JPH03265889A - Light source device for display body - Google Patents

Light source device for display body

Info

Publication number
JPH03265889A
JPH03265889A JP2063962A JP6396290A JPH03265889A JP H03265889 A JPH03265889 A JP H03265889A JP 2063962 A JP2063962 A JP 2063962A JP 6396290 A JP6396290 A JP 6396290A JP H03265889 A JPH03265889 A JP H03265889A
Authority
JP
Japan
Prior art keywords
fine particles
light source
transparent layer
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2063962A
Other languages
Japanese (ja)
Inventor
Hiroshi Kataoka
片岡 紘
Hiroshi Kuriaki
廣 栗秋
Junzo Nagano
長野 純三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2063962A priority Critical patent/JPH03265889A/en
Publication of JPH03265889A publication Critical patent/JPH03265889A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PURPOSE:To improve illuminance in a light source device and the uniformity of the illuminance by providing a light transmission plate which is obtained by coating with particles having refractive index lower than that of a transparent layer on the back side of the transparent layer. CONSTITUTION:The light transmission plate 7 is provided with a layer 2 which is coated with the particles on the back side of the transparent layer 1, and also provided with a reflection layer 3 on the outer side of the layer 2. A light source 4 is provided opposite to the end surface of the light transmission plate 7. And in the case of using a back light type liquid crystal display device, a liquid crystal display body 8 is positioned as shown by a chain line, and the light from the light source 4 is reflected on the reflection layer 3 and the layer 2 coated with the particles as shown by an arrow shown by a mark 5, and then, the liquid crystal display body 8 is illuminated from the back. Thus, it can be made bright in the device and the uniform brightness can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、例えば背面から照明が行われるバックライト
型液晶表示装置等に使用される光源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light source device used in, for example, a backlight type liquid crystal display device that is illuminated from the back.

[従来の技術] 従来、薄型の光源装置として、透明板の背面に乳白色系
の乱反射面を形成したものの端面に光源を対向させたも
のが使用されている。
[Prior Art] Conventionally, as a thin light source device, a device in which a milky-white diffused reflection surface is formed on the back surface of a transparent plate and a light source is opposed to the end surface of the transparent plate has been used.

上記光源装置は、例えば液晶表示体を]−記透明板の裏
面側に配置し、透明板端面から透明板中に入射された光
源からの光を、乱反射面で反射することによって、透明
板の裏面側から液晶表示体の背面側へ照射するものであ
る。
The above-mentioned light source device disposes, for example, a liquid crystal display on the back side of the transparent plate, and reflects light from a light source that enters into the transparent plate from the end face of the transparent plate on a diffusely reflecting surface. The light is irradiated from the back side to the back side of the liquid crystal display.

[発明が解決しようとする課題] しかしながら、1−記従来の光源装置には、照度が低く
、照度のばらつきが大きいという問題がある。
[Problems to be Solved by the Invention] However, the conventional light source device described in 1-1 has a problem in that the illuminance is low and the illuminance varies widely.

照度の低さは、光源の数を増やすことによって軽減でき
るが、透明板の各端面に対向させて光源を配置する必要
」−1この光源の数の増大には限度があり、さほど有効
な解決策とはならない。また、光源に近い透明板の端面
付近は照度が高くそこから遠ざかるにつれて照度が低下
してしまうことについても有効な解決策がない。
Low illuminance can be alleviated by increasing the number of light sources, but it is necessary to place the light sources facing each end of the transparent plate.''-1 There is a limit to increasing the number of light sources, so there is no effective solution. It is not a strategy. Further, there is no effective solution to the problem that the illuminance is high near the end face of the transparent plate near the light source and decreases as the distance from there is high.

本発明は、−I−記従来の問題点に鑑みてなされたもの
で、光源装置における照度とその均一性を向−1−させ
ることを解決すべき課題とするものである。
The present invention has been made in view of the problems of the prior art described in -I-, and an object to be solved is to improve the illuminance and its uniformity in a light source device.

[課題を解決するための手段及び作用]I−記課題を解
決するために講じられた手段を第1図で説明すると、請
求項第1項の発明では、透明層1の裏面に該透明層1よ
り屈折率の低い微粒子−が塗布された導光板7を有する
表示体用光源装置とするという手段を講じているもので
ある。
[Means and effects for solving the problem] The means taken to solve the problem I--I will be explained with reference to FIG. The light source device for a display has a light guide plate 7 coated with fine particles having a refractive index lower than 1.

また、請求項第2項の発明においては、透明層1の裏面
に該透明層lより屈折率の低い微粒子が塗Aiされた導
光板7の端面に光源4が対向されており、かつ」−記微
粒子が、光源4と対向する導光板7の端面から遠ざかる
につれて、微粒子の濃度が高くなるよう塗布されている
表示体用光源装置とするという手段を講じているもので
ある。
In addition, in the invention of claim 2, the light source 4 is opposed to the end face of the light guide plate 7 whose back surface of the transparent layer 1 is coated with fine particles having a lower refractive index than the transparent layer l, and In the light source device for a display, the fine particles are coated so that the concentration of the fine particles increases as the distance from the end face of the light guide plate 7 facing the light source 4 increases.

