JPH03266369A - Operating method of fuel reforming device - Google Patents

Operating method of fuel reforming device

Info

Publication number
JPH03266369A
JPH03266369A JP2065812A JP6581290A JPH03266369A JP H03266369 A JPH03266369 A JP H03266369A JP 2065812 A JP2065812 A JP 2065812A JP 6581290 A JP6581290 A JP 6581290A JP H03266369 A JPH03266369 A JP H03266369A
Authority
JP
Japan
Prior art keywords
steam
reforming
gas
fuel
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2065812A
Other languages
Japanese (ja)
Inventor
Toshio Nagai
永井 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2065812A priority Critical patent/JPH03266369A/en
Publication of JPH03266369A publication Critical patent/JPH03266369A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To keep down the CO concentration of a reforming gas at an allowable value or lower, even if the warming of a reforming raw material supply pipe is insufficient, by setting the steam/carbon ratio in a determined way in fuel reforming by mixing a supplying fuel gas with steam. CONSTITUTION:Determined quantities of a supplying gas, for example, methanol, and steam are sent out through respective regulating valves 6, 7, and supplied to a methanol reformer 5 through a mixed gas supply pipe 3. In the operation of the reformer, the methanol and steam are mixed in such a manner that the steam/carbon ratio is larger than the steam/carbon ratio at the time of steady operation in a time when the mixed gas supply pipe 3 is not sufficiently warmed at the beginning of the operation. The quantity is preliminarily calculated from the concentrated quantity of steam in consideration of the concentration of the steam when the tube is not warmed. According to this operating method, inconveniences such as discharge of the mixed gas because the CO quantity exceeds an allowable value when the tube is unwarmed can be eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、改質原料を水素に冨むガスに改質して燃料電
池に供給する燃料改質装置の運転方法、特に燃料改質装
置の運転当初時の運転方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for operating a fuel reformer that reformes a reforming raw material into a hydrogen-rich gas and supplies it to a fuel cell, and in particular a fuel reformer. Regarding the operating method at the time of initial operation.

〔従来の技術〕[Conventional technology]

燃料改質装置はアルコール系や炭化水素系の原燃料ガス
に水蒸気を付加してなる改質原料を改質触媒が充填され
た改質管に通流し、熱媒体により改質管を加熱して改質
原料を水素に冨もガスに改質するものであり、この改質
された改質ガスをりん酸型燃料電池に供給する発電シス
テムが知られている。ところで改質原料の改質反応によ
り生した改質ガス中にはCOが含まれるが、このCOは
りん酸型燃料電池の電極の触媒の触媒毒となり、発電能
力を低下させるので、改質ガス中のCO濃度を許容値以
下になるようにスチームカーボン比葛 を調整して改質原料を燃料改質膠に供給している。
In a fuel reformer, a reforming material made by adding steam to alcohol-based or hydrocarbon-based raw fuel gas is passed through a reforming tube filled with a reforming catalyst, and the reforming tube is heated by a heat medium. A power generation system is known in which a reformed raw material is reformed into hydrogen-rich gas, and this reformed gas is supplied to a phosphoric acid fuel cell. By the way, the reformed gas produced by the reforming reaction of the reformed raw material contains CO, but this CO poisons the catalyst in the electrode of a phosphoric acid fuel cell and reduces the power generation capacity. The steam carbon ratio is adjusted so that the CO concentration therein is below the allowable value, and the reforming raw material is supplied to the fuel reforming glue.

以下図面を用いて従来技術について説明する。The prior art will be described below with reference to the drawings.

第1図はメタノールガスと水蒸気(スチーム)とからな
る改質原料を水蒸気改質する燃料改質装置の系統図であ
る。図においてメタノールガスとスチームとはメタノー
ルガス供給管1とスチーム供給管2とを経て混合ガス供
給管3にて混合されてメタノール改質器5に供給される
。メタノールガスとスチームは前述のように生成される
改質ガスに含まれるCO濃度を許容値以下にするために
改質運転状況に応じたスチームカーボン比を定め、メタ
ノールガス流量調節弁6とスチーム流量調節弁7とによ
りメタノールガス流量とスチーム流量との比を前記スチ
ームカーボン比になるように制御される。
FIG. 1 is a system diagram of a fuel reformer for steam reforming a reforming raw material consisting of methanol gas and steam. In the figure, methanol gas and steam pass through a methanol gas supply pipe 1 and a steam supply pipe 2, are mixed in a mixed gas supply pipe 3, and are supplied to a methanol reformer 5. As mentioned above, the steam-carbon ratio of methanol gas and steam is determined according to the reforming operation status in order to keep the CO concentration contained in the generated reformed gas below the allowable value, and the methanol gas flow rate control valve 6 and the steam flow rate are The ratio between the methanol gas flow rate and the steam flow rate is controlled by the control valve 7 so that the ratio of the methanol gas flow rate to the steam flow rate becomes the steam carbon ratio.

