JPH0326038B2 - - Google Patents

Info

Publication number
JPH0326038B2
JPH0326038B2 JP59219884A JP21988484A JPH0326038B2 JP H0326038 B2 JPH0326038 B2 JP H0326038B2 JP 59219884 A JP59219884 A JP 59219884A JP 21988484 A JP21988484 A JP 21988484A JP H0326038 B2 JPH0326038 B2 JP H0326038B2
Authority
JP
Japan
Prior art keywords
excitation
amount
phase
power generation
variable speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59219884A
Other languages
Japanese (ja)
Other versions
JPS6198200A (en
Inventor
Tadaatsu Kato
Hiroto Nakagawa
Goo Nohara
Masuo Goto
Shusuke Sawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Hitachi Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kansai Denryoku KK filed Critical Hitachi Ltd
Priority to JP59219884A priority Critical patent/JPS6198200A/en
Publication of JPS6198200A publication Critical patent/JPS6198200A/en
Publication of JPH0326038B2 publication Critical patent/JPH0326038B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、2次励磁付の誘導機により任意の回
転数で運転できる可変速発電システムの励磁制御
方式に係り、特に系統事故時に可変速機の端子電
圧の変動を抑制する励磁制御方式に関する。 〔発明の背景〕 従来の可変速発電システムは、揚水時に負荷の
調整ができないこと、発電運転時に系統から要求
される発電力の変化によりシステムの効率が変化
すること、揚水運転時に揚程等の変化によりシス
テムの効率が変化するということという不都合が
あつた。 このような不都合を解消するため、発電力や揚
程にかかわらず、上記システムを最高効率で運転
させるための研究が進められている。この研究は
従来の同期機である揚水発電機を2次励磁付の誘
導機で運転する、いわゆる可変速発電システムと
するという方向に進んでいる。このように可変速
発電システムとすることにより発電力、揚程にか
かわらず、そのシステムを最高効率で運転するこ
とが可能となるとされている。そこで、かかる可
変速発電システムを実現するための研究が進めら
れている。 このような可変速発電システムについては、例
えば昭和59年電気学会全国大会論文、No.553、「大
容量同期電動機の可変速運転特性」において発表
されているものの、事故時に生ずる端子電圧の変
動を小さくするための具体的な励磁制御方式につ
いては、何らふれられていない。 〔発明の目的〕 本発明は上述した点に鑑みてなされたものであ
り、その目的は発電及び揚水の各種運転状態で、
可変速発電システムを高効率で運転すると共に、
系統事故時に可変速機の端子電圧の変動を抑制す
る可変速発電システムの励磁制御装置を提供する
ことにある。 〔発明の概要〕 本発明は、2次励磁付の誘導機を任意の回転で
運転し、与えられる設定値に基づいて2次励磁を
すべり周波数で行う可変速発電システムにおい
て、系統の目標とする基準電圧から前記2次励磁
の励磁量を演算する励磁量演算手段26と、系統
の検出電圧と前記基準電圧の差に応じた励磁強化
量を演算する励磁強化量演算手段28と、前記励
磁量に開閉手段29を介して入力される前記励磁
強化量を加算して2次励磁量の指令値として出力
する演算手段30と、該指令値に基づいて前記誘
導機の2次励磁量の設定値を決定して2次励磁回
路に出力する励磁量設定手段17と、系統側の事
故状況を判定する事故状況判定手段24と、該判
定手段から出力される事故検出信号と事故相情
報、前記誘導機の2次励磁回路のすべり周波数s
と時定数L/Rおよび系統周波数fから次式 =tan-12πfsL/R で定まる励磁強化位相φを算出する励磁位相制御
手段25とを備え、前記開閉手段29は、前記励
磁位相制御手段25から励磁強化位相φが出力さ
れたとき、該位相のタイミングで前記励磁強化
量を前記演算手段30に出力することを特徴とす
る。 〔発明の実施例〕 以下、本発明の実施例を説明するが、その前に
本発明の基礎となつた事項を説明する。 第2図は可変速発電システムの概要を示すもの
である。 同図において、1は固定子、2は回転子であ
る。また、5a〜5cは固定子のa、b、c相巻
線を、6a〜6cは回転子のa、b、c相巻線を
それぞれ示すものである。さらに、定格周波数を
f、すべりをSとすると、回転子2の速度はf
(1−S)であるので、回転子2の励磁巻線6a
〜6cをすべりSの周波数で例示すれば、回転子
2の回転磁界は、すべり零(同期速度)で回転す
ることになり、これに伴つて固定子1の回転磁界
速度と同一の速度となる。7は回転子2の回転数
を測定する測定部であり、この測定部7からの出
力をすべり検出部3に供給する。このすべり検出
部3ですべり周波数を検出し、その検出した値を
電圧発生部4に与える。電圧発生部4はすべり周
波数に応じた電圧を発生させ、2次巻線6a〜6
cを励磁する。このようにすることにより、任意
の回転数で回転を行つても、単に2次巻線6a〜
6cに、系統周波数の電圧を発生させることがで
きる。すなわち、第2図の例では回転子2の回転
磁界は、 f(1−S)+fS=f ……(1) となり、すべりにかかわらず、定格周波数の出力
が固定子1から得られることになる。 第3図は本実施例の基礎となつた可変速発電シ
ステムの具体例を示すブロツク図であつて可変速
機1,2が系統に接続され、運転されている場合
が示されている。10は電力系統を、1及び2は
第2図と同一の固定子及び回転子をそれぞれ示し
ている。静落差H及び出力指令P0が指令値算出
回路15に与えられると、この指令値算出回路1
5は、効率を考慮したガイドベーンの開度指令値
HV及び速度指令値N0を算出する。14は調速機
の弁開度設定器であり、この弁開度設定機14は
指令値算出回路15よりの開度指令値HVを取り
込み、この弁開度指令値HVを基に時間遅れをも
つて弁開度が設定され、これにより調速機の弁開
度が定まる。13は水車特性部であり、この水車
特性部13は静落差H、弁開度設定器14からの
調速機の弁開度及び速度発電機からの回転数Nで
定まる。この水車特性部13に応じて、可変速機
の回転子2は回転する。速度発電機11は回転子
2の回転を検出できるようになつており、これの
出力により、速度が検出される。19は電流変成