更に請求印第3項の発明においては、1−記請求項第1
項又は第2ダ1の発明において、透明層1より屈折率の
低い微粒子を、珪素原子に有機基が直結したポリシロキ
サン結合をなす固体状のシリコーン樹脂からなる数平均
粒子径0.1〜100μmの球状微粒子とするという手
段を講じているものである。
Furthermore, in the invention of claim mark No. 3,
In the invention of item 2 or 1, the fine particles having a lower refractive index than the transparent layer 1 are made of a solid silicone resin having a polysiloxane bond in which an organic group is directly bonded to a silicon atom and have a number average particle size of 0.1 to 100 μm. This method takes the form of spherical fine particles.

以下、更に本発明を説明する。The present invention will be further explained below.

本発明の光源装置は、例えばパンクライト型液晶表小装
置等に使用される薄型の光源装置で、第1図、第3図に
示されるように、透明層1の背面に微粒子塗布層2を設
け、更にその外側に反射層3を設けたものを導光板7と
し、この導光板7の端面に対向して光源4を設けたもの
である。
The light source device of the present invention is a thin light source device used for, for example, a puncture light type liquid crystal display device, and as shown in FIGS. 1 and 3, a fine particle coating layer 2 is coated on the back surface of a transparent layer 1. A light guide plate 7 is formed by providing a reflective layer 3 on the outer side of the light guide plate 7, and a light source 4 is provided opposite the end face of the light guide plate 7.

本光源装置を、例えばバックライト型液晶表示装置に利
用する場合、図面上−点鎖線で示されるように液晶表示
体8が位置される。そして、光源4からの光が、図中符
合5で示される矢印のように、反射層3及σ微粒子塗I
j層2で反射されて、液晶表示体8をその背面より照ら
すものである。
When this light source device is used, for example, in a backlight type liquid crystal display device, the liquid crystal display body 8 is positioned as shown by the dotted chain line in the drawing. Then, the light from the light source 4 is transmitted to the reflective layer 3 and the σ fine particle coating I as shown by the arrow 5 in the figure.
The light is reflected by the j layer 2 and illuminates the liquid crystal display 8 from its back side.

尚、第1図においては導光板7の一端面に対向して光源
4が配置され、第3図においては相対向する乙端面に対
向して光源4が配置されているが、光源4は更に三端面
又は四端面金てに対向して配置してもよい。また、各端
面に対向する光源4は、単数でも複数でもよい。
In addition, in FIG. 1, the light source 4 is arranged opposite to one end surface of the light guide plate 7, and in FIG. 3, the light source 4 is arranged opposite to the opposing end surface. It may be placed facing the three end faces or the four end faces. Moreover, the light source 4 facing each end face may be singular or plural.

未発明に述べる透明層1とは、例えばアクリル樹脂、ポ
リスチレン樹脂、ポリカーボネート樹脂、ポリエステル
樹脂、ポリ塩化ビニル樹脂等の透明樹脂やガラスのよう
な無機透明材料等から成る透明な層であり、全光線透過
率が高いもの程好ましく、アクリル樹脂板が最も好まし
い。
The transparent layer 1 described herein is a transparent layer made of a transparent resin such as acrylic resin, polystyrene resin, polycarbonate resin, polyester resin, or polyvinyl chloride resin, or an inorganic transparent material such as glass, and is transparent to all light rays. The higher the transmittance, the more preferable it is, and the most preferable is an acrylic resin plate.

本発明に述べる透明層1より屈折率が低い微粒子とは、
透明層1を形成する透明物質より屈折率が低い微粒−r
であり、好ましくは屈折率で0.01以1−低く、更に
好ましくは0.03以−1−低い微粒子である。透明層
1を形成する物質がアクリル樹脂であれば、アクリル樹
脂の屈折率1.48より0.01以り低い1.48以下
の屈折率を有する微粒子が好ましい。
The fine particles having a lower refractive index than the transparent layer 1 described in the present invention are:
Fine particles -r having a lower refractive index than the transparent material forming the transparent layer 1
The fine particles preferably have a refractive index of 0.01 or more, and more preferably 0.03 or more. If the material forming the transparent layer 1 is an acrylic resin, fine particles having a refractive index of 1.48 or less, which is 0.01 or more lower than the refractive index of the acrylic resin, 1.48, are preferable.

微粒子の大きさは数平均粒子径が0.1〜100 μm
mの範囲であることか好ましく、更に好ましくは0.5
〜50μm、特に1〜30μmmが好ましい。数平均粒
子径が0.14m未満であると、所望の光拡散効率が得
にくくなる。また、数平均粒子−径が100 p、mを
越えると、暗くなりやすい他、二次加工時に微粒子周辺
に欠陥が生じやすく、品質の一定した導光板7が得にく
くなる。
The number average particle size of the fine particles is 0.1 to 100 μm.
It is preferably within the range of m, more preferably 0.5
~50 μm, particularly 1 to 30 μm is preferred. If the number average particle diameter is less than 0.14 m, it becomes difficult to obtain the desired light diffusion efficiency. Furthermore, if the number average particle diameter exceeds 100 p, m, it tends to become dark and defects are likely to occur around the fine particles during secondary processing, making it difficult to obtain a light guide plate 7 of consistent quality.

