JPH03260037A - High strength amorphous alloy - Google Patents

High strength amorphous alloy

Info

Publication number
JPH03260037A
JPH03260037A JP2059139A JP5913990A JPH03260037A JP H03260037 A JPH03260037 A JP H03260037A JP 2059139 A JP2059139 A JP 2059139A JP 5913990 A JP5913990 A JP 5913990A JP H03260037 A JPH03260037 A JP H03260037A
Authority
JP
Japan
Prior art keywords
amorphous
content
elements
crystalline phase
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2059139A
Other languages
Japanese (ja)
Other versions
JP2639455B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Kazuhiko Kita
和彦 喜多
Hitoshi Yamaguchi
均 山口
Hiroyuki Horimura
弘幸 堀村
Noriaki Matsumoto
松本 規明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
YKK Corp
TPR Co Ltd
Original Assignee
Honda Motor Co Ltd
Teikoku Piston Ring Co Ltd
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Teikoku Piston Ring Co Ltd, YKK Corp, Yoshida Kogyo KK filed Critical Honda Motor Co Ltd
Priority to JP2059139A priority Critical patent/JP2639455B2/en
Priority to NO910906A priority patent/NO180205C/en
Priority to CA002037818A priority patent/CA2037818C/en
Priority to FR9102831A priority patent/FR2659355B1/en
Priority to AU72751/91A priority patent/AU634866B2/en
Priority to DE4107532A priority patent/DE4107532C2/en
Priority to GB9104956A priority patent/GB2243617B/en
Publication of JPH03260037A publication Critical patent/JPH03260037A/en
Application granted granted Critical
Publication of JP2639455B2 publication Critical patent/JP2639455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys

Abstract

PURPOSE:To manufacture an amorphous alloy more improved in strength, in an amorphous alloy constituted of an amorphous phase and a crystalline phase uniformly dispersed in the above phase, by specifying the content of main metallic elements and the componental value of rare earth elements in the crystalline phase. CONSTITUTION:This high strength amorphous alloy is formed of an amorphous phase contg. primary elements to be added as main metallic elements (Al or Mg), rare earth elements (such as Y and La and their content is regulated to 0.1 to 5atomic%) and secondary elements to be added as elements excluding rare earth elements (such as Ni and Fe and their content is regulated to <=10atomic%) all of which elements constitute a matrix and a crystalline phase uniformly dispersing into the amorphous phase contg. the main metallic elements and the primary and secondary elements in which the primary and secondary elements enter into solid soln. to a supersaturating degree. At this time, the content of the main metallic elements in the crystalline phase is regulated to 85 to 99.8atomic%, and at the time of defining the componental value of the rare earth elements in the crystalline phase to be Ca in the case the content of the rare earth elements as the primary elements to be (a)atomic% and the content of the secondary elements to be (b)atomic%, when the value Ca is Ca=(a)/(a+b), Ca is regulated to <=0.5%. In this way, the amorphous alloy having good hot plastic workability can be obtd.

Description

【発明の詳細な説明】 A0発明の目的 (1)産業上の利用分野 本発明は高強度非晶質合金、特に、主金属元素、希土類
元素よりなる第1添加元素および希土類元素以外の元素
よりなる第2添加元素を含んでマトリックスを構成する
非晶質相と、前記主金属元素および第1.第2添加元素
を含み、且つそれら第1、第2添加元素を過飽和に固溶
して、前記非晶質相に均一に分散する結晶質相とより構
成される高強度非晶質合金の改良に関する。
Detailed Description of the Invention A0 Object of the Invention (1) Industrial Field of Application The present invention relates to a high-strength amorphous alloy, particularly an alloy containing a main metal element, a first additive element consisting of a rare earth element, and an element other than the rare earth element. an amorphous phase constituting a matrix containing the second additive element; the main metal element and the first additive element; Improvement of a high-strength amorphous alloy that includes a second additive element and is composed of a crystalline phase that is uniformly dispersed in the amorphous phase by supersaturated solid solution of the first and second additive elements. Regarding.

(2)従来の技術 従来、この種非晶質合金としては、特開昭64−478
31号公報に記載された各種非晶質Ai!合金が知られ
ているが、何れも高強度化を促進するために非晶質単相
化を狙ったものである。
(2) Conventional technology Conventionally, this type of amorphous alloy was disclosed in Japanese Patent Application Laid-Open No. 64-478.
Various amorphous Ai! described in Publication No. 31! Alloys are known, but all of them are aimed at forming an amorphous single phase in order to promote high strength.