器、20は電圧変成器であり、これらの出力は有
効電力算出部21に供給される。この有効電力算
出部21は、電流変成器19及び電圧変成器20
からの出力をもとに、有効電力Pを算出し出力す
る。16は2次巻線の相差角算出部であり、この
相差角算出部16は、有効電力算出部21からの
出力、出力指令P0、指令値算出回路15からの
速度指令値N0、速度発電機11からの速度Nを
もとに位相差を算出して算出部17に出力する。
算出部17は上記出力から2次回路22a〜22
cの励磁量を設定する。18は電圧調整部であ
り、該電圧調整部18は電圧変成器20からの電
圧信号をもとに励磁量の電圧値を制御する。移相
部23a,23b,23cは設定部17で設定し
た励磁量を取り込み、これをもつてa,b,c相
に励磁量を与えるものである。22a,22b,
22cは移相部23a〜23cで移相された励磁
量によりa,b,c相が励磁される励磁巻線であ
る。このように構成されたシステムにおいて、従
来の考えにもとづく自動電圧調整器(AVR)を
設置した場合には、第6図の実線Aに示すように
系統事故時に端子電圧がすべり周波数で変動す
る。このため系統事故時であつても端子電圧がす
べり周波数で変動しないような励磁方式を確立す
る必要があるのである。 本発明は第3図における励磁量の電圧値を制御
する電圧調整部18の最適システムを確立しよう
とするものである。 次に、本発明の一実施例を第4図により具体的
に説明する。 第4図は、2次励磁付の誘導機により任意の回
転数で運転できるいわゆる可変速発電システムを
示す系統図である。可変速発電機G1は、送電線
Lを介して系統10に接続されている。送電線L
には、電圧変成器20及び電流変成器19が設置
されている。 また、揚水発電機には、フランシス水車が使用
されているのが一般的である。かかる水車の水車
出力とそれの効率との関係は第5図に示すような
関係となつている。第5図は、横軸に水車出力が
縦軸に効率がとられており、回転数をパラメータ
として示されたものである。P1,P2は水車出力
をη1,η2は効率をN1,N2は回転数を示している。
この図は出力P1では回転数N1で、出力P2では回
転数N2で、それぞれの出力における最高効率η1
η2となることを示しているのである。このよう
に、出力Pに応じて、効率ηが最高となる回転数
Nは異つており、本発明はまずこれらの最高効率
の点で運転しようとするものであり、かつ系統事
故時にも可変速機の端子電圧の変動をなくしたも
のである。 第4図において、可変速発電システムG1(第3
図では固定子1で回転子2)は、操作端Tから発
電機に要求される発電力の指令P0が与えられる
と発電機の特性、水の落差を考慮した上で、高効
率な運転ができるよう、発電機の回転数N0、水
車のガイドベーンVの開度HVが制御指令部Cに
おいて求められ、これらの値にあうような運転が
できるよう制御されている。尚、制御指令部C
は、第3図における要素13〜18,23a〜2
3cにより構成される。また、21は有効電力算
出部、11は速度発電機、EXは励磁回路である。
このような状態で、発電機出力の低下指令が与え
られると、あらかじめ与えられている手法によ
り、発電機出力、水の落差をもとに、発電機の効
率が最高となるよう、回転数、弁開度を制御し、
効率のよい運転を行うことになる。 一方、発電機回転数の定格よりのずれは、励磁
回路EXの情報として、すべり周波数を用いるこ
とにより、前述のように、定格周波数の出力の得
られることになる。 次に2次励磁の具体例について説明する。第3
図に示すように、3相の2次励磁線巻線は、次の
ようにあらわされる。すなわち、第4図の操作端
Tより与えられた指令により、a,b,c相の励
磁量をうるための関数のうちの位相角Δδを求め
る。a,b,c相の励磁電圧を、vfa,vfb,vfc
すると、 vfa=Esin(2πfst+δ0+Δδ) vfb=Esin(2πfst+δ0+Δδ−120°) vfc=Esin(2πfst+δ0+Δδ−240°) ……(2) と表わされる。ここで、Eはすべり及び可変速機
の運転状態で定まる電圧値、δ0は可変速機の運転
状態で定まる位相角、Δδは制御指令部の出力で
制御される位相角とする。上式を用いて、制御を
行う場合に、無効電力の制御指令に対しては、電
圧Eで、有効電力の制御指令に対しては、位相角
Δδで制御すればよい。 第4図において、送電線Lの地点Fで事故が起
き、70mSで2回線で構成されている送電線の1
回線を開放した場合の端子電圧の変化を第6図に
示す。同図に示される波形Aより明らかなように
端子電圧には、振動があらわれ、この周波数はす
べり周波数となつている。これは、励磁の位相に
は無関係にAVRにより励磁を強めているためで
ある。 この理由は次のように考えられる。すなわち、
AVRにより励磁が強められた時の励磁部の一相
の等価回路は第7図のように示される。ここで
Esin(2πfst+θ)は、励磁強化後の値、E0sin
(2πfst+θ)は励磁強化前の値、ΔEsin(2πfst+
θ)は励磁の強化量、L、Rをそれぞれ2次回路
のインダクタンス及び抵抗、2πfsはすべり角周波
数、fは電源周波数、θは励磁強化量印加時の位
相角とする。 この時の励磁強化による電流Δiは、 となる。ここで、=tan-12πfsL/R
[Field of Application of the Invention] The present invention relates to an excitation control method for a variable speed power generation system that can be operated at any rotation speed using an induction machine with secondary excitation, and in particular to suppress fluctuations in the terminal voltage of the variable speed generator in the event of a system fault. This invention relates to an excitation control method. [Background of the Invention] Conventional variable speed power generation systems have problems such as the inability to adjust the load during pumping, the efficiency of the system changing due to changes in the generated power required from the grid during power generation operation, and the changes in head etc. during pumping operation. This has the disadvantage that the efficiency of the system changes. In order to eliminate such inconveniences, research is underway