尚、上記数モ均粒子径は、次の条件による測定値をいう
In addition, the above-mentioned average particle diameter refers to a value measured under the following conditions.

測定装置:遠心式自動粒度分布測定装置(パーティクル
アナライザー) (タイプ)CAPA−500型 (装置メーカー)目立]二機製 測定方式:高速遠心沈降法と自然沈降法を採用した光透
過式液相沈降粒度分布測定法に より数平均粒子径を算出する。
Measuring device: Centrifugal automatic particle size distribution measuring device (particle analyzer) (Type) CAPA-500 model (device manufacturer) Made by two machines Measuring method: Light transmission liquid phase sedimentation using high-speed centrifugal sedimentation method and natural sedimentation method The number average particle diameter is calculated by particle size distribution measurement method.

分散媒体 界面活性剤水溶液 分散条件:超音波分散 本発明に用いる微粒子の粒子形状は、不定形ではなく、
だ円形又は真球形状(両者を含めて「球状」という)、
特に真球形状であることが好ましい。不定形の微粒−f
−では後述する透明性塗料への混合時の分散性に劣り、
二次凝集により微粒子が肥大化し、沈降、沈殿を生じや
すく、微粒子塗布層2が光学的均一性に欠けたものとな
りやすい。
Dispersion medium Surfactant aqueous solution Dispersion conditions: Ultrasonic dispersion The particle shape of the fine particles used in the present invention is not amorphous;
Oval or true spherical shape (both are collectively referred to as "spherical"),
In particular, a true spherical shape is preferred. Irregularly shaped fine particles-f
− has poor dispersibility when mixed into transparent paints, which will be described later.
Due to secondary aggregation, the fine particles become enlarged and tend to cause sedimentation and sedimentation, and the fine particle coating layer 2 tends to lack optical uniformity.

これに対して球状、特に真球形状のものはこの心配がな
く、分散性に優れ、良好な光学的特性を得やすい。
On the other hand, spherical particles, especially true spherical particles, do not have this problem, have excellent dispersibility, and are easy to obtain good optical properties.

微粒子を透明層1に塗71jシて微粒子塗布層2を形成
する方法は、透明性塗料に微粒子を分散させて塗布する
ことで行うことができる。透明性塗料は硬化した塗膜の
屈折率が透明層1と同−又はそれに近いことが好ましく
、微粒子の屈折率より001以−1−1更には0.03
以」二大きいことが好ましい。
The method of coating 71j the fine particles on the transparent layer 1 to form the fine particle coating layer 2 can be carried out by dispersing the fine particles in a transparent paint and applying the same. It is preferable that the refractive index of the cured transparent paint film is the same as that of the transparent layer 1 or close to it, and is 001 or more -1-1 or more preferably 0.03 than the refractive index of the fine particles.
It is preferable that the value is greater than or equal to "2".

本発明において、最も好ましい透明層1と微粒子の組み
合わせは、透明層1がアクリル樹脂であり、微粒子が、
珪素原子に有機基が直結したポリシロキサン結合をなす
固体状のシリコーン樹脂から成る数平均粒径0.1〜1
00 μmm (好ましくは0.5〜50μm、特に1
〜30gm)の球状微粒子である組み合わせである。
In the present invention, the most preferable combination of the transparent layer 1 and fine particles is that the transparent layer 1 is made of acrylic resin and the fine particles are
A number average particle size of 0.1 to 1 consisting of a solid silicone resin that forms a polysiloxane bond in which an organic group is directly connected to a silicon atom.
00 μmm (preferably 0.5 to 50 μm, especially 1
This is a combination of spherical fine particles of ~30gm).

次に微粒子として最も好ましいシリコーン樹脂の微粒子
について詳しく説明する。
Next, the most preferable silicone resin fine particles will be explained in detail.

本発明に特に好ましいシリコーン樹脂としては、珪素原
子に有機基が直結し、残りの結合が酸素と直結しており
、珪素原子と酸素が繰り返すシロキサン結合でポリマー
となったものである。このシリコーン樹脂は、常温又は
それ以1−の温度で固体状である。また、更に好ましく
は該シロキサン結合が三次元の網状構造を示す固体状ポ
リマーである。珪素原子に結合する有機基の数は、その
種類等によっても異なるが、好ましくは平均で0.5〜
1.5個、より好ましくはO,7〜1.3個である。
Particularly preferred silicone resins for the present invention are those in which an organic group is directly bonded to a silicon atom, the remaining bonds are directly bonded to oxygen, and a polymer is formed by repeating siloxane bonds between silicon atoms and oxygen. This silicone resin is solid at room temperature or 1-degrees higher. Further, a solid polymer in which the siloxane bonds exhibit a three-dimensional network structure is more preferable. The number of organic groups bonded to silicon atoms varies depending on the type, etc., but is preferably 0.5 to 0.5 on average.
1.5 pieces, more preferably 0,7 to 1.3 pieces.