上記のメタノールガス流量とスチーム流量との比率制御
は、メタノールガス流量計8で検出した流量とスチーム
流量計9で検出した流量とを制御部10内に設けられた
比率調節器に入力し、メタノールガス流量とスチーム流
量とが設定されたスチームカーボン比になるように比率
調節器からの出力信号によりスチーム流量11!ff弁
7を制御して行われる。なおメタノールガス流量は制御
部10に設けられた流量制御器により運転状態に応した
所定量に制御される。
The above ratio control of the methanol gas flow rate and the steam flow rate is performed by inputting the flow rate detected by the methanol gas flow meter 8 and the flow rate detected by the steam flow meter 9 to the ratio controller provided in the control unit 10, and The steam flow rate is set to 11! by the output signal from the ratio controller so that the gas flow rate and the steam flow rate become the set steam carbon ratio! This is done by controlling the ff valve 7. Note that the methanol gas flow rate is controlled to a predetermined amount according to the operating state by a flow rate controller provided in the control unit 10.

このようにして制御されたメタノールガスとスチームは
改質原料人口11からメタノール改質器5に供給される
The methanol gas and steam controlled in this manner are supplied from the reforming raw material 11 to the methanol reformer 5.

メタノール改質器5は円筒多管式熱交換器の構造を基本
としたもので改質管12の中には改質触媒13が充填さ
れている。メタノールの水蒸気改質は吸熱反応であり、
改質反応を続行させるには連続した熱の供給が必要であ
るため、改質管12の外側に加熱された熱媒体14を循
環させ、改質管12を介して常に改質触媒13へ熱を供
給している。
The methanol reformer 5 is based on the structure of a cylindrical, multi-tubular heat exchanger, and has reforming tubes 12 filled with a reforming catalyst 13. Steam reforming of methanol is an endothermic reaction;
Since continuous supply of heat is required to continue the reforming reaction, a heated heat medium 14 is circulated outside the reforming tube 12 to constantly supply heat to the reforming catalyst 13 via the reforming tube 12. supplying.

メタノール改質器5に供給されたメタノールガスとスチ
ームは改質管12内に充填されている改質触媒13から
なる触媒□層で水素に冨む改質ガスに改質され、改質ガ
スは改質ガス出口15から改質ガス供給管16を経て燃
料電池20の燃料極21に供給される。一方、燃料!池
20の空気極22には空気が空気供給管17を経て空気
流量調節弁18によりその流量が制御部10に設けられ
た流量制御器により、燃料電池20に供給される改質ガ
ス量に対応するように制御されて供給される。
The methanol gas and steam supplied to the methanol reformer 5 are reformed into a hydrogen-rich reformed gas in a catalyst layer consisting of a reforming catalyst 13 filled in a reforming tube 12, and the reformed gas is The reformed gas is supplied from the reformed gas outlet 15 to the fuel electrode 21 of the fuel cell 20 via the reformed gas supply pipe 16. On the other hand, fuel! Air is supplied to the air electrode 22 of the pond 20 through an air supply pipe 17 and an air flow rate control valve 18 whose flow rate corresponds to the amount of reformed gas supplied to the fuel cell 20 by a flow rate controller provided in the control unit 10. It is controlled and supplied as follows.

