JPH03263753A - Nonmagnetic battery - Google Patents

Nonmagnetic battery

Info

Publication number
JPH03263753A
JPH03263753A JP9062097A JP6209790A JPH03263753A JP H03263753 A JPH03263753 A JP H03263753A JP 9062097 A JP9062097 A JP 9062097A JP 6209790 A JP6209790 A JP 6209790A JP H03263753 A JPH03263753 A JP H03263753A
Authority
JP
Japan
Prior art keywords
battery
magnetic
stainless steel
batteries
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9062097A
Other languages
Japanese (ja)
Inventor
Tsugio Sakai
次夫 酒井
Kazutoshi Takeda
和俊 竹田
Kensuke Tawara
謙介 田原
Hideo Sakamoto
秀夫 坂本
Hideki Ishikawa
英樹 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP9062097A priority Critical patent/JPH03263753A/en
Publication of JPH03263753A publication Critical patent/JPH03263753A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a nonmagnetic battery allowing correct magnetic measurement when stored in a device such as a magnetic measuring unit by using the high-manganese stainless steel with paramagnetism in all machining factor areas, high mechanical strength, and high corrosion resistance for positive and negative electrode cans of a battery. CONSTITUTION:A nonmagnetic battery can be obtained by using the high- manganese stainless steel maintaining the same paramagnetism level or below as that of austenite stainless steel at any machining factor is used as the material for positive and negative electrode cans 2, 1 and a current collector. When this battery is stored in a magnetic measuring unit for use, the external magnetic field around a magnetic sensor is not disturbed by the magnetic permeability of the battery, and correct magnetic measurement can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非磁性材料から構成された非磁性電池に関す
るもので、マンガン乾電池、アルカリマンガン乾電池、
酸化銀電池、水銀電池、空気亜鉛電池、リチウム電池な
どの一次電池および二次電池に適用でき、磁気測定器等
に用いられる電池として、大変に有用なものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to non-magnetic batteries made of non-magnetic materials, such as manganese dry batteries, alkaline manganese dry batteries,
It can be applied to primary and secondary batteries such as silver oxide batteries, mercury batteries, zinc air batteries, and lithium batteries, and is extremely useful as batteries used in magnetic measuring instruments and the like.

〔発明の概要〕[Summary of the invention]

本発明は、少なくとも電池の負極および正極の端子を兼
ねるそれぞれの缶材料を、高い加工率で加工を施しても
強磁性化しない特殊なステンレス鋼として構成した電池
であり、実質的に非磁性化した電池に関するものである
The present invention is a battery in which the can material, which also serves as at least the negative and positive terminals of the battery, is made of a special stainless steel that does not become ferromagnetic even when processed at a high processing rate, and is substantially non-magnetic. This relates to batteries that have been used.

〔従来の技術〕[Conventional technology]

従来の電池は、−S的に負極および正極缶としてニッケ
ルめっきを施した炭素鋼板や、マルテンサイト系、フェ
ライト系、オーステナイト系などのステンレス鋼板を単
独またはめっき、クラ、ドなどによる他の金属との複合
材が用いられてきた。
Conventional batteries use nickel-plated carbon steel sheets or martensitic, ferritic, or austenitic stainless steel sheets as the negative and positive electrode cans, either alone or in combination with other metals by plating, cladding, or cladding. Composite materials have been used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のこれらの金属材料は、電池缶として要求される電
池の封止性、リードとしての電気的接触抵抗、耐腐食性
などの点から、高い機械的強度、高耐食性の材料として
用いられてきた。しかし、これらの金属材料はいわゆる
強磁性材料であり、−船釣には非磁性といわれるオース
テナイト系ステンレス鋼も、実際には電池、缶乙こ刷子
した場合には1.マルテンザイト化し、その加工率に応
し5で磁性化の度合いが増し1、非磁性電池とはいえな
かった。
Conventionally, these metal materials have been used as materials with high mechanical strength and high corrosion resistance from the viewpoints of battery sealing properties required for battery cans, electrical contact resistance as leads, corrosion resistance, etc. . However, these metal materials are so-called ferromagnetic materials, and even austenitic stainless steel, which is said to be non-magnetic for boat fishing, actually has 1. The battery became martenzite, and the degree of magnetization increased at 5 and 1 depending on the processing rate, so it could not be said to be a non-magnetic battery.