珪素原子に結合した有機基で覆われた裏面を有し、特に
球状をなすシリコーン樹脂の微粒イは、有機溶剤に良好
に分散して溶剤の粘度を高める効果を示す。本発明で用
いられる球状のシリコーン樹脂微粒子としては、溶剤に
分散した時の粘度(溶剤がn−へキサン、微粒子の混合
量がn−ヘキサンに対し]0Ovtz、常温、B型回転
粘度計、EiOrpmで測定)200〜500cpsを
示すものが好ましく採用される。更に望ましくは300
〜400cpsを示すのものである。
Particularly spherical silicone resin particles having a back surface covered with an organic group bonded to a silicon atom are well dispersed in an organic solvent and have the effect of increasing the viscosity of the solvent. The spherical silicone resin fine particles used in the present invention have a viscosity when dispersed in a solvent (the solvent is n-hexane, the amount of fine particles mixed with n-hexane) is 0 Ovtz, room temperature, B-type rotational viscometer, EiOrpm. (measured at ) 200 to 500 cps is preferably employed. More preferably 300
~400 cps.

第6図に、本発明に好ましく用いられるシリコーン樹脂
の球状微粒子の分子構造モデルの一例を示す。
FIG. 6 shows an example of a molecular structure model of spherical fine particles of silicone resin preferably used in the present invention.

第6図のモデルは、シロキサン結合が正次元に伸びた網
状構造であり、珪素原子に1個の有機基が結合した構造
である。このモデルは本発明の実施態様としては最も好
ましい例である。
The model shown in FIG. 6 has a network structure in which siloxane bonds extend in the positive dimension, and has a structure in which one organic group is bonded to a silicon atom. This model is the most preferred embodiment of the present invention.

ここで述べるシリコーン樹脂は、カラスのような無機的
性質と有機基による有機的な性質とを合わせ持つ中間的
な性質の物質である。また、第6図に示した如く、球状
のシリコーン樹脂微粒子裏面は珪素原子に強固に直結し
た有機基に覆われた構造となっているので、透明性塗料
への分散性がきわめて良好である。更にはきわめて意外
な効果として、光学的特性の著しい改善に寄与すること
が、本発明者により確認されている。
The silicone resin described here is a substance with intermediate properties that has both inorganic properties such as glass and organic properties due to organic groups. Furthermore, as shown in FIG. 6, the back surface of the spherical silicone resin fine particles has a structure covered with organic groups that are directly and firmly bonded to silicon atoms, so that the dispersibility in transparent paints is extremely good. Furthermore, the present inventor has confirmed that, as a very unexpected effect, it contributes to a significant improvement in optical properties.

ここで用い得る有機基としては、例えばメチル基、エチ
ル基、プロピル基、ブチル基等のアルカンノ、髪はもと
より、例えばカルボキシル基、カルボニルノル、エステ
ルノル、エーテル基等、本発明に用いる透明性塗料に対
して親和力を有する41機基を含む。代表的な有機基と
してはメチル基が挙げられる。
Examples of organic groups that can be used here include alkano groups such as methyl group, ethyl group, propyl group, butyl group, and hair, as well as carboxyl groups, carbonyl groups, ester groups, and ether groups. Contains 41 aircraft groups that have an affinity for. A typical organic group is a methyl group.

珪素原子に直結した前記有機基が平均で0.5個未満で
あると、微粒子塗布層j層2を形成するための透明性塗
料中の塗膜形成材料への単分散が困難となる傾向となっ
たり、rli分散しても二次凝集か生じ、微粒−fか肥
大化し、光学的な均一性が得にくくなる傾向となること
もあり得る。
If the number of organic groups directly bonded to silicon atoms is less than 0.5 on average, monodispersion into the coating film forming material in the transparent paint for forming the fine particle coating layer J layer 2 tends to be difficult. Even if rli dispersion is performed, secondary aggregation may occur, and the fine particles -f may become enlarged, making it difficult to obtain optical uniformity.

−・方、珪素原子に直結した有機基が平均で1.5個を
越えた場合、ポリシロキサン結合の三次元網状構造体の
形成や球状の形成か生じかたくなった0 リ、あるいはまた外部応力で容易に変形しやすい微粒子
となったりする傾向が出ることもある。
- On the other hand, if the number of organic groups directly bonded to silicon atoms exceeds 1.5 on average, the formation of a three-dimensional network structure of polysiloxane bonds or the formation of a spherical structure becomes difficult, or external stress There may also be a tendency for the particles to become easily deformed.

本発明に好ましく使用されるシリコーン樹脂の球状微粒
子を製造するための原料としては、例えば官能基3個を
持つ加水分解性シランが挙げられる。加水分解と縮合上
程によって次にような反応機構を経て、第6図のような
三次元的網目構造をとる微粒子が形成されると推定され
ている。
Examples of raw materials for producing spherical fine particles of silicone resin preferably used in the present invention include hydrolyzable silane having three functional groups. It is estimated that fine particles having a three-dimensional network structure as shown in FIG. 6 are formed through the following reaction mechanism due to the hydrolysis and condensation process.

この加水分解と重縮合反応の工程において、使用される
加水分解性シランの官能基および41機基の種類、加水
分解触媒の種類と量(酸、アルカ)ノ)、反応装置の構
造、攪拌条件によって微粒子の形状、粒径が微妙に影響
され、これら微粒子形成時の影響因子の制御により、所
望のものをつ〈1す ることが6丁能となる。
In this hydrolysis and polycondensation reaction process, the type of functional group and functional group of the hydrolyzable silane used, the type and amount of the hydrolysis catalyst (acid, alkali), the structure of the reaction equipment, and the stirring conditions. The shape and particle size of the fine particles are subtly influenced by these factors, and by controlling these influencing factors during the formation of fine particles, it is possible to obtain the desired particles.

