからであ
る.空かごを特定階で必ず待機させることが決まってい
る場合であれば.特定階に走行させるものとしてかご位
置とかご方向を予測すればよい.また,所定時間Tを経
過するまでに新たに発生するであろう呼びも考慮してか
ご位置とかご方向を予測することもできる.さらにまた
,最終呼び予測乗場の演算方向もこの実施例のように簡
略化したものではなく,統計的に求めたかご呼びゃ乗場
呼びの発生確率に基づいてきめ細かく予測するものであ
ってもよい. また,上記実施例では,第8図に示すようなゾーンに建
物を分割したが階床数や設置かご台数の他.時間帯や各
階床の用途(主階床,食堂階,集会室階.乗継階なと〉
に応じて逐次ゾーンの設定の仕方を変更することも容易
である.また,必ずしも乗場の方向を考慮してゾーンを
決める必要はない. さらにまた,上記実施例では, (イ)新規乗場呼びCが上方階ゾーンに属している時. ■ 空かごが1台もなく, ■ 所定時間T経過後に上方階ゾーンにいると予想され
るかごの台数が多く, ■ 予測空かごが1台はいるが.多くはなく,■ 下方
階ゾーンに乗場呼びが発生しやすい交通状態である. という条件■〜■がいずれも成立すると,所定の予測空
かごに対して新規乗場呼びCへの割当を制限するための
割当制限評価値(〉O》をそれぞれ設定する. というようにした.しかし.割当制限評価値の設定条件
はこれに限るものではない. (口)新規乗場呼びCが下方階ゾーンに属している時. ■ 空かごが1台もなく. ■ 所定時lWIT経過後に下方階ゾーンにいると予想
されるかごの台数が多く. ■ 予測空かごが1台はいるが.多くはなく,■ 上方
階ゾーンに乗場呼びが発生しやすい交通状態である. という条件(ロ》を適用することもできるし.(ハ)新
規乗場呼びCが中間階ゾーンに属している時. ■ 空かごが1台もなく, ■ 所定時tlIT経過後に中間階ゾーンにいると予想
されるかごの台数が多く. ■ 予測空かごが1台はいるが,多くはなく.■ 上方
階ゾーンまたは下方階ゾーンに乗場呼びが発生しやすい
交通状態である. という条件(ハ)を適用することもできる.さらに,1
つのゾーンにかごが集中するということの裏返しを使用
する. 〈二)新規乗場呼びCが登録された時,■ 空かごが1
台もなく, ■ 上方階ゾーン,下・方階ゾーン.または中間階ゾー
ンのいずれかのゾーンで,新規乗場呼びCが属さないゾ
ーンで.かつ所定時間T経過後にいると予想されるかご
が1台もないというゾーンが存在して, ■ 予測空かごが1台はいるが,多くはなく,■ 上記
■を満たすゾーンに乗場呼びが発生しやすい交通状態で
ある. という条件(二)を適用することもできる.なお.この
条件(二)が戒立した時,予測空かごのうち上記■を満
たすゾーンに最も近い予測空かごを割当制限することが
望ましい. ここで,上記条件(イ〉〜(二〉における条件項■は,
予測空かごを温存することによる効果をできるだけ高く
するために設けているものである.この条件項■の交通
状態の条件がなくてもこの発明の効果を大きく損なうも
のではない.また,上記条件《イ)〜(二)における条
件項■の空かごの台数に関する条件を空かご台数=0台
としたが,空かご台数≧1台の場合にもこの発明を適用
することができる.例えば, 《ホ)新規乗場呼びCが上方階ゾーンに属している時, ■ 空かごが上方階ゾーンに1台いて,■ 所定時間T
軽過後に上方階ゾーンにいると予想されるかごの台数が
多く, ■ 予測空かごが1台はいるが,多くはない.という条
件(ホ}が成立すると,所定の予測空かごに対して新規
乗場呼びCへの割当を制限−するということも可能であ
る.この条件(ホ)が有効なのは.下方階ゾーンにすぐ
乗場呼びが発生するというような混雑した交通状態にな
い場合である.すなわち.新規乗場呼びCには空かごを
有効に使用して短時間でサービスさせ,下方階ゾーンの
近い将来登録されるであろう乗場呼びには近いうちに空
かごになるであろう予測空かごをサービスさせるという
ことを意図している. さらにまた,上記条件(イ)〜(ホ)における条件項■
で.「予測空かごの台数が1台以上で.かつ一定値Nb
以下』という条件を付けたが,これは予測空かごの台数
が多いときには割当制限による予測空かごの温存は必ず
しも必要ないためである.「一定値Nb以下」という条
件を無くシ.割当制限すべき予測空かごを選択する処理
の中で,特定のl台もしくは2台(例えば,空かご予測
時間1,〜t,を用いて最も早く空かごになりそうなか
ごを選択したり,または予測かご位置Fl(T)〜F.
(T)と予測かご方向DI(T)〜D.(T)を用いて
下方階ゾーンに最も近いかごを選択したりする〉を割当
制限するようにしても同様の効果が得られる. この他はも予測かご台数に基づく予測空かごへの割当制
限の条件は種々考えられるが,第7図に示した条件(イ
)と同様に容易に実現できることは明白である. さらにまた,上記(イ)〜(ホ)のほかそれぞれの状況
に応じた複数の条件が設けられている時,同時に2つ以
上の条件が戒立する場合も考えられる.このような場合
,どの条件に従って割当制限するかごを決めるかという
問題が生じる.このような問題を解決する方法には種々
考えられるが,その一つによく知られたファジィ理論を
利用するものがある.例えば,前述の「エレベーターの
群管理装置」 (昭和63年電気・情報関連学会.予稿
集第2分冊P2−1 17〜120)で詳細に詳述され
ているように,条件を構成している条件項のそれぞれが
成立する度合いをメンバーシップ関数でOから1の間の
数値で表し.それらを用いてAND結合であれば最小値
を,OR結合であれば最大値を選択して,条件そのもの
の確信度を計算し,最終的に最も高い確信度を持つ条件
を一つ選択する方式である.また,各条件に対応した割
当制限の仕方に確信度の大きさに応じた重み付けをそれ
ぞれ行い,それに従ってかごを割当制限するという方式
もある.このような方式における条件に対してもこの発
明を適用することができることは明白である.このよう
に.所定階もしくは所定階床域に集中するであろうかご
の予測台数と近い将来空かごになるであろう予測空かど
の台数とを使用した条件であればどのようなものであっ
てもよい. さらにまた,上記実施例では.乗場呼びへ割当を制限す
る手段として.特定のかごに対しては他のかごより大き
な値を持つ割当制限評価値を設定し.これを待時間評価
値に重み付け加算して総合評価値を求め,この総合評価
値が最小のかごを正規の割当かごとして選択する方式を
使用した.このように割当制限評価値を他の評価値と組
み合わせて総合評価し割り当てるということは.割当制
限評価値の小さいかごを優先的に割り当てるということ
に他ならない.すなわち,上記割当制限評価値が大きい
かごは他のかごより割り当てにくくなる. また.乗場呼びへの割当を制限する手段は上記実施例に
限るものではなく.割当制限条件を満たすかごを予め割
当かごの候補から除外する方式であってもよい. さらにまた,上記実施例では.待時間評価値を乗場呼び
の予測待時間の2乗値の総和としたが,待時間評価値の
演算方法はこれに限るものではない.例えば,登録され
ている複数の乗場呼びの予測待時間の総和を待時間評価
値としたり,同じく予測待時間の最大値を待時間評価値
とする方式を使用するもであってもこの発明を適用でき
ることは明白である.もちろん.割当制限評価値と組み
合わせる評価項目は待時間に限るものではなく,予測外
れや満員などを評価項目とする評価指標と組み合わせて
も良いものである. また,上記実施例では,一種類の所定時間Tについて所
定時間経過後のかご位置とかご方向を各かごについてそ
れぞれ予測し,これに基づいて割当制限評価値を演算す
るようにしたが,複数種類の所定時間Tl, T2, 
 ・・・, Tr (TI<T2〈・・・<Tr)につ
いて所定時間経過後のかご位置とかご方向を各かごにつ
いてそれぞれ予測し,さらに複数種類の所定時間TI,
 T2,・・・,Trについて所定時間経過後の予測か
ご白数N m (T 1)〜Nm(Tr)を各ぞーンZ
m(m=1.2, ・・1についてそれぞれを演算する
.また.予測空かご台数NPAV(TI)〜NPAV(
Tr)をそれぞれ演算する.そして.各組み合わせ{N
,(TI),N2(T2)s・・,N P A V (
TI)). ( N +(T2).N *(T2).−
 − ・,NPAV(T2Ns・・.(N+(Tr).