to operate the above-mentioned system at maximum efficiency, regardless of power generation or head. This research is progressing in the direction of creating a so-called variable speed power generation system in which a conventional synchronous pumped storage generator is operated by an induction machine with secondary excitation. It is said that by creating a variable speed power generation system in this way, it is possible to operate the system at maximum efficiency regardless of power generation or head. Therefore, research is underway to realize such a variable speed power generation system. Regarding such a variable speed power generation system, for example, it was announced in the 1981 National Conference Paper of the Institute of Electrical Engineers of Japan, No. 553, ``Variable Speed Operating Characteristics of Large Capacity Synchronous Motors'', but There is no mention of a specific excitation control method for reducing the size. [Object of the Invention] The present invention has been made in view of the above-mentioned points, and its purpose is to
In addition to operating the variable speed power generation system with high efficiency,
An object of the present invention is to provide an excitation control device for a variable speed power generation system that suppresses fluctuations in terminal voltage of a variable speed machine in the event of a system fault. [Summary of the Invention] The present invention provides a variable speed power generation system in which an induction machine with secondary excitation is operated at an arbitrary rotation speed, and secondary excitation is performed at a slip frequency based on a given setting value. excitation amount calculation means 26 for calculating the excitation amount of the secondary excitation from the reference voltage; excitation reinforcement amount calculation means 28 for calculating the excitation reinforcement amount according to the difference between the detected voltage of the system and the reference voltage; a calculation means 30 for adding the excitation reinforcement amount inputted via the opening/closing means 29 to output the resultant as a command value for the secondary excitation amount; and a set value for the secondary excitation amount for the induction machine based on the command value. an excitation amount setting means 17 that determines and outputs it to the secondary excitation circuit; an accident situation determination means 24 that determines the accident situation on the system side; and an accident detection signal and accident phase information output from the determination means, and the above-mentioned induction. Slip frequency s of the machine's secondary excitation circuit
and an excitation phase control means 25 that calculates an excitation intensification phase φ determined by the following equation from the time constant L/R and the system frequency f, and the opening/closing means 29 is configured to control the excitation phase control means 25. It is characterized in that when an excitation reinforcement phase φ is output from , the excitation reinforcement amount is output to the calculation means 30 at the timing of the phase. [Embodiments of the