以l−説明したシリコーン樹脂の屈折率は1.43〜1
.44であり、透明層1として用いられるアクリル樹脂
、ポリスチレン樹脂、ポリカーボネート樹脂等より低く
、特にその球状(最適には真球状)微粒子は、本発明に
好適に使用できる。
The refractive index of the silicone resin described below is 1.43 to 1.
.. 44, which is lower than that of the acrylic resin, polystyrene resin, polycarbonate resin, etc. used for the transparent layer 1, and in particular, its spherical (optimally spherical) fine particles can be suitably used in the present invention.

ifJ述のように、上記球状のシリコーン樹脂微粒子並
びにその他の微粒子は、透明性塗料に配合され、透明層
1に塗布されて微粒子塗布層2を形成する。
As described in ifJ, the spherical silicone resin fine particles and other fine particles are blended into a transparent paint and applied to the transparent layer 1 to form the fine particle coating layer 2.

」−記透明性塗料としては、例えば溶剤蒸発型のニトロ
セルロースランカー、塩化ビニル樹脂塗料、アクリルラ
ッカー酸化重合型の油性調合ペイント、合成樹脂調合ペ
イント、フタル酸樹脂塗料、フェノール樹脂塗料、塩化
ゴム塗料、シリコーンアルキド樹脂塗料、イ′−1加重
合型の不飽和ポリエステル樹脂塗料、紫外線硬化塗料、
電子線硬化塗料、エポキシ樹脂塗料、ポリウレタン樹脂
塗料(ポリイソシアナート−ポリオール樹脂)、加熱縮
合重合型のアミノアルキド樹脂塗ネ;1、アミン 2 アクリル樹脂塗料、アミンポリエステル樹脂塗料、シリ
コンポリエステル樹脂塗料等が使用できる。
Examples of transparent paints include solvent evaporation type nitrocellulose lunker, vinyl chloride resin paint, acrylic lacquer oxidation polymerization type oil-based paint, synthetic resin paint, phthalic acid resin paint, phenol resin paint, and chlorinated rubber paint. , silicone alkyd resin paint, i'-1 polymerization type unsaturated polyester resin paint, ultraviolet curing paint,
Electron beam curing paint, epoxy resin paint, polyurethane resin paint (polyisocyanate-polyol resin), heat condensation polymerization type amino alkyd resin paint; 1. Amine 2. Acrylic resin paint, amine polyester resin paint, silicone polyester resin paint, etc. can be used.

■−記塗料のうち本発明においては特に光学的性質が要
求されるという点から、硬化した塗膜の透明性に可能な
限り優れているものを選定することが必要である。更に
微粒子の分散性、塗装加工性に優れている塗料であるこ
とが好ましい。また、耐候性、耐擦傷性、耐薬品性、耐
溶剤性等に優れていることが好ましい。
(2) Among the paints mentioned above, since optical properties are particularly required in the present invention, it is necessary to select a paint whose cured coating film is as excellent in transparency as possible. Further, it is preferable that the coating material has excellent dispersibility of fine particles and coating processability. It is also preferable that the material has excellent weather resistance, scratch resistance, chemical resistance, solvent resistance, and the like.

これら塗料に史に心安に応じて溶剤を追加混合し、粘度
調整し、膜形成能、塗工性能を高めるのが通常である。
Usually, solvents are added to these paints according to historical standards to adjust the viscosity and improve film-forming ability and coating performance.

使用される溶剤の種類、混合量は、採用する塗工方法、
目的とする塗膜厚さ、使用する塗膜形成材料の種類、乾
燥方法、硬化方法とその条件等によって適正な塗料、混
合量が決定される。
The type and amount of solvent used depends on the coating method used,
Appropriate coating materials and mixing amounts are determined depending on the desired coating film thickness, the type of coating film forming material used, the drying method, curing method and conditions, etc.

1−記透明性塗料中への微粒子の添加量は、透明性塗料
中に存在する塗膜形成材料に対して1〜70wt%石1
度が好ましく、更に好ましくは20〜60wt%3 である。
1- The amount of fine particles added to the transparent paint is 1 to 70 wt% stone 1 based on the film forming material present in the transparent paint.
The content is preferably 20 to 60 wt%3.

微粒子の透明性塗料への分散は、塗膜形成材料に直接混
合分散せしめることも可能であり、また塗膜形成材料と
溶剤との混合液、つまり塗料中に混合分散せしめること
も可能である。
The fine particles can be dispersed in a transparent paint by directly mixing and dispersing them in a coating material, or by mixing and dispersing them in a mixed solution of a coating material and a solvent, that is, a coating material.

かくして得られた、微粒子が混合分散された透明性塗料
は、透明層lの裏面に塗布され、加熱等で硬化されて微
粒子塗布層2を形成する。
The thus obtained transparent paint in which fine particles are mixed and dispersed is applied to the back surface of the transparent layer 1, and is cured by heating to form a fine particle coating layer 2.