改質ガスと空気が燃料電池へ供給されると発電反応が電
解質マトリックス23をはさんで燃料極21と空気極2
2で起こり発電が始まり、その電力は負荷に供給される
。そして燃料電池の発it負荷に応して発電に使用され
なかった未反応の水素ガスを含んだ燃料掻排ガスは燃料
極排ガス出口24より、また未反応の酸素を含んだ空気
極排ガスが空気極排ガス出口25より排出され、これら
両極の排ガスは熱媒体へ熱を供給するための燃料及び酸
素とし随 て燃料炉26へ供給される。
When reformed gas and air are supplied to the fuel cell, a power generation reaction occurs between the fuel electrode 21 and air electrode 2 across the electrolyte matrix 23.
2, power generation begins and the power is supplied to the load. Then, depending on the generation load of the fuel cell, the fuel exhaust gas containing unreacted hydrogen gas that is not used for power generation is transferred from the fuel electrode exhaust gas outlet 24, and the air electrode exhaust gas containing unreacted oxygen is transferred to the air electrode. Exhaust from the exhaust gas outlet 25, these exhaust gases from both poles are supplied to the fuel furnace 26 as fuel and oxygen for supplying heat to the heating medium.

嗅 燃料炉26へ供給された希薄水素を含む燃料極排続する
熱媒体加熱器28へ導かれ、ここで熱媒体ポンプ29に
てメタノール改質器5と熱媒体加熱器28との間を結ぶ
熱媒体循環配管30を通って循環している熱媒体へ熱交
換して熱を与え、メタノール改質器5内で熱媒体より改
質管12内の改質触媒13へ改質反応熱を与える。
The fuel electrode containing dilute hydrogen supplied to the olfactory fuel furnace 26 is guided to the discharging heat medium heater 28, where a heat medium pump 29 connects the methanol reformer 5 and the heat medium heater 28. Heat is exchanged to the heat medium circulating through the heat medium circulation pipe 30 to give heat, and reforming reaction heat is given from the heat medium to the reforming catalyst 13 in the reforming tube 12 in the methanol reformer 5. .

この改質反応熱により改質管12を通流する前述のよう
にスチームカーボン比が調整された改質原料は水素に富
むガスに改質され、この改質ガスに含まれるCO濃度は
許容値以下に制御され、燃料電池20の燃料極21に供
給される。
Due to the heat of the reforming reaction, the reformed raw material whose steam-carbon ratio has been adjusted as described above, which flows through the reforming tube 12, is reformed into a hydrogen-rich gas, and the CO concentration contained in this reformed gas is set to an allowable value. The fuel is controlled as follows and supplied to the fuel electrode 21 of the fuel cell 20.

〔発明が解決しようとする課題] 燃料改質器で生成される改質ガスをりん酸型燃料電池に
供給する場合、前述のように改質ガスに含まれるC04
度を許容値以下にする必要がある。
[Problems to be Solved by the Invention] When supplying reformed gas generated in a fuel reformer to a phosphoric acid fuel cell, as described above, C04 contained in the reformed gas
It is necessary to keep the temperature below the allowable value.

このためスチームリフォーミングの化学平衡計算を行な
い、改質ガス中のCO濃度が許容値以下になるスチーム
カーボン比で燃料改質装置をスタートアップさせると、
その装置のサイズにもよるが、スチームがスチーム流量
調節弁7により制御され系が未だ充分暖管されてないた
め、スチームの凝縮温度以下に冷され、スチームが配管
中に凝縮水として溜まり、最終的に予定したスチームカ
ーボン比が得られなくなり、この結果スチームカーボン
比の非常に低い改質原料として燃料改質器5の改質管1
2に供給される。
For this reason, if we perform chemical equilibrium calculations for steam reforming and start up the fuel reformer at a steam-carbon ratio that makes the CO concentration in the reformed gas less than the allowable value,
Depending on the size of the equipment, the steam is controlled by the steam flow rate control valve 7 and the system has not yet been heated sufficiently, so the steam is cooled below the condensation temperature of the steam, and the steam accumulates as condensed water in the piping. As a result, the reforming tube 1 of the fuel reformer 5 is used as a reforming raw material with a very low steam carbon ratio.
2.

ところで、化学平衡計算上スチームカーボン比が低い程
改質ガス中のCo1度が裔くなり、燃料管系が完全に暖
管され、スチームカーボン比が正しい条件でメタノール
改質器5に入るまでまたなければならない。燃料改質装
置の規模にもよるが、正常なCOx度になるまでの燃料
改質装置の運転時間は数十分におよび、この間は改質ガ
スを大気に放出しなければならないため、不経済で、か
つ危険であり、また燃料電池の発電開始時間が大幅に遅
れてしまうという問題があった。
By the way, according to chemical equilibrium calculations, the lower the steam-carbon ratio, the more Co1 degree in the reformed gas will be retained, and the fuel pipe system will be completely warmed up and the steam-carbon ratio will continue until it enters the methanol reformer 5 under the correct conditions. There must be. Depending on the size of the fuel reformer, it takes several tens of minutes to operate the fuel reformer to reach a normal COx level, and during this time the reformed gas must be released into the atmosphere, which is uneconomical. This is dangerous, and there is a problem that the start time of power generation by the fuel cell is significantly delayed.