Invention] Examples of the present invention will be described below, but before that, matters that are the basis of the present invention will be explained. Figure 2 shows an overview of the variable speed power generation system. In the figure, 1 is a stator and 2 is a rotor. Further, 5a to 5c indicate the a, b, and c phase windings of the stator, and 6a to 6c indicate the a, b, and c phase windings of the rotor, respectively. Furthermore, if the rated frequency is f and the slip is S, then the speed of rotor 2 is f
(1-S), so the excitation winding 6a of the rotor 2
If ~6c is exemplified by the frequency of the slip S, the rotating magnetic field of the rotor 2 will rotate with zero slip (synchronous speed), and accordingly, the rotating magnetic field speed of the stator 1 will be the same speed. . Reference numeral 7 denotes a measuring section that measures the rotational speed of the rotor 2, and supplies the output from this measuring section 7 to the slip detecting section 3. The slip detection section 3 detects the slip frequency and provides the detected value to the voltage generation section 4. The voltage generator 4 generates a voltage according to the slip frequency, and the secondary windings 6a to 6
Excite c. By doing this, even if the rotation is performed at an arbitrary number of rotations, the secondary windings 6a to 6a are simply
6c, a voltage at the grid frequency can be generated. In other words, in the example shown in Figure 2, the rotating magnetic field of rotor 2 is f(1-S)+fS=f...(1), and the output at the rated frequency can be obtained from stator 1 regardless of slippage. Become. FIG. 3 is a block diagram showing a specific example of the variable speed power generation system which is the basis of this embodiment, and shows the case where the variable speed machines 1 and 2 are connected to the grid and are in operation. Reference numeral 10 indicates an electric power system, and 1 and 2 indicate the same stator and rotor as in FIG. 2, respectively. When the static head difference H and the output command P 0 are given to the command value calculation circuit 15, this command value calculation circuit 1
5 is the guide vane opening command value considering efficiency.
Calculate H V and speed command value N 0 . Reference numeral 14 denotes a valve opening setting device of the speed governor, and this valve opening setting device 14 takes in the opening command value H V from the command value calculation circuit 15 and calculates the time based on this valve opening command value H V. The valve opening degree is set with a delay, and this determines the valve opening degree of the speed governor. 13 is a water turbine characteristic section, and this water turbine characteristic section 13 is determined by the static head H, the valve opening of the speed governor from the valve opening setting device 14, and the rotation speed N from the speed generator. The rotor 2 of the variable speed machine rotates in accordance with this water turbine characteristic section 13. The speed generator 11 is capable of detecting the rotation of the rotor 2, and the speed is detected from its output. 19 is a current transformer, 20 is a voltage transformer, and their outputs are supplied to an active power calculation section 21. This active power calculation unit 21 includes a current transformer 19 and a voltage transformer 20.