(”J題を解決するための手段〕 前記問題点を解決するために、いわゆる3I磁性(常磁
性または反磁性材料)材料を種々検創してきた結果、C
uなとの反磁性材料、Aj!、Tiなどの常磁性材料は
、耐食性、機械的強度、材料コストなどの点から電池色
として適しているものとはいえなかった。本発明は電池
材料としζ、どんな加工率を受UてもオースヲJヘイ1
スヲンレス網以−トの常磁性1.ヘルを維持する高マン
ガンスう一ンレス鍜が最適であることを見出し7たこと
によるものである。
(Means for solving the "J problem") In order to solve the above problem, as a result of examining various so-called 3I magnetic (paramagnetic or diamagnetic materials) materials, we found that C
Diamagnetic material with u, Aj! , Ti, and other paramagnetic materials have not been suitable as battery colors in terms of corrosion resistance, mechanical strength, material cost, and the like. The present invention is a battery material.
Paramagnetism of Swanless net 1. This is due to the discovery that a high-manganese single-less stove that maintains health is optimal7.

(作用) 本発明は、磁気測定器などの磁気センサーを有する機器
に用いる電池ωためのもので次)る。そのた、電池とし
ては電池そのものが、人きな残留磁気(持ちや3”いも
のであったり、磁気センザー周辺のり1部磁場を電池の
持つ透磁性で乱すちのであっては正確な磁気の測定がご
きないため、常磁性レヘルの非磁性電池が望ましい。既
71″の電池系では、活物質である、Zn、 l、i、
 Mn0z、 CI’n、 AgzOHR,Oなどはい
ずれも、常磁性または反る5マ性材料であるために磁性
の影響はないが1.すでに述べたように電池の正負極缶
材、集電体材料などが強研情材料であった。これらを3
F磁性材料に変える必要があった本発明は、前述し、た
よう↓ご、全ての力L1−率域ごも常磁性を示す高マン
ガンズー)ンレス鋼を正負掬缶および集電体に用いこ、
非付性電池が得られるものて′ある。
(Function) The present invention is for a battery ω used in a device having a magnetic sensor such as a magnetometer. In addition, if the battery itself has a strong residual magnetism (3"), or if the magnetic field around the magnetic sensor is partially disturbed by the battery's magnetic permeability, it is difficult to accurately measure magnetism. A non-magnetic battery with a paramagnetic level is preferable because it does not cause vibration.In the existing 71" battery system, active materials such as Zn, l, i,
Mn0z, CI'n, AgzOHR, O, etc. are all paramagnetic or warped 5-magnetic materials, so they are not affected by magnetism, but 1. As already mentioned, the positive and negative electrode can materials and current collector materials of batteries were highly research-intensive materials. these 3
The present invention, which had to be changed to F magnetic material, uses high manganese-free steel, which exhibits paramagnetism in all force L1-rate ranges, for the positive and negative scoops and the current collector. ,
There are ways to obtain non-adhesive batteries.

〔実施例〕〔Example〕

塩1ミーに本発明の実施例を図に用いて説明づる。 An embodiment of the present invention will be explained below with reference to the drawings.