N*(Tr>,− ・・NPAV(Tr)).によって
それぞれ設定された割当制限評価値P (TI).P 
(T2).・・・P (T r ).を重み付け加算す
る.すなわち,P=kl・P(Tl)+kP(T2)+
ky”P(Tr).(但し.kl,k2,・・・,kr
は重み係数〉なる算式に従って演算することにより.最
終的な割当制限評価値Pを設定することも容易である.
この場合.ある一時点Tだけのかご配置に注目するので
はな< .TI.T2,・・・,Trという複数の時点
におけるかご配置を大局的に評価することになるので.
現時点から近い将来にわたって乗場呼びの待時間を一層
短縮することが可能となる.なお.上記重み係数kl,
k2,・・・,krは,例えば第11図に示すように.
どの時点のかご配置を重視するかによって何通りかの設
定方法が考えられるが.交通状態や建物の特性などに応
じて適宜選択すればよい.[発明の効果] この発明は以上説明したとおり.乗場釦が操作されると
乗場呼びを登録する乗場呼び登録手段と.前記乗場呼び
に対して複数のかごの中からサービスすべきかごを選択
して割り当てる割当手段と,かごの運行方向決定,出発
,停止.および戸開閉等の運転制御を行い.かごをかご
呼びと前記割当乗場呼びに応答させるかご制御手段と.
かごがすべての呼びに答え終わると答え終わった階床で
待機させるか.もしくは所定の階床へ走行させて待機さ
せる待機手段とを有するエレベータの群管理装置におい
て.現時点で応答すべき呼びを持つているかごが呼びに
順次応答して所定時間経過した後に応答すべき呼びを持
たす戸閉状態になっていると予測されるかごを予測空か
ごとして検出する予測空かご検出手段と,かごが現時点
から前記かご呼びと前記割当乗場呼びに厘次応答して所
定時間経過後のかご位置とかご方向とをそれぞれ予測演
算するかご位置予測手段と.前記予測かご位置と前記予
測かご方向に基づいて,前記所定時間経過後に所定階も
しくは所定階床域にいるであろうかごの有無または台数
を予測演算するかご白数予測手段と,前記所定時間経過
後に前記所定階もしくは前記所定階床域内にいると予測
されるかごの予測台数を第1の所定値と比較判定する第
1の判定手段と予測かごの台数を第2の所定値と比較判
定する第2の判定手段並びに前記第1の判定手段と前記
第2の判定手段の判定結果に基づいて前記予測空かごが
前記乗場呼びに割り当てるのを制限するかもしくは割当
対象から除外する指令を出力する第3の判定手段とを有
する割当制限手段とを備えているので.時間経過に伴っ
たかご配置の変化と空かごになる可能性とを考慮し,現
時点から近い将来にわたって乗場呼びの待時間を短縮す
ることができる効果がある. 4.区画の酊単な説明 第1図はこの発明による一実施例によるエレベータの群
管理装置の全休楕戒ブロック図.第2図は第1図の群管
理装置(10)の楕戒ブロック図,第3図は群管理プロ
グラム(10)のフローチャート図,第415!Iは第
3図の空かご検出プログラム(33)のフローチャート
図,第5図は第3図のかご位置予測プログラム(36)
のフローチャート図.第6図はかご台数予測プログラム
(36)のフローチャート図,第7図は第3図の割当制
限プログラム(37》のフローチャート図.第8図は建
物のゾーン分割を示す図,第9図および第10図は呼び
とかご位置の関係を示す図,第11図はこの発明の他の
実施例を説明する図である.第12図〜第16図は従来
のエレベータの群管理装置を示し,それぞれ呼びとかご
位置の関係を示す図である.図において,(IOA)・
・・乗場呼び登録手段,(IOC)・・・割当手段.(
IOD>・・・かご位置予測手段.(IOE)・・・か
ご台数予測手段,(IOF)・・・待機手段.(IOG
)・・・空かご検出手段.(IOH)・・・予測空かご
検出手段,(IOJ)・・・割当制限手段.(11)〜
(14)・・・かご制御手段である. なお.各図中同一符号は同一又は相当部分を示す.
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to an elevator group management device that selects and allocates a service car for a hall call from among a plurality of elevator cars. [Conventional technology] When multiple elevators are installed together. Normal group management operation is performed. One of these group management operations is the assignment method. As soon as a hall call is registered, an allocation evaluation value is calculated for each car, and the car with the best evaluation value is selected and assigned as the car to be serviced, and only the assigned car responds to the hall call. In this way. Improving operational efficiency. It also aims to reduce waiting time at the boarding point. In addition, in group-controlled elevators using this type of assignment system, arrival warning lights are generally installed for each car and each direction at the landings on each floor. This allows us to display the forecast for the assigned car to passengers waiting at the landing. Waiting customers can safely wait for their cars in front of the forecast. Now, the allocation evaluation value in the above-mentioned hall call allocation method is calculated based on the viewpoint of which car would be the best car to allocate a hall call to if the current situation continued as it was. In other words, the current car position and car direction. and the predicted value of the time required for the car to respond to the above calls in sequence and arrive at the landing on each floor based on the currently registered landing calls and car calls (hereinafter referred to as expected arrival time). Calculate the estimated waiting time for all currently registered hall calls by calculating the time that has passed since the hall call was registered (hereinafter referred to as duration time) and adding the above expected arrival time and the above duration time. do. Then, the sum of these predicted waiting times or the sum of the squared values of the predicted waiting times is set as the allocation evaluation value, and the hall call is allocated to the car with the minimum allocation evaluation value. In this conventional method, when allocating hall calls, it is determined whether or not it is the best extension of the current situation, so newly registered hall calls after the assignment will last longer. A problem had occurred. The first example of this problem is
This will be explained using Figures 2 to 15. In Figure 12,
A and B are. The irons of No. 1 and No. 2, respectively.