(3)発明が解決しようとする課題 しかしながら、従来の非晶質合金のように非晶質単相化
を狙った場合において、製造条件等により結晶質相が一
部混在すると、その結晶質相の現出に起因して合金全体
の強度および靭性が低下する、という問題がある。
(3) Problems to be solved by the invention However, when aiming at amorphous single phase as in conventional amorphous alloys, if some crystalline phases are mixed due to manufacturing conditions etc., the crystalline phase There is a problem in that the strength and toughness of the entire alloy are reduced due to the appearance of .

本発明は前記に鑑み、非晶質相からなるマトリックス中
に混在する結晶質相に着目し、結晶貧相における主金属
元素の含有量および希土類元素成分値(第2添加元素含
有量との関係で決まる)を特定することにより、合金全
体の強度低下を防止すると共に非晶質単相合金よりも更
に強度を向上させ得るようにした前記非晶質合金を提供
することを目的とする。
In view of the above, the present invention focuses on the crystalline phase mixed in the matrix consisting of the amorphous phase, and calculates the content of the main metal element and the rare earth element component value (in relation to the content of the second additive element) in the poorly crystalline phase. It is an object of the present invention to provide an amorphous alloy that prevents a decrease in the strength of the entire alloy and further improves the strength compared to an amorphous single-phase alloy by specifying the following.

B1発明の構成 (1)課題を解決するための手段 本発明は、主金属元素、希土類元素よりなる第1添加元
素および希土類元素以外の元素よりなる第2添加元素を
含んでマトリックスを構成する非晶質相と、前記主金属
元素および第1.第2添加元素を含み、且つそれら第1
.第2添加元素を過飽和に固溶して、前記非晶質相に均
一に分散する結晶質相とより構成される高強度非晶質合
金において、前記結晶質相における前記主金属元素の含
有量を85原子%以上、99.8原子%以下に設定し、
前記第1添加元素である希土類元素の含有量をa原子%
、前記第2添加元素の含有量をb原子%とした場合の前
記結晶質相における希土類元素成分値C,を、 C1= a十す と定義したとき、希土類元素成分値c、lを0.5以下
に設定したことを特徴とする。
B1 Structure of the Invention (1) Means for Solving the Problem The present invention provides a non-containing material that constitutes a matrix including a main metal element, a first additive element consisting of a rare earth element, and a second additive element consisting of an element other than the rare earth element. a crystalline phase, the main metal element and the first. contains a second additive element, and the first
.. In a high-strength amorphous alloy comprising a crystalline phase uniformly dispersed in the amorphous phase with a supersaturated solid solution of a second additive element, the content of the main metal element in the crystalline phase is set to 85 atomic % or more and 99.8 atomic % or less,
The content of the rare earth element, which is the first additional element, is a atomic %.
, when the rare earth element component value C, in the crystalline phase when the content of the second additive element is b atomic %, is defined as C1=a+, the rare earth element component values c and l are 0. It is characterized by being set to 5 or less.

(2)作 用 マトリックスとし、ての非晶質相に分散している結晶質
相における主金属元素の含有量および希土類元素成分値
を前記のように特定すると、非晶質合金全体の強度を一
層向上させることができる。
(2) If the main metal element content and rare earth element component values in the crystalline phase dispersed in the amorphous phase are specified as described above, the strength of the entire amorphous alloy can be determined as follows. This can be further improved.

た\し、主金属元素の含有量が85原子%未満では、非
晶質合金製造時に結晶質相中に化合物が生成され易く、
また化合物が単独で現出し易くなり、その結果、非晶質
合金全体の脆化を招く。
However, if the content of the main metal element is less than 85 atomic %, compounds are likely to be generated in the crystalline phase during the production of an amorphous alloy.
Further, the compound tends to appear alone, resulting in embrittlement of the entire amorphous alloy.

方、99.8原子%を上回ると、通常の冷却速度では非
晶質相と結晶質相との混相を得ることが困難であり、そ
こで冷却速度を極端に上げたのでは量産性が著しく損わ
れる。その上、非晶質合金自体の耐熱性が悪化する、と
いった問題もある。こXで主金属元素とは、Afまたは
Mgをいう。
On the other hand, when it exceeds 99.8 atomic percent, it is difficult to obtain a mixed phase of amorphous and crystalline phases at normal cooling rates, and if the cooling rate is increased extremely, mass productivity will be significantly impaired. be exposed. Furthermore, there is also the problem that the heat resistance of the amorphous alloy itself deteriorates. The main metal element in X means Af or Mg.