塗料の塗布方法については、用途、要求性能、経済性等
を考慮し、最適な方法を選択すればよい。一般に塗料の
塗布方法としては、例えばスプレー塗装法、スクリーン
印刷法、グラビア印刷法、オフセット印刷法、バロット
印刷法等、幾多の方法があり、いずれの方法も採用可能
である。
As for the method of applying the paint, the optimum method may be selected in consideration of the application, required performance, economic efficiency, etc. Generally, there are many methods for applying a paint, such as a spray coating method, a screen printing method, a gravure printing method, an offset printing method, and a ballot printing method, and any of these methods can be employed.

但し、いずれの方法を採用するにしても、コーティング
加Y二性、作業性、品質の安定性等の観点から、適ロニ
な粘度に塗料を調整することが好ましい。
However, whichever method is adopted, it is preferable to adjust the paint to an appropriate viscosity from the viewpoints of coating properties, workability, quality stability, etc.

微粒子を分散混合した塗料の塗41に際しては、光源4
と対向する導光板7の端面から遠ざかるに 4 つれて微粒子の濃度が高くなるよう塗布することが好ま
しい。
When applying the paint 41 in which fine particles are dispersed and mixed, a light source 4 is used.
It is preferable to apply the coating so that the concentration of the fine particles increases as the distance from the end face of the light guide plate 7 facing the light guide plate 7 increases.

第2図は、第1図に示される光源装置における塗料の塗
布状態を示すもので、微粒子を含む塗料がライン6とし
て塗布されており、このライン6が光源4から遠ざかる
ほど密に形成されていることによって、微粒子の濃度が
光源4から遠ざかるほど高くなっている。
FIG. 2 shows the state of paint application in the light source device shown in FIG. As a result, the concentration of fine particles increases as the distance from the light source 4 increases.

第4図及び第5図は、いずれも第3図に示される光源装
置における塗料の塗布状態を示すもので、第4図ではラ
イン6が横に、第5図ではライン6が縦横に形成されて
おり、いずれも中央部のライン6が両端部に比して密に
形成されていることによって、微粒子の密度が光源4か
ら遠ざかるほど高くなっている。
4 and 5 both show the state of paint application in the light source device shown in FIG. 3. In FIG. 4, lines 6 are formed horizontally, and in FIG. 5, lines 6 are formed vertically and horizontally. In both cases, the lines 6 at the center are formed more densely than at both ends, so that the density of the fine particles increases as the distance from the light source 4 increases.

このようにして微粒子の密度を光源4から遠ざかるほど
高くすると、光源4から離れていることによって照度が
低ドしがちな領域の照度を白しさせることができ、全体
の照度の均一化を図ることができる。また、」−記微粒
子の密度変化付けた塗 5 料の塗布は、」−述のライン6としての塗布の他、連続
的に塗料の塗布液を変化させながら塗布するること等に
よっても行うことができる。
In this way, by increasing the density of fine particles as the distance from the light source 4 increases, it is possible to whiten the illuminance in areas where the illuminance tends to be low due to the distance from the light source 4, thereby making the overall illuminance uniform. be able to. Furthermore, the application of the paint with varying density of fine particles may be carried out not only by applying as line 6 as described in the above, but also by applying the paint while continuously changing the coating liquid. I can do it.

反射層3は、できるだけ光を透過させずに反射できるも
のであればよく、例えばアルミニウムの蒸着膜等によっ
て形成される。
The reflective layer 3 may be any material as long as it can reflect light without transmitting it as much as possible, and is formed of, for example, a vapor-deposited aluminum film.

「実施例」 微粒子として、珪素原子に3個の加水分解性官能基と、
1個のメチル基を有する原料シランを加水分解反応させ
、次いで縮合反応させて微粒子化した網状構造体をなす
固体状のシリコーン系球状微粒子を使用した。
"Example" As fine particles, a silicon atom has three hydrolyzable functional groups,
Solid silicone-based spherical fine particles having a network structure formed by subjecting a raw material silane having one methyl group to a hydrolysis reaction and then a condensation reaction to form fine particles were used.

1核シリコーン系球状微粒子は、出発原料からして当然
珪素原f−に結合する有機基はメチル基であり、その数
は1個である。これは、商品名「トスパール120」 
(東芝シリコーン製)として市販されており、n−へキ
サン分散液の粘度が370cpsで、屈折イiは1.4
3〜144である。
In the mononuclear silicone spherical fine particles, the organic group bonded to the silicon atom f- from the starting material is naturally a methyl group, and the number thereof is one. This is the product name "Tospearl 120"
(manufactured by Toshiba Silicone), the viscosity of the n-hexane dispersion is 370 cps, and the refractive index i is 1.4.
3 to 144.

I−記「トスパール120」の電子顕微鏡写真の模式図
を第7図に示す。第7図に示されるよう 6 に、「トスパール120」は1個々の粒子径が極めてよ
く揃った球状単分散の微粒子であることが分る。
A schematic diagram of an electron micrograph of "Tospearl 120" labeled I- is shown in FIG. As shown in FIG. 7, "Tospearl 120" is found to be spherical monodisperse fine particles with extremely uniform individual particle diameters.