Unit 1 is ascending to respond to the 6th floor call (6C), while Unit 2 is assigned to the up call of 5111 (5u) and is ascending to respond to the up call (5uB). In this situation. Assume that a down call (9d) is registered on the 9th floor as shown in Figure 13. According to the allocation evaluation value of the above conventional allocation method. To assign the 9th floor down call (9d) to Kako A so that the overall waiting time is minimized. Unit 1 has a downlink assignment (9dA) on the 9th floor,
As a result, both cars will travel upwards. If an up call (1u) is registered on a lower floor, for example on the 1st floor, some time after the down call (9d) on the 9th floor is assigned, then this up call (1u) on the 1st floor will be assigned to car A and car This will be a back call for B, and even if it is assigned to any car, it will take a long time to be answered, resulting in a long wait. on the other hand. 9th floor down call (9d)
If you assign B to B. Approximately 15 seconds later, as shown in Figure 14, car A becomes an empty car on the 6th floor and is in a standby state.
Car B is expected to be in service at 5JIl (assuming that the car call for the 10th floor (10c) is registered on this floor). therefore. Even if Illif's up call (1u) is registered after that, there will be no long waiting time because car A waiting on the 6th floor will provide direct service as shown in Figure 15. To prevent this, consider how the basket arrangement will be in the near future and whether there is a possibility that there will be empty baskets, and make sure that the baskets do not gather in one place, even if you make allocations that will temporarily lengthen the waiting time. It is necessary to allocate hall calls. [Problem to be solved by the invention] Conventionally, various methods of allocating hall calls to prevent cars from gathering in one place have been proposed as described below, but none of them have been sufficiently effective. The elevator group control device shown in Japanese Patent Publication No. 55-32625 is similar to the above-mentioned zone allocation method.It is designed to prevent cars from gathering in one place and improve operational efficiency. In this allocation method, when a hall call is registered, a car that is scheduled to stop at a floor near that call is assigned.In this allocation method, too, attention is paid to the presence or absence of cars scheduled to stop at a nearby floor. How long does it take for a car scheduled to stop to arrive at that floor? How are other landing calls distributed and registered, and when are they likely to be answered? The system does not make judgments that accurately capture changes in car arrangement over time, such as whether there are any cars that are likely to become cars, which floors other cars are on, and in which direction they are trying to move. There was also the problem that a long-lasting call was generated.Furthermore, the elevator group management control method disclosed in Japanese Patent Publication No. 62-56076 is for waiting cars at the drop-off position, but when a new hall call is received. When a landing call occurs, the car is temporarily assigned to each car in order, the drop-off position of the temporarily assigned car is predicted, and the dispersion degree of the car is calculated from the predicted drop-off position of the temporarily assigned car and the positions of other cars.At least the above dispersion degree is calculated. This is an allocation method in which the evaluation value of each allocated car is such that the higher the degree of dispersion, the easier it is to be allocated, and the allocated car is determined from the above evaluation value of each car. This has the effect of being distributed in a distributed manner, preventing wasteful operation of empty cars due to distributed standby, and having a great effect on energy conservation, as well as eliminating the sense of suspiciousness among building occupants.However, this allocation As is clear from its purpose, the method is intended for off-peak hours such as nighttime, and assumes that one hall call is registered while all the cars are empty and waiting. Therefore, this allocation method cannot be applied to platform call assignment in traffic conditions where platform calls are registered one after another and each car is operating while responding to the calls. There was a problem with long waiting times. In other words, this problem arises because the purpose is to balance the arrangement of empty cars, and the structure is not designed to take into account changes in car position over time for cars other than provisionally allocated cars (
Based on that premise, there is no need to consider changes in the cage positions of other cages. This is due to the fact that the boarding hall call assignment is determined by focusing only on the position of the temporarily assigned car at the time of abandonment (at that point, all the cars are empty and on standby). .Furthermore, in 1163, the Electrical and Information Technology Association (Showa 6)
Held from October 3rd to 5th. Venue: Niigata University Faculty of Engineering) "Group Management of Elevators" (Proceedings Vol. 2 P2-117-120). A new group management method applying fuzzy theory has been proposed. For this. The following is an example of a fuzzy rule. (Rule Rm) IF (A hall call occurs on the upper floor) and (If assigned to a certain car (A), the cars will be concentrated on the upper floor) THEN << Cars with the above property (A) are excluded from being assigned candidate cars. ) (Assign the car with the minimum evaluation value from among the allocation candidate cars) Furthermore. As a simulation example, when an IOF downlink call is registered in the situation shown in Figure 16. We will preserve Cars 2 and 4, which are empty, and choose the car with the best evaluation value (3) from among Cars 1 and 3, which have car calls on the upper floors.
It is recommended to select the number structure) in the allocation basket. If this is followed, allocation can be done taking into account call occurrences in the near future, and long waiting times can be prevented. however,"
The determination that "cars are concentrated on the upper floor" is simply "the car has a car call on the upper floor" or "the car has an assigned call on the upper floor"
This is done only under the following conditions. The structure is not designed to take into account changes in the mutual positional relationship of the cars over time. Therefore, although the cars may eventually reach the upper floor, since the positional relationship with other cars is not clearly defined, it is quite possible that the cars will not actually be ``concentrated in the upper part'', and in that case, empty cars may However, there was a problem in that the wait time was lengthened because of the waiting time.Furthermore, in the near future, after answering the call, the car would be waiting with the door closed. This invention did not take into consideration any prediction of the occurrence of long waiting times.There was a problem that the effect of preventing long waiting times from occurring in the near future was not sufficient.This invention was made to solve this problem. The purpose of this study is to obtain an elevator group management system that can reduce the waiting time for hall calls from now to the near future, taking into account changes in the car arrangement and the possibility of empty cars. Means for Solving] An elevator group management device according to the present invention includes: a hall call registration means for registering a hall call when a hall button is operated;
Allocating means for selecting and allocating a car to be serviced from a plurality of cars in response to the hall call. Determining the running direction of the car. Starting, stopping. and a car control means that controls operations such as door opening and closing, makes the car respond to car calls and the assigned landing calls, and makes the car wait at the floor where it has answered all calls. Alternatively, in an elevator group control device having a waiting means for causing the elevator to travel to a predetermined floor and wait. A predictive empty car that detects, as a predicted empty car, a car that has a door to be answered and is predicted to be in a closed state after a predetermined period of time after the cars that currently have a call to answer respond to the calls one after another. A car detection means.
a car position prediction means for predicting and calculating the car position and car direction after a predetermined period of time when the car sequentially responds to the car call and the assigned hall call from the current time, and based on the predicted car position and the predicted car direction; a means for predicting the number of cars that will be on the predetermined floor or in the predetermined floor area after the elapse of the predetermined time; a first determining means that compares and determines the predicted number of cars predicted to be with a first predetermined value, a second determining means that compares and determines the predicted number of cars with a second predetermined value, and the first determining means and a third determining means for outputting a command for restricting the allocation of the predicted empty car to the hall call or excluding the predicted empty car from being allocated based on the determination result of the second determining means. It is equipped with the following. [Operation] In the present invention, in the allocation operation for a hall call, a predetermined operation is performed using a predicted value of the number of cars that will be on a predetermined floor or a predetermined floor area after a predetermined period of time and a predicted number of empty cars. I do. [Example] Figures 1 to 10 are diagrams showing an example of the present invention. In this example, it is assumed that four cars are installed in a 12-story building. Figure 1 shows the overall configuration.