希土類元素は非晶質化達成のために必要な元素であるが
、その希土類元素は比較的大きな原子半径を有するため
、結晶質相を構成する主金属元素の結晶格子に規定量以
上の希土類元素が侵入すると、その格子定数が増加して
跪くなる。
Rare earth elements are necessary elements to achieve amorphization, but because the rare earth elements have a relatively large atomic radius, a specified amount or more of rare earth elements is added to the crystal lattice of the main metal element constituting the crystalline phase. When it invades, its lattice constant increases and it falls to its knees.

そこで、結晶質相における希土類元素成分値Cつを0.
5以下に設定するもので、このように設定することによ
って結晶格子の格子定数を純粋な主金属元素のそれに近
似させることが可能となる。
Therefore, the rare earth element component value C in the crystalline phase is set to 0.
By setting it to 5 or less, it becomes possible to approximate the lattice constant of the crystal lattice to that of the pure main metal element.

このように構成すると、高い硬さを有する非晶質相に比
較的軟らかい結晶質相が分散することになるので、その
結晶質相がそれと非晶質相間の界面歪を吸収するため、
非晶質合金全体の靭性が改善されるものと思われる。
With this structure, a relatively soft crystalline phase is dispersed in a highly hard amorphous phase, and the crystalline phase absorbs the interfacial strain between it and the amorphous phase.
It is believed that the toughness of the entire amorphous alloy is improved.

(3)実施例 第1図は、単ロール方式を採用した非晶質合金製造装置
の概略を示す、その装置は、同図時計方向に回転する純
銅製冷却ロール1と、その冷却ロールlの周囲に、出口
を冷却ロール1外周面に近接させて固定された石英製ノ
ズル2と、ノズル2の下端部を囲繞するように起設され
た高周波加熱用コイル3とを備えている。冷却ロール1
の直径は200m、ノズル2の出口における口径は0.
3瓢、その出口と冷却ロール1外周面とのギャップは0
.3 wmにそれぞれ設定されている。
(3) Example Figure 1 shows an outline of an amorphous alloy manufacturing apparatus employing a single roll system.The apparatus consists of a pure copper cooling roll 1 rotating clockwise in the figure, It is provided with a quartz nozzle 2 fixed with its outlet close to the outer circumferential surface of the cooling roll 1 and a high-frequency heating coil 3 raised so as to surround the lower end of the nozzle 2. cooling roll 1
The diameter of the nozzle 2 is 200 m, and the aperture at the exit of the nozzle 2 is 0.
3 gourds, the gap between the outlet and the outer peripheral surface of the cooling roll 1 is 0.
.. 3 wm respectively.

非晶質合金である非晶質A1合金の製造時には、/lよ
りなる主金属元素、希土類元素よりなる第1添加元素お
よび希土類元素以外の元素よりなる第2添加元素を含む
溶融合金mが、ノズル2の出口から冷却ロールl外周面
に、アルゴンガス圧(例えば、0.4kg/d)により
噴出され、その冷却ロール1の回転に伴いノズル2と冷
却ロール1との間よりそのロール1外周面に添着して薄
いリボン状に引出されると同時に急冷され、これにより
非晶質Ai金合金得られる。
When manufacturing an amorphous A1 alloy, which is an amorphous alloy, a molten alloy m containing a main metal element consisting of /l, a first additive element consisting of a rare earth element, and a second additive element consisting of an element other than the rare earth element, Argon gas pressure (for example, 0.4 kg/d) is ejected from the outlet of the nozzle 2 onto the outer peripheral surface of the cooling roll 1, and as the cooling roll 1 rotates, the outer periphery of the cooling roll 1 is ejected from between the nozzle 2 and the cooling roll 1. The amorphous Al-gold alloy is obtained by attaching it to a surface and drawing it out into a thin ribbon, and at the same time rapidly cooling it.

この場合、冷却ロール1の回転速度を、非晶質単相Af
fi合金(非晶質成分の体積分率が100%の合金)を
得るときよりも下げて、溶融合金の冷却速度を遅くする
と、溶融合金において結晶質相が現出する。
In this case, the rotational speed of the cooling roll 1 is set to the amorphous single phase Af
If the cooling rate of the molten alloy is lower than that used to obtain a fi alloy (an alloy in which the volume fraction of the amorphous component is 100%), a crystalline phase will appear in the molten alloy.