「トスパール120」の粒度分布を第8図に丞す。第3
図に示されるように、「トスパール120」は、比較的
狭い粒度分布を持つ微粒子であり、その平均粒子径は2
Ij、mである。
The particle size distribution of "Tospearl 120" is shown in Figure 8. Third
As shown in the figure, "Tospearl 120" is a fine particle with a relatively narrow particle size distribution, and its average particle size is 2.
Ij, m.

イソプロピルアルコールを主成分とする溶剤で希釈した
アクリル系裏面硬化透明塗料(E¥川用料製品所製、商
品名rGIitter UV200−45J )に上記
シリコーン系球状微粒″f(東芝シリコーン製、商品名
「トスパール120J)を20wtX添加し、攪拌機で
混合分散させた。
The above-mentioned silicone-based spherical fine particles "f" (manufactured by Toshiba Silicone, product name: 20wtX of Tospearl 120J) was added and mixed and dispersed using a stirrer.

次いで、−1L記の塗料を第5図に示されるようなライ
ンパターンに、アクリル樹脂(屈折率1.49)製の透
明層にスクリーン印刷した。即ち、光源と対向する端面
から遠ざかるにつれて微粒子が密になるよう印刷した。
Next, the paint labeled -1L was screen printed on a transparent layer made of acrylic resin (refractive index 1.49) in a line pattern as shown in FIG. That is, printing was performed so that the fine particles became denser as they moved away from the end face facing the light source.

このようにして得られた導光板を用いて第3図に示され
るような光源装置としたところ、得られ 7 た光源装置は明るくかつ明るさが均一で、色温度が高く
優れたものであった。
When the light guide plate thus obtained was used to create a light source device as shown in Figure 3, the resulting light source device was bright and uniform in brightness, and had a high color temperature. Ta.

[発明の効果] 本願発明は、以ヒ説明した通りのものであり、光源装置
を明るくかつ均一な明るさのものとすることができるの
で、光源装置を用いた各種の表示装置による表示を一層
見やすいものとすることができる。
[Effects of the Invention] The present invention is as explained below, and since the light source device can be made bright and have uniform brightness, the display by various display devices using the light source device can be further improved. It can be made easier to see.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光源装だの−・例を示す説明図、
第2図はその導光板における微粒子塗布層形成パターン
の一例を示す図、第3図は本発明に係る光源装置の他の
例を示す説明図、第4図及び第5図は各々その導光板に
おける微粒子塗45層形成パターンの例を示す図、第6
図は本発明に好ましく使用できるシリコーン系球状微粒
子の分子構造モデル、第7図は実施例で用いたシリコー
ン系球状微粒子の電−子顕微鏡写真の模式図、第7図は
同微粒イの粒度分/1jを示すグラフである。 l・透明層、2 微粒子−塗!Hj層、3 反射層 8 4 : 光源、 5 : 反射光 6 : イ 導光 板、 液晶表示体。
FIG. 1 is an explanatory diagram showing an example of a light source device according to the present invention;
FIG. 2 is a diagram showing an example of the fine particle coating layer formation pattern on the light guide plate, FIG. 3 is an explanatory diagram showing another example of the light source device according to the present invention, and FIGS. 4 and 5 are respectively the light guide plate. Fig. 6 shows an example of the formation pattern of 45 layers of fine particle coating in
The figure shows a molecular structure model of silicone-based spherical fine particles that can be preferably used in the present invention, Figure 7 is a schematic diagram of an electron micrograph of silicone-based spherical fine particles used in Examples, and Figure 7 shows the particle size of the same fine particles A. It is a graph showing /1j. l・Transparent layer, 2 Fine particle coating! Hj layer, 3 reflective layer 8 4: light source, 5: reflected light 6: A light guide plate, liquid crystal display.

Claims (3)

【特許請求の範囲】[Claims] (1)透明層の裏面に該透明層より屈折率の低い微粒子
が塗布された導光板を有することを特徴とする表示体用
光源装置。
(1) A light source device for a display, comprising a light guide plate coated with fine particles having a refractive index lower than that of the transparent layer on the back surface of the transparent layer.
(2)透明層の裏面に該透明層より屈折率の低い微粒子
が塗布された導光板の端面に光源が対向されており、か
つ上記微粒子が、光源と対向する導光板の端面から遠ざ
かるにつれて、微粒子の濃度が高くなるよう塗布されて
いることを特徴とする表示体用光源装置。
(2) A light source is opposed to an end surface of a light guide plate whose back surface of a transparent layer is coated with fine particles having a refractive index lower than that of the transparent layer, and as the fine particles move away from the end surface of the light guide plate facing the light source, A light source device for a display, characterized in that the coating is applied to increase the concentration of fine particles.
(3)透明層より屈折率の低い微粒子が、珪素原子に有
機基が直結したポリシロキサン結合をなす固体状のシリ
コーン樹脂からなる数平均粒子径0.1〜100μmの
球状微粒子であることを特徴とする請求項第1項又は第
2項の表示体用光源装置。
(3) The fine particles having a refractive index lower than that of the transparent layer are spherical fine particles having a number average particle diameter of 0.1 to 100 μm and made of solid silicone resin that forms a polysiloxane bond in which an organic group is directly bonded to a silicon atom. A light source device for a display according to claim 1 or 2.
JP2063962A 1990-03-16 1990-03-16 Light source device for display body Pending JPH03265889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2063962A JPH03265889A (en) 1990-03-16 1990-03-16 Light source device for display body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063962A JPH03265889A (en) 1990-03-16 1990-03-16 Light source device for display body