The group control device (10) and the No. 1 unit that is controlled by it ~
It consists of the car control device for car No. 4 (11) to <<14>. (10A) is a hall call registration means that registers and cancels the hall calls (up calls and down calls) for each floor, and calculates the elapsed time since the hall call was registered, that is, the duration. (IOB) is an expected arrival time calculation means, and is a predicted value of the time required for each car to arrive at the landing (by direction) on each floor. In other words, calculate the expected arrival time. (I OC) is an allocation means that selects and allocates the best car to service a hall call, and performs an allocation calculation based on the predicted waiting time of the hall call and the determination result by the allocation restriction means described later. (IOD) is a car position prediction means that predicts and calculates the car position and car direction after a predetermined time T has elapsed from the current time. (IOE) is a car number prediction means that predicts and calculates the number of cars that will be in a predetermined floor area after a predetermined time T has elapsed based on the predicted car position and predicted car direction. (1 0 F) is a waiting means, and when the car has answered all the calls, it is made to wait at the floor where the call has been answered or a specific floor. (IOG) is an empty car detection means. A car with a closed door and no calls to answer is detected as an empty car. 《10H) is a predictive empty car detection means,
A car that currently has a call to be answered (including a car that is currently responding to a call) that is expected to become empty after a predetermined time T has passed is detected as a predicted empty car. (
IOJ) is an allocation restriction means that determines whether to limit the allocation of hall calls to the predicted empty car or to exclude it from allocation targets. (11A) is a well-known hall call cancellation method. It is installed in the car control device (11) for car No. 1 and outputs a hall call cancellation signal for each floor's hall call. (11B) is a well-known car call registration method. Similarly, register the car call for each floor. (
11C) is a well-known arrival warning light control means. Similarly, the lighting of the arrival forecast lights (not shown) on each floor is controlled (1
1 D) is a well-known running direction control means that determines the running direction of the car. (11E) is a well-known operation control means, which controls the running and stopping of the car in order to respond to the assigned hall call. (11F) is a well-known door control means, which controls the opening and closing of the door. Control.Incidentally, Unit 2~
The car control devices (12) to (14) for the No. 4 car are also configured in the same way as the car control device (11) for the No. 1 car. FIG. 2 is a block diagram of the group management device (10), which is composed of a microcomputer (hereinafter referred to as microcomputer) and an MPU (microprocessing unit) (101). ROM(102).RAM(
1 03), input circuit (104), and output circuit (104)
05). In the input circuit (104). Hall button signals (19) from the hall buttons on each floor. and cars 1 to 4 from car control devices (11) to (14) for cars 1 to 4.
The status signal of the machine is input. The output circuit (105) outputs a signal (20>. to the hall button light built into each hall button) and a command signal to the car control devices (11) to (14) for cars 1 to 4.Next Now, the operation of this embodiment will be explained with reference to Figs. 3 to 8. Fig. 3 shows the group management program stored in the ROM (102) of the microcomputer constituting the group management device (1o). FIG. 4 is a flowchart showing the empty car detection program (33), FIG. 5 is a flowchart showing the car position prediction program (35), and FIG. 6 is a flowchart showing the car number prediction program (36). .Figure 7 is a flowchart showing the allocation restriction Hamatan program <37>, and Figure 8 is a diagram showing a state in which a building is divided into multiple floor areas (zones).First, group management in Figure 3 An overview of the operation will be explained.The input program in step (31) is the hall button signal (19),
Status signals from car control devices (11) to (14) for cars No. 1 to No. 4 (car position, direction. Stop. Traveling, door opening/closing status, car load. This is a well-known device for inputting car calls, hall call cancellation signals, etc. In step (33), the empty car detection program detects as an empty car a car that has no calls to answer and whose door is closed, as shown in Figure 4. In FIG. 4, step (46). That is, steps (42) to (45) are 1
This represents the procedure for detecting whether the car number is currently empty. Car No. 1 has a car call or an autopsy landing call,
If there is no direction and the door is closed, the process goes to step (42) → step (44> → step (45)), where the empty car flag AV1 is set to "1".Other than the above.Step (43) Reset the empty car flag AVI to "0" with Step 47 for Cars 2 to 4.
〉 ~ (49) Detects the car and sets the empty car flag AV2
~AV. Set. In the expected arrival time calculation program in step (34).
Each landing i (1=1.2,3,・
..., 11 are B2, Bl., respectively. 1,... Uphill landing on the 9th floor. i=12.13, ...21.22 is. 10.9 respectively. ...The expected arrival time Aj<1) to the car J (J=
1.2.3.4) Calculate each. Estimated arrival time. For example, it is assumed that it takes 2 seconds for the car to advance one floor and 10 seconds for each stop, and the calculation is performed assuming that the car sequentially runs around all the landings. Note that the calculation of estimated arrival time is well known. In the car position prediction program in step (35>), the predicted car position Fl(T
)~F4(T) and predicted car direction D+(T)~D4(T)
Perform prediction calculations for each car. This will be explained in detail using Figure 5. 1st! In the car position prediction program (35) of I, step (65). That is, steps (51) to (64) are. Predetermined time Tf of No. 1 machine
The prediction of & is the position p+('r) and the predicted car direction Dt(T
) represents the procedure for calculating. When there is a landing call assigned to Car 1, step (51) → step (53)
Here, the terminal floor in front of the farthest assigned landing call is predicted to be the final call floor of Unit 1, and the arrival direction of the car at that floor (downward for the top floor, upbound for the bottom floor) is predicted. direction)
This is also taken into consideration when setting the predicted final call landing h1. Also, when car No. 1 has only a car call without an assigned hall call, step (51) → step (
52> → Proceed to step (54), where the farthest car call floor is predicted to be the final call floor of car No. 1, and the car's arrival direction at that time is also taken into account and set as the predicted final call landing h. .. Furthermore, again. When the No. 1 car does not have an assigned landing place call or a call, step (51) → step (
52) → Proceed to step (55), where the car location floor of car No. 1 is predicted to be the final call floor, and the car direction at that time is also taken into consideration and set as the predicted final call landing h. After determining the predicted final call landing h1 in this way, it is then determined in step (56) whether or not car No. 1 is empty. When car No. 1 is not empty (AV1 = "O"). In step (57), the predicted value (hereinafter referred to as the predicted empty car time) 1+ of the time required for car No. 1 to become empty is calculated. The predicted empty car time t, is determined by adding the predicted arrival time AI (h1) at the final call predicted landing point h, to the predicted stop time T g ("10 seconds) at that landing. Note that the car position When a floor is set as the final call predicted landing h1, the remaining stop time is predicted according to the car state (running, decelerating, door opening, door opening, door closing, etc.). Set this as the empty car predicted time t.Next,
In step (58), it is determined whether car No. 1 will become empty before the predetermined time T elapses.If the predicted empty car time t1 of car No. 1 is less than the predetermined time T, it is determined whether the car will be empty until the predetermined time T elapses. This means that car No. 1 will be empty in
Predicted car position F+ after the specified time rtjJT on the 1st floor
(T). Also, predicted car direction D+(T)
Set rQJ. The predicted car direction DI (T) is rQJ when there is no direction, ``1'' when it is in the up direction, and ``2'' when it is in the up direction.