第1図は本発明の一実施例ボタン形電池の断面図である
。1は負極活17I質を収容づる負極0−□、2は正極
活物質を収容′する正極缶、3は負極活物質、4は正極
活物質、5はセパレータ、6はガスゲノ1である。′I
:施例施油電池い一ζ史に詳述すると、3:まり・ヂI
′y J、、金庫、41!MnO2,グラフアイ1およ
びヲーノ「j>粉末0)混名物からなる正極合剤成形体
5はポリプロピし・ン不織Aj、6はボリブ0ビL・ン
からなるガスケットであり、電解液はPC(−7’ロピ
レンカーボネー))とDME (ジメトキシ・・Jタン
)を重量比で181こし、た混合溶媒で、過塩素酸リー
チ1″)J、を1モル熔解したものである。ここで、1
および2は、(j来のニッケルめっき(10um厚メノ
ー1−層)炭素釦l板、5US430  (フェモイl
−系ス子ンレス鋼)、Si、JS304 (オースラナ
イト系ステ〉レス綱)、それ乙ご本発明の高マンガンス
テンレス鋼板(14〜16%重景翳、3〜6重量%N+
14〜18重景%Cr、残りFe)を用いこ各々50ケ
の電池を組をてた。、二のときの電池は直径20龍、高
さ1.6nの寸法であ2つ、1および2の4)Iネl厚
さはO25+nであった。これらの電、池を磁!A測定
器に内蔵し、一定の磁場中(i KOe>における磁気
量の測定値がこれらの電池により受ける影、4度を調べ
た7、なお、この測定器には、磁気センサーも内蔵、さ
れており、従って電池は一比較的近接しマ、いる。また
測定器rキ」の電池以夕)の磁気的影響4およびづもの
は、最小限にと、たものである。電池の磁気口′・」影
響を最も小さくした比較例としては、電池を測定器外に
十分離れた位置においた夕)部電源方へとした。
FIG. 1 is a sectional view of a button-type battery according to an embodiment of the present invention. 1 is a negative electrode 0-□ containing a negative electrode active material, 2 is a positive electrode can containing a positive electrode active material, 3 is a negative electrode active material, 4 is a positive electrode active material, 5 is a separator, and 6 is a gas generator 1. 'I
:Example Oiled Battery Ichiζ History, 3: Mari Di I
'y J,, safe, 41! The positive electrode mixture molded body 5 is made of a mixture of MnO2, Grapheye 1, and Wono "J>Powder 0", and 6 is a gasket made of polypropylene non-woven material, and the electrolyte is a polypropylene nonwoven material. (-7'ropylene carbonate)) and DME (dimethoxy...J tan) at a weight ratio of 181, and 1 mol of perchloric acid leech 1'') J was dissolved in a mixed solvent. Here, 1
and 2 are (nickel plated (10um thick agate 1-layer) carbon button l plate, 5US430 (femoyl)
- based stainless steel), Si, JS304 (auslanite stainless steel), and the high manganese stainless steel sheet of the present invention (14-16% heavy weight, 3-6% N+
Fifty batteries each were assembled using 14-18% Cr and the rest Fe. , 2 had a diameter of 20mm, a height of 1.6n, and a thickness of 4) I of 1 and 2 of 025+n. Magnetize these batteries and ponds! We investigated the influence of these batteries on the measured value of the amount of magnetism in a constant magnetic field (i KOe > 4 degrees) with the built-in magnetic sensor in this measuring device. Therefore, the batteries are relatively close to each other.Furthermore, the magnetic influence of the batteries on the measuring instrument (4) is kept to a minimum. As a comparative example in which the effect of the battery's magnetic port was minimized, the battery was placed outside the measuring instrument at a sufficient distance and placed in the direction of the power source.