本発明の目的は燃料改質装置の運転当初、改質原料供給
管の暖管が不充分でも許容値以下のCO濃度の改質ガス
が得られる燃料改質装置の運転方法を提供することであ
る。
An object of the present invention is to provide a method of operating a fuel reformer that can obtain reformed gas with a CO concentration below a permissible value even if the warm pipe of the reforming material supply pipe is insufficient at the beginning of operation of the fuel reformer. be.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明によればア先 ルコール系や炭化水H原燃料ガスと水蒸気とを改質原料
供給管にて混合通流して改質触媒が充填された改質管に
供給し、熱媒体により改質管を加熱して原燃料ガスと水
蒸気とからなる改質原料を水素に富むガスに改質して燃
料電池に供給する燃料改質装置の運転方法において、燃
料改質装置の運転当初前記改質原料供給管の暖管が不十
分のときメタノールガスと水蒸気とを、そのスチームカ
ーボン比を定常運転時のスチームカーボン比より大きく
して改質管に供給するものとする。
In order to solve the above problems, according to the present invention, aqueous alcohol-based or hydrocarbon H raw fuel gas and steam are mixed and passed through a reforming material supply pipe to a reforming pipe filled with a reforming catalyst. In the method of operating a fuel reformer, a fuel reformer is operated by heating a reforming tube with a heating medium to reform a reforming raw material consisting of raw fuel gas and water vapor into a hydrogen-rich gas, and supplying the hydrogen-rich gas to a fuel cell. When the reforming material supply pipe is insufficiently warm at the beginning of operation of the reforming equipment, methanol gas and steam are supplied to the reforming pipe at a steam-carbon ratio higher than that during steady operation. do.

〔作 用〕[For production]

燃料改質装置の運転当初、改質原料供給管の暖管が不十
分の場合、水蒸気は改質原料供給管を流れる際、4I縮
して配管内に溜まるので原燃料ガスと水蒸気とのスチー
ムカーボン比が低下するが、見掛は上スチームカーボン
比を大きくしているので、改質原料供給管で水蒸気が凝
縮しても、最終的に燃料改質器に入る改質原料人口11
では正しい化学平衡計算上のスチームカーボン比になっ
ており、燃料電池へ供給可能な許容CO濃度以下の改質
ガスが早く得られる。
At the beginning of operation of the fuel reformer, if the heating of the reforming material supply pipe is insufficient, water vapor will be compressed by 4I as it flows through the reforming material supply pipe and will accumulate in the pipe, resulting in steam between raw fuel gas and water vapor. Although the carbon ratio decreases, the apparent upper steam carbon ratio is increased, so even if water vapor condenses in the reforming material supply pipe, the reforming material population 11 that ultimately enters the fuel reformer is increased.
The steam carbon ratio is correct based on chemical equilibrium calculations, and reformed gas with a CO concentration below the allowable value that can be supplied to the fuel cell can be obtained quickly.

〔実施例〕〔Example〕

以下本発明の実施例による燃料改質装置の運転方法につ
いて説明する。第1図に示したメタノール改質装置で2
00に一規模のクラスにおいて、りん酸型燃料電池20
に供給される改質ガス中のCO濃度を1.7%以下とし
て化学平衡計算上のスチームカーボン比は1.5であっ
た。したがって制御部10に設けられた比率調節器でメ
タノールガス流量調節弁6.スチーム流量調節弁7によ
り従来のようにスチームカーボン比は1.5になるよう
に制御したメタノールガス流量とスチーム流量とをメタ
ノールガス供給管1.スチーム供給管2.混合ガス供給
管3を経て燃料改質器5に供給すると、改質した改質ガ
ス中のCO濃度は最大で6.0%に達し、りん酸型燃料
電池20への供給が許容されるCO濃度が1゜7%以下
に下るまで、すなわちスチーム供給管2.混合ガス供給
管3とが暖管されてスチームの凝縮がなくなるまで約3
0分を要した。
A method of operating a fuel reformer according to an embodiment of the present invention will be described below. With the methanol reformer shown in Figure 1,
In the 1 in 00 class, phosphoric acid fuel cells 20
The steam-carbon ratio in chemical equilibrium calculation was 1.5, assuming that the CO concentration in the reformed gas supplied was 1.7% or less. Therefore, the methanol gas flow rate control valve 6. The methanol gas flow rate and the steam flow rate are controlled by the steam flow rate control valve 7 so that the steam-carbon ratio is 1.5 as in the conventional case. Steam supply pipe 2. When supplied to the fuel reformer 5 through the mixed gas supply pipe 3, the CO concentration in the reformed gas reaches a maximum of 6.0%, which is the CO concentration allowed to be supplied to the phosphoric acid fuel cell 20. Until the concentration falls below 1.7%, that is, the steam supply pipe 2. 3 until the mixed gas supply pipe 3 is warmed up and steam condensation disappears.
It took 0 minutes.