indicates the downward direction. Then, in step (60), 1
The predicted empty car flag PAVI of car No. 1 is set to "1." On the other hand, when the predicted car time t, of car No. 1 is greater than the predetermined time T, it is determined that the car has not become empty even after the predetermined time has elapsed. This means that step (58)
→Proceed to step (61), where the expected arrival time A+(i-1) of landing 1-1 and the expected arrival time rWJ of landing 1
A t (i)ffi (A r (i −1
) + T a ≦ T < A I ( i ) + T
s }, the predicted car position F after a predetermined time T has passed. (T), and the same direction as this landing spot i is set as the predicted car direction D, (T). Then, in step (62), the predicted empty car flag P of the first car is
Reset AV, to rQJ. Also, in step (56), the first machine is empty or AV+-
'I J) When. In step (63), the predicted empty car time t, is set to O seconds, and in step (64), based on the predicted final call landing h1, the predicted car position Fl( T). Also, set the predicted car direction D, (T) to ``0''. and. In step (62>), the predicted empty car flag P of car No. 1 is
Reset A V + to “O”. In this way. In step (65), the predicted car position Fl(T) and predicted car direction D+(T) for car No. 1 are calculated, and the predicted empty car is detected. (T), predicted car direction o
x('r)~D4(T). and predicted empty car flag P
AV z to PAV4 are also set in steps {66} to (68), which are the same procedure as step (65). Again in Figure 3. In step (36), the empty car number prediction program calculates the number of empty cars on a predetermined floor or a predetermined floor area after a predetermined time rHIT has elapsed, for example, as shown in FIG. The floor area (
Zone) 21-2. Predicted basket white number N+(T)~
N. Calculate each of (T). This is the 6th rf! 1 will be explained in detail. In the car number prediction program <<36>> in Figure 6. In step (71), the predicted number of cars N, (T) to N@(T) are each initialized to "0", and the car number j and zone number m are each initialized to "1". In step (72), the predicted car position F of car j
Based on J(T) and predicted car direction DJ(T), it is determined whether car No. J is in zone Zm after a predetermined time T has elapsed. When it is predicted that machine j is in zone Zm. In step (73), the predicted number of cars Nm(T) in zone Zm is increased by one. In step (74), the machine number j is incremented by one. In step (75), it is checked whether the determination has been completed for all machines. If not completed, return to step (72). Repeat the above process. After completing the processing of step (72) and step (73) for all machines for zone Zm with zone number m, next. In step <76>, the zone number m is incremented by one, and the machine number j is initialized to "1". and. In the same way, repeat steps (72> to (75>) until machine number j>4. Repeat steps (72> to (75>) for all zones 21 to Z.
When the above-mentioned process is completed, in step (77>), the zone number m>6, and the process of predicting the number of cars for zones z1 to 2 is completed. In steps (78) to (84), the number of empty cars is calculated. N.A.V.
and count the predicted number of empty cars NPAV. At step (78), set the number NAV and white number NPAV to "0".
On the stand. Initialize machine number j to "1". If car No. J is empty, proceed from step (79) to step (80). Here, increase the number of empty baskets NAV by 1. Also. If car number j is predicted to be empty, the process proceeds from step (79) to step (81) to step (82), where the predicted number of empty cars NPAV is increased. In step (83), the machine number j is incremented by one. In step (84), it is checked whether the determination has been completed for all machines. If it has not been completed, return to step (79>) and repeat the above process. In this way, the predicted number of cars for each zone N, (T)
~Ns('r), the number of empty cars NAV, and the predicted number of empty cars NPAV are counted. The process of the car number prediction program (36) ends. In the allocation restriction program in step (37) in the group management 1 program <10) in Fig. 3, when a new hall call C is registered, the floor position of the hall call C, (
Based on T) to N6(T), the number of empty cars NAV, and the predicted number of empty cars NPAV, it is determined whether or not to limit the allocation of cars No. 1 to No. 4 to the hall call C,
Allocation limit evaluation values 21 to P are set respectively to make it difficult to allocate to the new hall call 5C. In addition. w4
The restriction evaluation values P, ~P4 mean that the larger the value, the higher the degree of the allocation restriction. If this value becomes infinite, it is equivalent to excluding it from the allocation target from the beginning. This determination procedure will be explained in detail with reference to FIG. In the quota restriction program shown in Figure 7. The new hall call C belongs to the upper floor zone (Zs or Z.) and there are no empty cars (NAV<1). The number of cars expected to be in the upper floor zone (Z3 or Z4) after the predetermined time T has passed is large < (N 3 (T)" N 4 (T) ≧ N
a), there are predicted empty baskets, but not many <(1≦NAV≦
Nb) and if the traffic condition is such that a hall call is likely to occur in the lower floor zone (Zt or z6), step (81
) → Step (82) → Step (83) → Step (
84) → Step <85) → Step (86>)
Here, the allocation limit evaluation value Pk of predicted empty car k (kε (1, 2, 3.4)) is set to "99999". Car n (nε (1, 2, 3.4) and n≠ k>'s quota limit evaluation value Pn is set to rQJ.Other than the above.In step (87), the quota limit evaluation value P, ~P, of all cars is set to rO''.In this way, the quota limit evaluation value value P1
~P, is set. Group management program (10) in Figure 3
) In the waiting time evaluation program in step (38>), the evaluation values Wl to W4 regarding the waiting time of each landing call when the new landing call C is provisionally allocated to cars 1 to 4, respectively.
perform. The calculation of the waiting time evaluation values W1 to W is well known, so a detailed explanation will be omitted, but for example,
If a machine number is provisionally assigned. Predicted waiting time U(i) for each hall call i when car No. 1 is provisionally allocated (i=1.2.