表1 磁気測定器の誤差(%)(外部電源ブノ式を基生
→N]め、つき炭素鋼 ± 10% S t、、l 33 0 4 ±  3% 高マンガンステンレス鋼(4発明)l−1%外部電源7
j式 表1は、こ才1らの、に験の結果である。夕(部電源方
式の場合を基(Vと(、たときのn:50の平均誤Z・
で示L7]こも0である。この結果から明らかなように
、電池の正 負極缶材質ζ14:より 磁気的影響は色
視できないものであり17本発明の高マンガンスブンL
・ス鋼を用いた電池は著しい効果を示し7ている。これ
らは、第21g1に示づ冷間力11工′i4スと透if
f率測昇の結果からも示されるように、実際の¥施ζ5
゛用いる正負極短は、絞り加La:′:よりim常30
〜50%の加工率を受けるために、いわゆる常磁性材料
といわれる5US304ステンレス鋼も相当に磁気的性
質が強くなってしまうが、本発明になる高マンガンステ
ンレス鋼の場合は、高い加工率域においても常磁性の性
質を維持するために、このような効果を生み出している
ことは明らかである。
Table 1 Magnetic measuring instrument error (%) (Based on external power source type → N) Carbon steel with ± 10% S t,, l 33 0 4 ± 3% High manganese stainless steel (4 inventions) l- 1% external power supply 7
Table 1 shows the results of experiments conducted by Kosai et al. (Based on the case of partial power supply method)
L7] is also 0. As is clear from this result, the magnetic influence of the positive and negative electrode can materials of the battery cannot be seen in color.
・Batteries using steel have shown remarkable effects7. These are the cold force 11'i4 step shown in No. 21g1 and the transparent if
As shown from the results of the f-rate measurement, the actual
゛The positive and negative poles to be used are usually 30 from the aperture La:':
5US304 stainless steel, which is a so-called paramagnetic material, also has considerably strong magnetic properties in order to be subjected to a processing rate of ~50%, but in the case of the high manganese stainless steel of the present invention, in the high processing rate range. It is clear that this effect is produced in order to maintain paramagnetic properties.

なお、本実施例はリチウム電池のボタンサイズの場合で
あるが、他の電池形であるマンガン乾電池、アルカリマ
ンガン乾電池、銀電池、水銀電池、空気亜鉛電池、また
形状も節糸、ペーパー形いずれの場合においても同様の
効果があることは明らかである。
Note that this example deals with button-sized lithium batteries, but other battery types such as manganese dry batteries, alkaline manganese dry batteries, silver batteries, mercury batteries, and zinc-air batteries, as well as any shape, such as knotted string or paper type, are also applicable. It is clear that there is a similar effect.

〔発明の効果〕〔Effect of the invention〕

本発明は以上詳述したように、全ての加工率域で常磁性
で、高い機械的強度、高耐食性を持つ高マンガンステン
レス鋼を、少なくとも電池の正負極短に用いたので、磁
気測定器等の装置に内蔵しでも正確な磁気測定が可能と
なる等、その工業的価値は極めて大きいものである。
As described in detail above, the present invention uses high manganese stainless steel, which is paramagnetic in all processing rate ranges, has high mechanical strength, and high corrosion resistance, at least for the positive and negative poles of the battery. Its industrial value is extremely large, as it enables accurate magnetic measurements even when built into other devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例電池の断面図、第2図は代表
的ステンレス鋼の冷間加工率と透磁率の特性グラフであ
る。 ・負極短 ・正極缶 ・負極活物質 ・正極活物質 ・セパレータ 以上
FIG. 1 is a sectional view of a battery according to an embodiment of the present invention, and FIG. 2 is a characteristic graph of cold working rate and magnetic permeability of a typical stainless steel.・Short negative electrode ・Cathode can ・Negative electrode active material ・Cathode active material ・More than separator

Claims (1)

【特許請求の範囲】[Claims] 正極、負極、電解液および正極と負極を隔離するセパレ
ータを有する密封形電池において、少なくとも該電池の
負極端子を兼ねる負極缶および正極端子を兼ねる正極缶
の材質を14〜16重量%Mn、3〜6重量%Ni、1
6〜18重量%Crを含む高マンガンステンレス綱とし
たことを特徴とする非磁性電池。
In a sealed battery having a positive electrode, a negative electrode, an electrolytic solution, and a separator for separating the positive and negative electrodes, the material of at least the negative electrode can that also serves as the negative electrode terminal of the battery and the positive electrode can that also serves as the positive electrode terminal is 14 to 16% by weight Mn, 3 to 3% by weight. 6wt% Ni, 1
A non-magnetic battery characterized by being made of high manganese stainless steel containing 6 to 18% by weight of Cr.
JP9062097A 1990-03-13 1990-03-13 Nonmagnetic battery Pending JPH03263753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9062097A JPH03263753A (en) 1990-03-13 1990-03-13 Nonmagnetic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9062097A JPH03263753A (en) 1990-03-13 1990-03-13 Nonmagnetic battery