このような手法を採用することによって、主金属元素お
よび第1.第2添加元素を含んでマトリックスを構成す
る非晶質相と、前記主金属元素および第1.第2添加元
素を含み、且つそれら第1゜第2添加元素を過飽和に固
溶して、非晶質相に均一に分散する微細な結晶質相とよ
り構成された高強度非晶ii、1合金が得られる。
By adopting such a method, the main metal element and the first metal element. an amorphous phase constituting a matrix containing a second additive element, the main metal element and the first additive element; High-strength amorphous ii, 1 that contains a second additive element and is composed of a fine crystalline phase that is uniformly dispersed in the amorphous phase by supersaturated solid solution of the first and second additive elements; An alloy is obtained.

主金属元素であるAlの結晶質相における含有量は85
原子%以上、99.8原子%以下に設定される。たりし
、Afの含有量が85原子%未満では、非晶質/1合金
製造時に結晶質相中に化合物(Afz Y、Als N
L AfNL Ya等)が生成され易く、また化合物が
単独で現出し易くなり、その結果、非晶質Ai!合金全
体のff1(ヒを招く。
The content of Al, the main metal element, in the crystalline phase is 85
It is set to be at least atomic % and at most 99.8 atomic %. However, if the Af content is less than 85 at%, compounds (Afz Y, Als N
(L AfNL Ya, etc.) are likely to be generated, and the compound is likely to appear alone, resulting in amorphous Ai! ff1 of the entire alloy.

一方、99.8原子%を上回ると、通常の冷却速度では
非晶質相と結晶質相との混和を得ることが困難であり、
そこで冷却速度を極端に上げたのでは量産性が著しく損
われる。その上、非晶質Af合金自体の耐熱性が悪化す
る、といった問題もある。
On the other hand, when it exceeds 99.8 atomic %, it is difficult to obtain miscibility between the amorphous phase and the crystalline phase at a normal cooling rate;
Therefore, if the cooling rate is extremely increased, mass productivity will be significantly impaired. Furthermore, there is also the problem that the heat resistance of the amorphous Af alloy itself deteriorates.

第1添加元素である希土類元素としては、Y、La、C
eS Sm、Nd、Mm (ミツシュメタル)から選択
される少なくとも一種が該当し、その含有量は0.1原
子%以上、5原子%以下に設定される。たりし、希土類
元素の含有量がo、l原子%未満では非晶質相と結晶質
相との混相を得ることが不可能となり、一方、5原子%
を上回ると、結晶質相が脆化し、結果的に非晶質An合
金自体が脆くなる。
The rare earth elements that are the first additive elements include Y, La, and C.
eS At least one selected from Sm, Nd, and Mm (Mitshu Metal) corresponds to this, and its content is set to 0.1 atomic % or more and 5 atomic % or less. However, if the content of rare earth elements is less than o, l atomic %, it is impossible to obtain a mixed phase of an amorphous phase and a crystalline phase;
If it exceeds , the crystalline phase becomes brittle, and as a result, the amorphous An alloy itself becomes brittle.

第2添加元素としては、Ni、Fe、Coから選択され
る少なくとも一種が該当し、その含有量は10原子%以
下に設定される。た父′シ、第2添加元素の含有量が1
0原子%を上回ると、結晶質相中に化合物が現出し易く
なると共に希土類元素の含有量との相関により合金全体
として非晶質相形威能が低下する。第2添加元素の下限
値は、好ましくは5原子%である。5原子%未満では、
製造条件が厳しくなる。
The second additive element is at least one selected from Ni, Fe, and Co, and its content is set to 10 atomic % or less. The content of the second additive element is 1
When it exceeds 0 atomic %, compounds tend to appear in the crystalline phase, and the amorphous phase power of the alloy as a whole decreases due to the correlation with the rare earth element content. The lower limit of the second additive element is preferably 5 at.%. At less than 5 atom%,
Manufacturing conditions will become stricter.

マトリックスである非晶質相における主金属元素、第1
.第2添加元素の含有量は、結晶質相におけるそれら元
素の含有量よりも多い方が好ましい。この含有量の関係
が逆転すると、結晶質相中に化合物が現出し易くなり、
合金全体の脆化の原因となる。
The main metal element in the amorphous phase that is the matrix, the first
.. The content of the second additional element is preferably greater than the content of those elements in the crystalline phase. When this content relationship is reversed, compounds tend to appear in the crystalline phase,
This causes embrittlement of the entire alloy.