・.. 22: If no hall call is registered, r01 seconds) is calculated, and the sum of these squared values, that is, the waiting time evaluation value W, ・U(1)"+ U (2 >"+...+
U(22) Calculate as desired. next. Step (39
), the allocation limit evaluation values P+ to P, and the waiting time evaluation values W, -W. Select one car to allocate based on . In this example, the overall evaluation value EJ when new hall call C is provisionally assigned to car j is expressed as Ej=Wj
Obtained by +k-PJ (k: constant). The car with the minimum overall evaluation value EJ is selected as the officially assigned car. The assignment command and forecast command corresponding to hall call C are set in the assigned car. moreover. In the standby operation program in step <<40>>,
This is to prevent the cars from clumping in one place when all the hall calls are answered and there are empty cars. Determines whether the empty car is to be left on standby at the last called floor or on a specific floor, and when it is determined to be on standby on a specific floor, a standby command is set for the empty car to run to that specific floor. do. lastly. In the output program of step (41), the hall button light signal (20
) to the boarding area. The car control device (11
) to <14). The above group management program (31〉~(4)》) is repeatedly executed in this manner.Next, the operation of the group management program (10) in this embodiment is further explained in Fig. 9 and 105?I. A detailed explanation will be given.For the sake of simplicity, Figures 12 to 15
This will be explained using the example shown in the figure. In the state shown in Fig. 12, as shown in Fig. 9, the down call of 91I1 (9
d> is registered. In addition. 5th floor up call (5
The duration of u> is 10 seconds. At this time. When the 9th floor down call (9d) is provisionally assigned to car A, the 9th floor down call (9d) is
The predicted waiting times for 9d) and the 5th floor up call (5u) are 24 seconds and 16 seconds, respectively. Waiting time evaluation value WA at this time
Then, WA=24”+16”=832. On the other hand, when provisionally assigned to car B, the predicted waiting times for the down call (9d) and the up call (5u) on the 5th floor of 9ll1 are 28 seconds and 16 seconds, respectively, and the waiting time evaluation value W. is W. =2
8" + 16' = 1040. Therefore, in the conventional allocation method, 9th floor down call (
9d) is assigned to car A. Now. The car positions of car A and car B after a predetermined time T (T=20 seconds) have passed are car A' and car B', as shown in FIG. Looking back, the predicted number of cars at this time is N. (T
)=2 units, Nl(T)=N1(T)=N4(T)=Ns
(T)=N@(T)・0 units. Number of empty baskets NAV=
O cars, predicted number of empty cars NPAV = 1 car. In addition. In this example, a car with no direction is considered to be in the upward direction, but the direction can be determined as appropriate depending on the car position. Also. In this example. If constant values Na = 2 units and Nb = 1 unit. N3(
T) = 2 cars corresponds to the case where all the cars are in one zone. In step (86> of the quota limit program (37) in FIG. 7, the quota limit evaluation value PA=
99999. Allocation limit evaluation value P for car B. =0 is set. therefore. The overall evaluation value is EA=WA+PA=
99999=10831,E. =W. +Ps=1040
+O=1040. So EA>E-. finally 9
The downstairs call (9d) is assigned to car B. In the conventional allocation method, the car will be allocated to car A, and in the near future the car will be in a dangling operation, causing long-waiting calls to occur. but. By allocating the car to car B in consideration of the car arrangement after the predetermined time T has elapsed, this kind of dangling operation can be prevented. As explained above. In the above example. The car responds to calls sequentially from the current moment, and predicts and calculates the car position and car direction after a predetermined period of time has elapsed. Furthermore, based on these, the predicted number of empty cars and the number of cars after a predetermined period of time in each zone are calculated, and the allocation restriction operation for the predicted empty cars is performed according to the predicted number of cars. Cars will no longer be concentrated in one place, and the waiting time for hall calls can be reduced from now to the foreseeable future. In addition. In the above embodiment, when predicting the car position and car direction after the elapse of a predetermined time T, first predict the floor where the car will become empty after answering the final call and the time required until then. In the above, the car position and car direction after a predetermined time T has elapsed are predicted. This is because we assumed that when a car becomes empty, it will remain on standby on that floor. If it has been decided that empty carts will always be kept on standby on a specific floor. It is sufficient to predict the car position and direction as if the car is to be run to a specific floor. It is also possible to predict the car position and car direction by taking into account new calls that will occur before the predetermined time T elapses. Furthermore, the calculation direction of the final call predicted landing is not simplified as in this embodiment, but may be finely predicted based on the statistically determined probability of occurrence of a car call or a landing call. In addition, in the above embodiment, the building is divided into zones as shown in Fig. 8, but the number of floors and the number of installed cages may vary. Time zone and purpose of each floor (main floor, dining room floor, meeting room floor, transfer floor)
It is also easy to change the way zones are set up depending on the situation. Also, it is not necessary to decide the zone by considering the direction of the landing area. Furthermore, in the above embodiment, (a) When the new hall call C belongs to the upper floor zone. ■ There is no empty car, ■ There are many cars expected to be in the upper floor zone after the predetermined time T has elapsed, and ■ There is one predicted empty car. There are not many, and the traffic conditions are such that it is easy for a landing call to occur in the lower floor zone. When all of the conditions ■ to ■ are satisfied, an allocation restriction evaluation value (〉O》) is set for each of the predetermined predicted empty cars to restrict allocation to new hall call C. However, .The conditions for setting the allocation limit evaluation value are not limited to these. (Expression) When the new landing call C belongs to the lower floor zone. ■ There is no empty car. ■ After the specified time lWIT has elapsed, the lower floor The number of cars expected to be in the zone is large. ■ There is one predicted empty car, but not many, and ■ The traffic conditions are such that hall calls are likely to occur in the upper floor zone. (c) When the new hall call C belongs to the intermediate floor zone.■ There are no empty cars, and ■ There are no cars expected to be in the intermediate floor zone after the predetermined time tlIT has passed. The following conditions (c) can also be applied: ■ There is one predicted empty car, but not many. ■ The traffic condition is such that a hall call is likely to occur in the upper floor zone or lower floor zone. .Furthermore, 1
We use the flipside of the fact that cars are concentrated in one zone. (2) When new hall call C is registered, ■ 1 empty car
There is no platform. ■ Upper floor zone, lower/downward floor zone. Or in any intermediate floor zone to which the new hall call C does not belong. And there is a zone in which there is no car expected to be there after the predetermined time T has elapsed, and ■ there is one predicted empty car, but not many, and ■ a hall call occurs in a zone that satisfies the above ■. Traffic conditions are easy. Condition (2) can also be applied. In addition. When this condition (2) is satisfied, it is desirable to restrict the allocation to the predicted empty car that is closest to the zone that satisfies the above (■) among the predicted empty cars. Here, the conditional term ■ in the above conditions (a) to (ii) is
This is provided to maximize the effect of preserving predicted empty baskets. Even if the traffic condition condition (■) is not present, the effects of this invention will not be significantly impaired. In addition, although the condition regarding the number of empty cars in condition item (2) in conditions (a) to (2) above is set to the number of empty cars = 0 cars, the present invention can also be applied when the number of empty cars is 1 car. can. For example, <<E) When new landing call C belongs to the upper floor zone, ■ There is one empty car in the upper floor zone, and ■ For a predetermined time T.