Based on the output from , active power P is calculated and output. 16 is a phase difference angle calculation unit of the secondary winding, and this phase difference angle calculation unit 16 calculates the output from the active power calculation unit 21, the output command P 0 , the speed command value N 0 from the command value calculation circuit 15, and the speed. A phase difference is calculated based on the speed N from the generator 11 and output to the calculation unit 17.
The calculation unit 17 calculates the secondary circuits 22a to 22 from the above output.
Set the excitation amount of c. Reference numeral 18 denotes a voltage adjustment section, and the voltage adjustment section 18 controls the voltage value of the excitation amount based on the voltage signal from the voltage transformer 20. The phase shifting parts 23a, 23b, and 23c take in the amount of excitation set by the setting part 17, and use this to give the amount of excitation to the a, b, and c phases. 22a, 22b,
22c is an excitation winding whose a, b, and c phases are excited by the excitation amounts phase-shifted by the phase shifters 23a to 23c. In a system configured as described above, if an automatic voltage regulator (AVR) based on the conventional concept is installed, the terminal voltage will fluctuate at the slip frequency in the event of a system fault, as shown by solid line A in Figure 6. Therefore, it is necessary to establish an excitation method that prevents the terminal voltage from fluctuating at the slip frequency even during a system fault. The present invention attempts to establish an optimal system for the voltage regulator 18 that controls the voltage value of the excitation amount shown in FIG. Next, one embodiment of the present invention will be explained in detail with reference to FIG. FIG. 4 is a system diagram showing a so-called variable speed power generation system that can be operated at any rotation speed using an induction machine with secondary excitation. Variable speed generator G 1 is connected to grid 10 via power transmission line L. Power transmission line L
A voltage transformer 20 and a current transformer 19 are installed. Additionally, a Francis turbine is commonly used for pumped storage power generators. The relationship between the output of the water turbine and its efficiency is as shown in FIG. In FIG. 5, the horizontal axis shows the water turbine output, and the vertical axis shows the efficiency, and the rotation speed is shown as a parameter. P 1 and P 2 are the water turbine output, η 1 is the efficiency, N 1 is the efficiency, and N 2 is the rotation speed.
This figure shows the maximum efficiency η 1 ,
This shows that η 2 . As described above, the rotational speed N at which the efficiency η is the highest varies depending on the output P, and the present invention is intended to first operate at the point of maximum efficiency, and also to operate at a variable speed even in the event of a system accident. This eliminates fluctuations in the terminal voltage of the machine. In Figure 4, variable speed power generation system G 1 (3rd