したがって本発明による燃料改質装置の運転方法を通用
し、上記のスチームの凝縮を考慮して予喜 めスチームの凝縮量より産出したスチームカーボン比2
.5にメタノールガスとスチームとをそれぞれメタノー
ルガス流量調節弁6とスチーム流量調節弁7とにより制
御してメタノール改質器5に送気したところ、CO濃度
は改質開始時より1.7%以上に上昇せず、安定した組
成の改質ガスが得られた。
Therefore, by applying the operating method of the fuel reformer according to the present invention, and considering the above-mentioned steam condensation, the produced steam carbon ratio is 2 based on the steam condensation amount.
.. In step 5, when methanol gas and steam were controlled by the methanol gas flow rate control valve 6 and the steam flow rate control valve 7 and sent to the methanol reformer 5, the CO concentration was 1.7% or more than at the start of reforming. A reformed gas with a stable composition was obtained.

本実施例ではメタノールガスを原燃料ガスとする燃料改
質器について説明したが、炭化水素系のメタン等を原燃
料ガスとする燃料改質装置においてもスチームカーボン
比を運転当初大きくして改質原料を燃料改質器に送気し
ても同じ効果が得られる。
In this example, a fuel reformer using methanol gas as a raw fuel gas was explained, but a fuel reformer using hydrocarbon-based methane, etc. as a raw fuel gas can also be reformed by increasing the steam-carbon ratio at the beginning of operation. The same effect can be achieved by feeding the feedstock into a fuel reformer.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、燃料改質装置の運転当
初の改質原料供給管の暖管が不十分なとき、原燃料ガス
と水蒸気とのスチームカーボン比を定常運転時のそれよ
り大きくして改質原料を燃料改質器に送気するようにし
たことにより、運転開始時よりCO濃度が燃料電池へ供
給可能な許容値より低い改質ガスが得られて燃料電池に
供給できるので、燃料電池の起動時間が大幅に短縮され
、さらにCO濃度が許容値になるまでの改質ガスの大気
放出がなくなり、経済的損失および可燃ガスの大気放出
による危険度も減少するという効果がある。
As is clear from the above explanation, when the reforming material supply pipe is insufficiently warmed at the beginning of operation of the fuel reformer, the steam-carbon ratio of raw fuel gas and water vapor is made larger than that during steady operation. By supplying the reformed raw material to the fuel reformer, reformed gas with a CO concentration lower than the allowable value that can be supplied to the fuel cell can be obtained from the start of operation and can be supplied to the fuel cell. The start-up time of the fuel cell is significantly shortened, furthermore, there is no need to release reformed gas into the atmosphere until the CO concentration reaches an acceptable value, and economic losses and dangers due to the release of flammable gas into the atmosphere are also reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料改質装置の系統図である。 1:メタノールガス供給管、2ニスチーム供給管、3:
混合ガス供給管、5:メタノール改質器、20:りん酸
型燃料電池。 イ億人弁理士 山 口  巌
FIG. 1 is a system diagram of a fuel reformer. 1: Methanol gas supply pipe, 2 Nisteam supply pipe, 3:
Mixed gas supply pipe, 5: methanol reformer, 20: phosphoric acid fuel cell. Billionaire Patent Attorney Iwao Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 1)アルコール系や炭化水素系の原燃料ガスと水蒸気と
を改質原料供給管にて混合通流させて改質触媒が充填さ
れた改質管に供給し、熱媒体により改質管を加熱して原
燃料ガスと水蒸気とからなる改質原料を水素に富むガス
に改質して燃料電池に供給する燃料改質装置の運転方法
において、燃料改質装置の運転当初前記改質原料供給管
の暖管が不十分のとき原燃料ガスと水蒸気とを、そのス
チームカーボン比を定常運転時のスチームカーボン比よ
り大きくして改質管に供給することを特徴とする燃料改
質装置の運転方法。
1) Alcohol-based or hydrocarbon-based raw fuel gas and steam are mixed and passed through a reforming material supply pipe and supplied to a reforming pipe filled with a reforming catalyst, and the reforming pipe is heated by a heat medium. In the method of operating a fuel reformer, the reforming material supply pipe is configured to reform a reforming material consisting of raw fuel gas and water vapor into a hydrogen-rich gas and supplying the reformed material to a fuel cell. A method for operating a fuel reformer, characterized in that raw fuel gas and steam are supplied to the reformer pipes when the warm pipes are insufficient, the steam carbon ratio of which is higher than the steam carbon ratio during steady operation. .
JP2065812A 1990-03-16 1990-03-16 Operating method of fuel reforming device Pending JPH03266369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2065812A JPH03266369A (en) 1990-03-16 1990-03-16 Operating method of fuel reforming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2065812A JPH03266369A (en) 1990-03-16 1990-03-16 Operating method of fuel reforming device