The number of cars expected to be in the upper floor zone after a light accident is large; ■ There is one predicted empty car, but not many. If the condition (e) is satisfied, it is also possible to restrict the allocation of a predetermined predicted empty car to the new landing call C. This condition (e) is valid because there is a landing immediately in the lower floor zone. This is the case when the traffic condition is not congested such that a call is generated.In other words, empty cars are effectively used for the new landing call C to be serviced in a short time, and the lower floor zone is registered in the near future. It is intended that a predicted empty car that will become empty in the near future will be serviced when the deaf boarding hall calls.Furthermore, the conditional terms in the above conditions (a) to (e)
in. ``The predicted number of empty cars is 1 or more, and a constant value Nb
This is because when the number of predicted empty cars is large, it is not necessarily necessary to preserve predicted empty cars through allocation restrictions. Eliminate the condition of "below a certain value Nb". In the process of selecting predicted empty cars to be allocated, it is possible to select a specific car or two cars (for example, select a car that is likely to become empty the earliest using predicted empty car times 1, ~t). , or predicted car position Fl(T) to F.
(T) and predicted car direction DI(T) to D. A similar effect can be obtained by restricting the allocation of (T) to select the car closest to the lower floor zone. There are various other possible conditions for restricting allocation to predicted empty cars based on the predicted number of cars, but it is clear that this can be easily achieved like condition (a) shown in Figure 7. Furthermore, in addition to the above (a) to (e), when multiple conditions are set depending on each situation, it is possible that two or more conditions may be in place at the same time. In such a case, the problem arises as to which conditions should be used to decide which baskets are subject to allocation restrictions. There are various ways to solve such problems, one of which is to use the well-known fuzzy theory. For example, the conditions are configured as detailed in the above-mentioned "Elevator Group Control Device" (1988 Electrical and Information Related Society. Proceedings Vol. 2 P2-1 17-120). The degree to which each conditional term is satisfied is expressed by a membership function as a number between O and 1. A method that uses them to select the minimum value for an AND combination or the maximum value for an OR combination, calculates the confidence of the condition itself, and finally selects the one condition with the highest confidence. It is. There is also a method in which the method of restricting allocation corresponding to each condition is weighted according to the degree of certainty, and the allocation of cars is restricted accordingly. It is clear that the present invention can be applied to conditions in such a system. in this way. Any condition may be used as long as it uses the predicted number of cars that will be concentrated on a given floor or a given floor area and the predicted number of empty cars that will be empty in the near future. Furthermore, in the above embodiment. As a means of restricting allocation to hall calls. A quota limit evaluation value that is larger than other baskets is set for a specific basket. This was weighted and added to the waiting time evaluation value to obtain a comprehensive evaluation value, and a method was used in which the car with the smallest overall evaluation value was selected as the officially allocated car. In this way, the quota limit evaluation value is combined with other evaluation values to comprehensively evaluate and allocate. This is nothing more than giving priority to the basket with the lowest quota limit evaluation value. In other words, a car with a large allocation limit evaluation value is more difficult to allocate than other cars. Also. The means for restricting allocation to hall calls is not limited to the above embodiment. A method may also be used in which cars that meet the allocation restriction conditions are excluded in advance from candidates for allocated cars. Furthermore, in the above embodiment. Although the waiting time evaluation value is the sum of the squares of the predicted waiting times for hall calls, the method of calculating the waiting time evaluation value is not limited to this. For example, even if a system is used in which the sum of the predicted waiting times of a plurality of registered hall calls is used as the waiting time evaluation value, or a method in which the maximum predicted waiting time is used as the waiting time evaluation value, the present invention is still applicable. It is obvious that it can be applied. of course. The evaluation items to be combined with the quota limit evaluation value are not limited to waiting time, but may also be combined with evaluation indicators such as unpredictedness or fullness. In addition, in the above embodiment, the car position and car direction after a predetermined time T for one type of predetermined time T are predicted for each car, and the allocation limit evaluation value is calculated based on this. The predetermined time Tl, T2,
..., Tr (TI<T2<...<Tr), predict the car position and car direction after a predetermined time for each car, and further predict multiple types of predetermined time TI,
For T2, ..., Tr, the predicted car empty number N m (T 1) to Nm (Tr) after the elapse of a predetermined time is calculated for each zone Z.
m(m=1.2, . . . calculate each for 1. Also, predict the number of empty cars NPAV(TI) ~ NPAV(
Tr) respectively. and. Each combination {N
, (TI), N2 (T2)s..., N P A V (
TI)). (N + (T2).N * (T2).-
- ・,NPAV(T2Ns...(N+(Tr).
N*(Tr>,-...NPAV(Tr)). The allocation limit evaluation value P (TI). P
(T2). ...P (Tr). Add weights. That is, P=kl・P(Tl)+kP(T2)+
ky”P(Tr).(However, kl, k2,..., kr
is calculated according to the formula 〉weighting coefficient〉. It is also easy to set the final allocation limit evaluation value P.
in this case. Don't just focus on the cage arrangement at a certain point T. T.I. This is because the cage arrangement at multiple points in time, T2, ..., Tr, will be evaluated from a global perspective.
It will be possible to further reduce the waiting time for hall calls from now on into the near future. In addition. The above weighting coefficient kl,
k2,...,kr are, for example, as shown in FIG.
There are several ways to set this up, depending on which point in time you want to place more emphasis on cage placement. It can be selected appropriately depending on traffic conditions, building characteristics, etc. [Effect of the invention] This invention is as explained above. A hall call registration means for registering a hall call when a hall button is operated. Allocating means for selecting and allocating a car to be serviced from a plurality of cars in response to the hall call, and determining the running direction, departure, and stop of the car. and controls operations such as opening and closing doors. A car control means for causing the car to respond to the car call and the assigned landing call.
When the car finishes answering all calls, do you have it wait on the floor where it finished answering? Alternatively, in an elevator group control device having a waiting means for causing the elevator to travel to a predetermined floor and wait. A predictive empty car that detects, as a predicted empty car, a car whose door is predicted to be in a closed state after a predetermined time has elapsed by sequentially responding to calls that have a call to be answered at the present time. a car detecting means; and a car position predicting means for predicting and calculating the car position and car direction after a predetermined period of time when the car responds to the car call and the assigned landing call from the present moment. car empty number prediction means for predicting the presence or absence or number of cars that will be on a predetermined floor or predetermined floor area after the elapse of the predetermined time based on the predicted car position and the predicted car direction; a first determination means for comparing and determining the predicted number of cars that are later predicted to be on the predetermined floor or within the predetermined floor area with a first predetermined value; and comparing and determining the predicted number of cars with a second predetermined value. outputting a command to limit the allocation of the predicted empty car to the hall call or exclude it from being allocated based on the judgment results of the second judgment means and the first judgment means and the second judgment means; and a third determination means. By taking into consideration changes in car arrangement over time and the possibility of empty cars, this system has the effect of shortening the waiting time for hall calls from now to the near future. 4. Brief Explanation of Sections FIG. 1 is a block diagram of an elevator group control system according to an embodiment of the present invention. Figure 2 is an elliptic block diagram of the group management device (10) in Figure 1, Figure 3 is a flowchart of the group management program (10), and Figure 415! I is a flowchart of the empty car detection program (33) in Figure 3, and Figure 5 is the car position prediction program (36) in Figure 3.