In the figure, stator 1 and rotor 2) operate with high efficiency when a command P 0 for the power generation required for the generator is given from the operating terminal T. In order to achieve this, the rotational speed N 0 of the generator and the opening degree H V of the guide vane V of the water turbine are determined by the control command unit C, and the operation is controlled so as to meet these values. Furthermore, the control command section C
are elements 13 to 18, 23a to 2 in FIG.
3c. Further, 21 is an active power calculation section, 11 is a speed generator, and EX is an excitation circuit.
In such a situation, when a command to reduce the generator output is given, the rotation speed, Controls the valve opening,
This will result in more efficient driving. On the other hand, when the generator rotational speed deviates from the rated value, by using the slip frequency as information for the excitation circuit EX , an output at the rated frequency can be obtained as described above. Next, a specific example of secondary excitation will be explained. Third
As shown in the figure, the three-phase secondary excitation wire winding is expressed as follows. That is, the phase angle Δδ of the functions for obtaining the excitation amounts of the a, b, and c phases is determined by the command given from the operating end T in FIG. 4. When the excitation voltages of phases a, b, and c are v fa , v fb , and v fc , v fa = Esin (2πfst + δ 0 + Δδ) v fb = Esin (2πfst + δ 0 + Δδ − 120°) v fc = Esin (2πfst + δ 0 +Δδ−240°) ...(2) Here, E is a voltage value determined by the operating state of the slip and variable speed machine, δ 0 is a phase angle determined by the operating state of the variable speed machine, and Δδ is a phase angle controlled by the output of the control command section. When performing control using the above equation, control may be performed using voltage E for a reactive power control command, and control using a phase angle Δδ for an active power control command. In Figure 4, an accident occurs at point F on power transmission line L, and 1 of the transmission line, which consists of two circuits,
Figure 6 shows the change in terminal voltage when the line is opened. As is clear from waveform A shown in the figure, vibration appears in the terminal voltage, and this frequency is a slip frequency. This is because the excitation is strengthened by AVR regardless of the excitation phase. The reason for this is thought to be as follows. That is,
The equivalent circuit of one phase of the excitation section when the excitation is strengthened by the AVR is shown in FIG. 7. here
Esin (2πfst+θ) is the value after excitation reinforcement, E 0 sin
(2πfst + θ) is the value before excitation reinforcement, ΔEsin (2πfst +
θ) is the excitation reinforcement amount, L and R are the inductance and resistance of the secondary circuit, respectively, 2πfs is the slip angle frequency, f is the power supply frequency, and θ is the phase angle when the excitation reinforcement amount is applied. The current Δi due to excitation reinforcement at this time is becomes. Here, = tan -1 2πfsL/R