Publications (1)

Publication Number Publication Date
JPH03265889A true JPH03265889A (en) 1991-11-26

Family

ID=13244441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063962A Pending JPH03265889A (en) 1990-03-16 1990-03-16 Light source device for display body

Country Status (1)

Country Link
JP (1) JPH03265889A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021720A (en) * 1996-06-27 1998-01-23 Nec Corp Backlight device
EP1079264A2 (en) * 1999-08-23 2001-02-28 Minebea Co., Ltd. Spread illuminating apparatus having groove portions obliquely arranged
US6415531B1 (en) 1995-05-23 2002-07-09 Sharp Kabushiki Kaisha Plane-shaped lighting device and a display using such a device
WO2003032073A1 (en) * 2001-09-27 2003-04-17 Tsujiden Co., Ltd. Reflective film
JP2010146772A (en) * 2008-12-16 2010-07-01 Kuraray Co Ltd Light guide plate, and method of manufacturing the same
WO2011104765A1 (en) * 2010-02-26 2011-09-01 株式会社クラレ Light-guide plate and method for manufacturing a light-guide plate
CN107884985A (en) * 2016-09-30 2018-04-06 乐金显示有限公司 Liquid crystal display device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415531B1 (en) 1995-05-23 2002-07-09 Sharp Kabushiki Kaisha Plane-shaped lighting device and a display using such a device
JPH1021720A (en) * 1996-06-27 1998-01-23 Nec Corp Backlight device
EP1079264A2 (en) * 1999-08-23 2001-02-28 Minebea Co., Ltd. Spread illuminating apparatus having groove portions obliquely arranged
EP1079264A3 (en) * 1999-08-23 2004-04-28 Minebea Co., Ltd. Spread illuminating apparatus having groove portions obliquely arranged
US7095399B1 (en) 1999-08-23 2006-08-22 Minebea Co., Ltd. Spread illuminating apparatus with transparent substrate having groove portions obliquely arranged and intersecting one another
WO2003032073A1 (en) * 2001-09-27 2003-04-17 Tsujiden Co., Ltd. Reflective film
CN100362407C (en) * 2001-09-27 2008-01-16 株式会社智积电 Reflective film
JP2010146772A (en) * 2008-12-16 2010-07-01 Kuraray Co Ltd Light guide plate, and method of manufacturing the same
WO2011104765A1 (en) * 2010-02-26 2011-09-01 株式会社クラレ Light-guide plate and method for manufacturing a light-guide plate
JP5436655B2 (en) * 2010-02-26 2014-03-05 株式会社クラレ Light guide plate and light guide plate manufacturing method
CN107884985A (en) * 2016-09-30 2018-04-06 乐金显示有限公司 Liquid crystal display device

Similar Documents

Publication Publication Date Title
CN107110996B (en) Forming low-refractive-index layer and anti-reflective film including it
CN1738711B (en) Laminate containing silica and application composition for forming porous silica layer
JPH0516002B2 (en)
CN101400492B (en) Optical film and method for producing same
CN103013205A (en) Curable resin composition for hard coat layer and hard coat film
EP2130878A1 (en) Double layer coating, its preparation and its use for rendering ultra water-repellent and antireflective the surfaces to which it is applied
CN107438778B (en) Low-index layer and antireflective coating comprising the low-index layer
CN107236367B (en) Temperature-sensing reversible color-changing UV (ultraviolet) ink for PVC (polyvinyl chloride), and preparation method and use method thereof
JP2009271536A (en) Antiglare film and manufacturing method
JP7402609B2 (en) Low sparkle matte coat and manufacturing method
CN101012343A (en) Ultraviolet-resistant coating composition and ultraviolet-resistant thin film
CN105907287A (en) Anti-ultraviolet anti-glare anti-fingerprint hardness-increasing coating liquid composition, coating and preparation method of coating
CN108628080A (en) A kind of line holographic projections film and its preparation method and application
JPH03265889A (en) Light source device for display body
KR20130041347A (en) Methods for manufacturing light-diffusing element and polarizing plate with light-diffusing element, and light-diffusing element and polarizing plate with light-diffusing element obtained by same methods
CN111748270B (en) Coating for projection screen and preparation method thereof
CN108139668A (en) It is used to form the photo curable coating composition of low-index layer
CN109195793A (en) Plexiglas plate and its manufacturing method
CN110936693B (en) Scattered light adjusting film with small change of full-angle light transmittance and preparation method thereof
CN101581802B (en) Anti-glare film and method for manufacturing same
TWI529203B (en) Polysiloxane core-shell microspheres and preparation method thereof
CN109096823A (en) The preparation method of quantum dot film and its application in a liquid crystal display
JPH07138530A (en) Production of hard coat
KR100563239B1 (en) Transparent sheet excellent in diffuse reflection effect and scratch resistance and manufacturing method
KR100758280B1 (en) Additive for optical resins, and optical resin composition