Flow chart diagram. Figure 6 is a flowchart of the car number prediction program (36), Figure 7 is a flowchart of the quota restriction program (37) of Figure 3. Figure 8 is a diagram showing the zoning of buildings, Figures 9 and Fig. 10 is a diagram showing the relationship between calls and car positions, and Fig. 11 is a diagram explaining another embodiment of the present invention. Figs. 12 to 16 show conventional elevator group control devices, and each This is a diagram showing the relationship between call and car position. In the diagram, (IOA)
... Hall call registration means, (IOC) ... Assignment means. (
IOD>...Car position prediction means. (IOE)... Car number prediction means, (IOF)... Standby means. (IOG
)...Empty car detection means. (IOH)...Predictive empty car detection means, (IOJ)...Allocation restriction means. (11)~
(14)... Car control means. In addition. The same symbols in each figure indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 乗場釦が操作されると乗場呼びを登録する乗場呼び登録
手段と、前記乗場呼びに対して複数のかごの中からサー
ビスすべきかごを選択して割り当てる割当手段と、かご
の運行方向決定、出発、停止、および戸開閉等の運転制
御を行い、かごをかご呼びと前記割当乗場呼びに応答さ
せるかご制御手段と、かごがすべての呼びに答え終わる
と答え終わった階床で待機させるか、もしくは所定の階
床へ走行させて待機させる待機手段とを有するエレベー
タの群管理装置において、現時点で応答すべき呼びを持
っているかごが呼びに順次応答して所定時間経過した後
に応答すべき呼びがない状態になっていると予測される
かごを予測空かごとして検出する予測空かご検出手段と
、前記予測空かごが前記乗場呼びに割り当てるのを制限
するかもしくは割当対象から除外する指令を出力する割
当制限手段とを備えたことを特徴とするエレベータの群
管理装置。
A hall call registration means for registering a hall call when a hall button is operated; an allocating means for selecting and allocating a car to be serviced from a plurality of cars in response to the hall call; determining the direction of operation of the car, and determining the departure of the car. a car control means that controls operations such as , stopping, and door opening/closing, and causes the car to respond to car calls and the assigned landing calls; and after the car has answered all the calls, causes the car to wait at the floor where it has answered, or In an elevator group control device having a waiting means for causing cars to run to a predetermined floor and wait, the cars that have a call to be answered at the present time respond to the calls one after another, and after a predetermined period of time has elapsed, the car to be answered is received. Predicted empty car detection means for detecting a car that is predicted to be empty as a predicted empty car, and outputting a command to limit the allocation of the predicted empty car to the hall call or exclude it from being allocated. What is claimed is: 1. An elevator group management device comprising: allocation restriction means.
JP1160714A 1989-06-26 1989-06-26 Elevator group management device Expired - Lifetime JPH0798619B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1160714A JPH0798619B2 (en) 1989-06-26 1989-06-26 Elevator group management device
US07/538,359 US5083640A (en) 1989-06-26 1990-06-13 Method and apparatus for effecting group management of elevators
GB9014214A GB2235312B (en) 1989-06-26 1990-06-26 Method and apparatus for effecting group management of elevators
KR1019900009487A KR930004754B1 (en) 1989-06-26 1990-06-26 Method and apparatus for effecting group management of elevators
CN90103320A CN1019288B (en) 1989-06-26 1990-06-26 Method and apparatus for realizing elevator group control
SG76794A SG76794G (en) 1989-06-26 1994-06-09 Method and apparatus for effecting group management of elevators
HK66794A HK66794A (en) 1989-06-26 1994-07-14 Method and apparatus for effecting group management of elevators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160714A JPH0798619B2 (en) 1989-06-26 1989-06-26 Elevator group management device

Publications (2)

Publication Number Publication Date
JPH0326672A true JPH0326672A (en) 1991-02-05
JPH0798619B2 JPH0798619B2 (en) 1995-10-25

Family

ID=15720884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160714A Expired - Lifetime JPH0798619B2 (en) 1989-06-26 1989-06-26 Elevator group management device

Country Status (1)

Country Link
JP (1) JPH0798619B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010208770A (en) * 2009-03-09 2010-09-24 Toshiba Elevator Co Ltd Group supervisory operation system of elevator
US8630770B2 (en) 2009-04-17 2014-01-14 Yanmar, Co., Ltd. Vehicle and feedback control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140148A (en) * 1976-05-17 1977-11-22 Fujitec Co Ltd Elevator controlling method
JPS59153772A (en) * 1983-02-04 1984-09-01 株式会社東芝 Group control method of elevator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140148A (en) * 1976-05-17 1977-11-22 Fujitec Co Ltd Elevator controlling method
JPS59153772A (en) * 1983-02-04 1984-09-01 株式会社東芝 Group control method of elevator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010208770A (en) * 2009-03-09 2010-09-24 Toshiba Elevator Co Ltd Group supervisory operation system of elevator
US8630770B2 (en) 2009-04-17 2014-01-14 Yanmar, Co., Ltd. Vehicle and feedback control method

Also Published As

Publication number Publication date
JPH0798619B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
JPH0772059B2 (en) Elevator group management device
KR920001299B1 (en) Group control device of elevator
JP5477387B2 (en) Double deck elevator group management device
WO2019087249A1 (en) Elevator operation management system, and elevator operation management method
WO2006101552A1 (en) Elevator dispatcher
US8800723B2 (en) Elevator system having floors locked from receiving service
US5083640A (en) Method and apparatus for effecting group management of elevators
JPH0632545A (en) Elevator device which changes a plurality of elevators periodically
JP2011105452A (en) Elevator group management system and elevator group management method
JP2019081622A (en) Vehicle allocation system of external system cooperation and method
JPH02265876A (en) Group control method for elevator
JP5535708B2 (en) Elevator group management control device
JP6960463B2 (en) Congestion avoidance driving system and method
CN101356106A (en) Control method and system for elevator
JP7027516B1 (en) Group management control device for double deck elevators and group management control method for double deck elevators
JPH0326672A (en) Group control device for elevator
JPS62121186A (en) Group control method of elevator
JPH0532303B2 (en)
JPH08217342A (en) Group supervisory operation control device for elevator
JPH0331174A (en) Group management device for elevator
JP7359340B1 (en) Elevator system and elevator car assignment method
JP7230104B2 (en) Elevator group management control device and elevator group management control method
Cortés et al. A State of the Art on the most relevant patents in vertical transportation in buildings
JPS6251860B2 (en)
JPS623074B2 (en)