〔発明の効果〕〔Effect of the invention〕

本発明によれば、可変速発電システムにおい
て、系統事故時の端子電圧の変動を抑制できるた
め、安定度が著しく向上する。 また、本発明によれば、変動分をまかなうため
に、昼間は発電、夜間は揚水として運転する揚水
発電システムにおいて、系統より要求される種々
の電力に対して、効率よく運転できる利点があ
る。
According to the present invention, in a variable speed power generation system, fluctuations in terminal voltage at the time of a system fault can be suppressed, so stability is significantly improved. Further, according to the present invention, in a pumped storage power generation system that operates as power generation during the day and as pumped water at night in order to cover fluctuations, there is an advantage that it can operate efficiently with respect to the various power demands from the grid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を実現する制御装置の
概要を示すブロツク図、第2図は可変速揚水発電
システムの原理概要を示すブロツク図、第3図は
可変速揚水発電システムの制御装置の概要を示す
ブロツク図、第4図は本願の概要を示すブロツク
図、第5図は出力と効率の関係を示す波形図、第
6図は事故時の端子電圧変動曲線を示す波形図、
第7図は端子電圧の変動を説明するために示す等
価回路図、第8図は端子電圧の変動を抑制するこ
とを説明するために示す波形図である。 EX……励磁回路、G1……可変速発電システム、
L……送電線、C……制御指令部、T……操作
端、1……固定子、2……回転子、3……すべり
検出部、4……電圧発生部、5a〜5c……固定
子のa、b、c相巻線、6a〜6c……回転子の
a、b、c相巻線、7……回転数測定部、10…
…系統、11……速度発電機、13…水車特性
部、14……調速機の弁開度設定部、15……指
令値算出回路、16……2次巻線相差角算出部、
17……2次巻線励磁量設定部、18……電圧調
整部、19……電流変成器、20……電圧変成
器、21……有効電力算出部、22a〜22c…
…2励磁磁のa、b、c相巻線、P0……出力指
令値、N0……速度指令値、N……速度、23a
〜23c……移相部、24……事故状況判定部、
25……励磁位相制御部。
Fig. 1 is a block diagram showing an overview of a control device that implements an embodiment of the present invention, Fig. 2 is a block diagram showing an overview of the principle of a variable speed pumped storage power generation system, and Fig. 3 is a control device of a variable speed pumped storage power generation system. 4 is a block diagram showing an overview of the present application, FIG. 5 is a waveform diagram showing the relationship between output and efficiency, and FIG. 6 is a waveform diagram showing the terminal voltage fluctuation curve at the time of an accident.
FIG. 7 is an equivalent circuit diagram shown to explain fluctuations in terminal voltage, and FIG. 8 is a waveform diagram shown to explain suppressing fluctuations in terminal voltage. E X ...excitation circuit, G1 ...variable speed power generation system,
L...Power transmission line, C...Control command section, T...Operation end, 1...Stator, 2...Rotor, 3...Slip detection section, 4...Voltage generation section, 5a to 5c... Stator a, b, c phase windings, 6a to 6c...rotor a, b, c phase windings, 7... rotation speed measuring section, 10...
... System, 11 ... Speed generator, 13 ... Water turbine characteristics section, 14 ... Governor valve opening setting section, 15 ... Command value calculation circuit, 16 ... Secondary winding phase difference angle calculation section,
17... Secondary winding excitation amount setting section, 18... Voltage adjustment section, 19... Current transformer, 20... Voltage transformer, 21... Active power calculation section, 22a to 22c...
...A, b, c phase winding of 2 excitation magnets, P 0 ... Output command value, N 0 ... Speed command value, N ... Speed, 23a
~23c... Phase shift section, 24... Accident situation determination section,
25...Excitation phase control section.

Claims (1)