Publications (1)

Publication Number Publication Date
JPH03266369A true JPH03266369A (en) 1991-11-27

Family

ID=13297814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2065812A Pending JPH03266369A (en) 1990-03-16 1990-03-16 Operating method of fuel reforming device

Country Status (1)

Country Link
JP (1) JPH03266369A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238112A (en) * 2003-01-10 2003-08-27 Matsushita Electric Ind Co Ltd Apparatus for producing hydrogen
JP2007504635A (en) * 2003-05-16 2007-03-01 バッテル・メモリアル・インスティチュート Fast start fuel reforming system and technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238112A (en) * 2003-01-10 2003-08-27 Matsushita Electric Ind Co Ltd Apparatus for producing hydrogen
JP2007504635A (en) * 2003-05-16 2007-03-01 バッテル・メモリアル・インスティチュート Fast start fuel reforming system and technology
US8231697B2 (en) 2003-05-16 2012-07-31 Battelle Memorial Institute Rapid start fuel reforming systems and techniques
US8968432B2 (en) 2003-05-16 2015-03-03 Battelle Memorial Institute Rapid start fuel reforming systems and techniques

Similar Documents

Publication Publication Date Title
US7052787B2 (en) Solid high polymer type fuel cell power generating device
JPH10330101A (en) Hydrogen-manufacturing apparatus and method therefor
KR20070019986A (en) Compact steam reformer
US6413661B1 (en) Method for operating a combustor in a fuel cell system
KR102044766B1 (en) High Efficiency Fuel Cell System Improved Thermal Efficiency and Performance of the Maintenance
US6630109B2 (en) Control apparatus for reformer and method of controlling reformer using control apparatus
US6613465B2 (en) Control device for a fuel reforming apparatus
JP2003282114A (en) Stopping method of fuel cell power generating device
JPH11106204A (en) Hydrogen production apparatus and hydrogen production process
RU2443040C2 (en) Fuel elements system
KR20100030153A (en) Fuel cell system and method to supply fuel the same
JP2009238599A (en) Method of load following operation of fuel cell system
JPH03266369A (en) Operating method of fuel reforming device
JP2001313053A (en) Fuel cell system
US20100273082A1 (en) Structure and method for optimizing system efficiency when operating an SOFC system with alcohol fuels
US20040011703A1 (en) Warm-up device for catalytic reactor
JPS6221228B2 (en)
RU2353023C1 (en) Fuel element- based electric power plant
JP4135243B2 (en) Control device for reformer
JP4872760B2 (en) Operation control method and apparatus for fuel processor
JP2007519205A (en) Coolant conditioning system and method for a fuel processing subsystem
JP2001068137A (en) Co remover and fuel cell power generating system
JP2001206701A (en) Fuel reforming device and starting-up method
JP2003288936A (en) Fuel cell power generating system and its operation method
JP2007026998A (en) Fuel cell temperature control method for fused carbonate type fuel cell power generator, and device for the same