Publications (1)

Publication Number Publication Date
JPH03263753A true JPH03263753A (en) 1991-11-25

Family

ID=13190206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9062097A Pending JPH03263753A (en) 1990-03-13 1990-03-13 Nonmagnetic battery

Country Status (1)

Country Link
JP (1) JPH03263753A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894456B2 (en) 2001-11-07 2005-05-17 Quallion Llc Implantable medical power module
JP2016171169A (en) * 2015-03-12 2016-09-23 セイコーインスツル株式会社 Electrochemical cell, and electrochemical cell with terminal
WO2019008857A1 (en) * 2017-07-05 2019-01-10 パナソニックIpマネジメント株式会社 Production method for cylindrical cell and production method for cylindrical cell battery case

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894456B2 (en) 2001-11-07 2005-05-17 Quallion Llc Implantable medical power module
JP2016171169A (en) * 2015-03-12 2016-09-23 セイコーインスツル株式会社 Electrochemical cell, and electrochemical cell with terminal
CN105977404A (en) * 2015-03-12 2016-09-28 精工电子有限公司 Electrochemical cell and electrochemical cell with terminal
WO2019008857A1 (en) * 2017-07-05 2019-01-10 パナソニックIpマネジメント株式会社 Production method for cylindrical cell and production method for cylindrical cell battery case

Similar Documents

Publication Publication Date Title
Koyama et al. Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3 O 2 for advanced lithium-ion batteries: i. first-principles calculation on the crystal and electronic structures
DE60043724D1 (en) SECONDARY CELL WITH NON-ACID ELECTROLYTES
CA2099504A1 (en) Rechargeable battery including a li___ mn_0_ cathode and a carbon anode
US20060166099A1 (en) Closed nickel-hydrogen storage battery and its production method
WO2019088805A3 (en) Lithium manganese positive electrode active material having spinel structure, and positive electrode and lithium secondary battery comprising same
JP2009203490A (en) Hydrogen storage alloy, and hydrogen storage alloy electrode and nickel-hydrogen secondary battery using the alloy
Dugas et al. Engineered three-electrode cells for improving solid state batteries
JPH03263753A (en) Nonmagnetic battery
Sakai et al. Rare-earth-based hydrogen storage alloys for rechargeable nickel-metal hydride batteries
CN105977404A (en) Electrochemical cell and electrochemical cell with terminal
JP2009081040A (en) Hydrogen storing alloy, hydrogen storing alloy electrode using hydrogen storing alloy, and nickel hydrogen secondary battery
CN111293282B (en) Negative electrode active material, negative electrode, alkaline storage battery, and method for manufacturing negative electrode active material
JP2020187951A (en) Battery inspection method, battery inspection device, and battery
JPS63126159A (en) Lithium cell
US20230142293A1 (en) Positive electrode active material particles for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JPH03112068A (en) Secondary battery
CN110137489B (en) Nickel cobalt lithium manganate material with trace metal impurities, preparation method and application
Tvarusko Determination of the Internal Resistance of Leclanche Cells by Square‐Wave Method
CA1138028A (en) Process for generating electric power using air and water, and apparatus for carrying out the process
JP2008208428A (en) Hydrogen storage alloy, and hydrogen storage alloy electrode and nickel-hydrogen secondary battery both using this alloy
JP2594033B2 (en) Non-aqueous electrolyte battery
Reddy et al. X-ray studies on lithium-nickel and manganese-magnesium mixed ferrites
JP3365839B2 (en) Method for producing hydride secondary battery
Bergholz et al. Magnetography: A novel characterization tool for li-ion-batteries
JP2006179244A (en) Lithium secondary battery