【特許請求の範囲】 1 2次励磁付の誘導機を任意の回転で運転し、
与えられる設定値に基づいて2次励磁をすべり周
波数で行う可変速発電システムにおいて、系統の
目標とする基準電圧から前記2次励磁の励磁量を
演算する励磁量演算手段26と、系統の検出電圧
と前記基準電圧の差に応じた励磁強化量を演算す
る励磁強化演算手段28と、前記励磁量に開閉手
段29を介して入力される前記励磁強化量を加算
して2次励磁量の指令値として出力する演算手段
30と、該指令値に基づいて前記誘導機の2次励
磁量の設定値を決定して2次励磁回路に出力する
励磁量設定手段17と、系統側の事故状況を判定
する事故状況判定手段24と、該判定手段から出
力される事故検出信号と、事故相情報、前記誘導
機の2次励磁回路のすべり周波数sと時定数L/
Rおよび系統周波数fから次式 =tan-12πfsL/R で定まる励磁強化位相φを算出する励磁位相制御
手段25とを備え、前記開閉手段29は、前記励
磁位相制御手段25から励磁強化位相φが出力さ
れたとき、該位相φのタイミングで前記励磁強化
量を前記演算手段30に出力することを特徴とす
る可変速発電システムの励磁制御装置。
[Claims] 1. Operating an induction machine with secondary excitation at arbitrary rotation,
In a variable speed power generation system that performs secondary excitation at a slip frequency based on a given set value, an excitation amount calculation means 26 that calculates the excitation amount of the secondary excitation from a target reference voltage of the system, and a detection voltage of the system. excitation reinforcement calculation means 28 which calculates an excitation reinforcement amount according to the difference between the reference voltage and the reference voltage, and an excitation reinforcement calculation means 28 which adds the excitation reinforcement amount input via the opening/closing means 29 to the excitation amount to obtain a command value for the secondary excitation amount. an excitation amount setting means 17 that determines a set value of the secondary excitation amount of the induction machine based on the command value and outputs it to the secondary excitation circuit; an accident situation determination means 24, an accident detection signal output from the determination means, accident phase information, slip frequency s and time constant L/ of the secondary excitation circuit of the induction machine;
R and the system frequency f, the excitation phase control means 25 calculates the excitation intensification phase φ determined by the following formula =tan -1 2πfsL/R, and the opening/closing means 29 calculates the excitation intensification phase φ from the excitation phase control means 25. An excitation control device for a variable speed power generation system, characterized in that when the excitation enhancement amount is outputted to the calculation means 30 at the timing of the phase φ.
JP59219884A 1984-10-19 1984-10-19 Excitation control system Granted JPS6198200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59219884A JPS6198200A (en) 1984-10-19 1984-10-19 Excitation control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59219884A JPS6198200A (en) 1984-10-19 1984-10-19 Excitation control system

Publications (2)

Publication Number Publication Date
JPS6198200A JPS6198200A (en) 1986-05-16
JPH0326038B2 true JPH0326038B2 (en) 1991-04-09

Family

ID=16742559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59219884A Granted JPS6198200A (en) 1984-10-19 1984-10-19 Excitation control system

Country Status (1)

Country Link
JP (1) JPS6198200A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736720B2 (en) * 1986-08-27 1995-04-19 三菱電機株式会社 Turbine generator
JPS63114599A (en) * 1986-10-30 1988-05-19 Hitachi Ltd Variable speed power generator
JPH0650959B2 (en) * 1986-11-28 1994-06-29 株式会社日立製作所 Variable speed pumped storage system
JPH0634632B2 (en) * 1986-11-28 1994-05-02 株式会社日立製作所 Variable speed pumped storage system
JPH0681554B2 (en) * 1986-12-01 1994-10-12 株式会社日立製作所 Variable speed pumped storage system operation controller

Also Published As

Publication number Publication date
JPS6198200A (en) 1986-05-16

Similar Documents

Publication Publication Date Title
US7554302B2 (en) Slip-controlled, wound-rotor induction machine for wind turbine and other applications
JP3530911B2 (en) Variable speed generator motor
JPS62110499A (en) Operation control for variable speed pumping-up power generation system
JP3053612B2 (en) Pumped storage generator
JP2538862B2 (en) Variable speed pumped storage power generation system controller
JPH0326038B2 (en)
JP2538859B2 (en) Variable speed pumped storage system control device
JP2575629B2 (en) Variable speed generator motor and control method
JPH0576278B2 (en)
JPH0225033B2 (en)
JPH0326039B2 (en)
JPH0634628B2 (en) Variable speed pumped storage system operation controller
JPH0634627B2 (en) Variable speed pumped storage system operation controller
JP3812142B2 (en) Control device for variable speed power generation system
JP2644748B2 (en) Variable speed pumped storage power generation system
JP2652033B2 (en) Operation control method of variable speed pumped storage power generation system
JPH0570370B2 (en)
JPH0632596B2 (en) Variable speed pumped storage system
JPH0576279B2 (en)
JPH0650959B2 (en) Variable speed pumped storage system
JPS6282000A (en) Excitation control system
JPH0634632B2 (en) Variable speed pumped storage system
CN112292810A (en) Motor control device
JPS5949799B2 (en) How to operate an induction machine
JPH0634630B2 (en) Variable speed pumped storage system operation controller

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term