前記手法を採用し、その際冷却ロール1の回転速度を変
えてA 12 @gY5 N i b  (数値は原子
%、以下各合金について同じ)の組成を有する非晶質/
1合金A−Dを製造し、冷却ロール1の回転速度と結晶
質相の含有量との関係を調べたところ下表の結果が得ら
れた。なお、結晶質相の結晶構造は、Afに起因してf
cc(面心立方構造)であり、またその結晶質相の平均
直径は300Å以上、800Å以下であった。
By employing the above method and changing the rotational speed of the cooling roll 1, an amorphous/
1 Alloys A to D were manufactured and the relationship between the rotational speed of the cooling roll 1 and the content of the crystalline phase was investigated, and the results shown in the table below were obtained. Note that the crystal structure of the crystalline phase is f due to Af.
cc (face-centered cubic structure), and the average diameter of the crystalline phase was 300 Å or more and 800 Å or less.

第2〜第4図は非晶質AI1合金A〜DのX線回折図を
それぞれ示す、測定に用いられたX線管の対陰極はCu
であり、Kα線が使用された。
Figures 2 to 4 show the X-ray diffraction patterns of amorphous AI1 alloys A to D, respectively.The anticathode of the X-ray tube used in the measurement was Cu.
and Kα radiation was used.

非晶質A1合金Aは、冷却速度が速いため非晶質単相A
1合金となり、第2図において、急峻なピークの無い非
晶質特有のハローパターンが見られる。
Amorphous A1 Alloy A is amorphous single phase A because of its fast cooling rate.
1 alloy, and in FIG. 2, a halo pattern characteristic of amorphous materials without steep peaks can be seen.

非晶質合金Bは、冷却速度を前記合金六の場合よりも1
.00o rpm+下げたものであり、第3図に示すよ
うに僅かな結晶質相の現出に伴いピークp。
Amorphous alloy B has a cooling rate of 1 more than that of alloy 6.
.. 00o rpm+, and as shown in FIG. 3, the peak p occurs with the appearance of a slight crystalline phase.

が現れる。このピークp、はfccの(111)面に対
応する。
appears. This peak p corresponds to the (111) plane of fcc.

非晶質Aff合金Cは、冷却速度を前記合金への場合の
2分の1に下げたものであり、略3割が結晶質相である
。したがって、第4図に示すように結晶質相の現出に伴
い高いピークP1および低いピーク22〜p4が現れる
。これらピークpt〜p4において、ピークpiはr 
ec(7)(200)面に、ピークP3はfccの(2
20)面に、ピークp4はfecの(311)面にそれ
ぞれ対応する。
Amorphous Aff alloy C has a cooling rate lowered to one-half of that for the above alloy, and has approximately 30% crystalline phase. Therefore, as shown in FIG. 4, a high peak P1 and low peaks 22 to p4 appear as a crystalline phase appears. In these peaks pt to p4, the peak pi is r
On the ec(7)(200) plane, peak P3 is on the fcc(2
20) plane, and peak p4 corresponds to the (311) plane of fec, respectively.

非晶質Affi合金りは、冷却速度を前記合金Cの場合
よりも、さらに下げたものであり、略4割が結晶質相で
ある。したがって、第5図に示すように結晶質相の現出
に伴い高いピークI)+、Pzと低いピークPs、pa
 とが現れる。
The amorphous Affi alloy has a cooling rate lower than that of Alloy C, and approximately 40% of the alloy is a crystalline phase. Therefore, as shown in FIG. 5, with the appearance of the crystalline phase, a high peak I)+, Pz and a low peak Ps, pa
appears.

第6図は三種の非晶質A1合金における結晶質相の含有
量と引張強さとの関係を示す0図中、線X、が前述のA
 IV、@q Y 5 N i b合金に、また線X2
がA jQ 6B Y z N l la合金に、さら
に線X、がAE、。YaNi4合金にそれぞれ該当する
Figure 6 shows the relationship between crystalline phase content and tensile strength in three types of amorphous A1 alloys.
IV, @q Y 5 N i b alloy, and line X2
is the A jQ 6B Y z N l la alloy, and the line X is AE. Each corresponds to YaNi4 alloy.

第6図から明らかなように各合金において、非晶質単相
(結晶質相の含有量−〇)の場合に比べ結晶質相の含有
量が増加するに従って強度が高くなるもので、特に、結
晶質相の含有量5体積%以上、40体積%以下の範囲が
好適である。
As is clear from Figure 6, in each alloy, the strength increases as the crystalline phase content increases compared to the case of an amorphous single phase (crystalline phase content - ○). The content of the crystalline phase is preferably in the range of 5% by volume or more and 40% by volume or less.

この場合、線XI+  χ!で示すA I l19Y5
 N 46合金、A P−esYz N i H0合金
においては結晶質相の含有量40体積%近傍にて脆化が
始まる。
In this case, the line XI+χ! A I l19Y5 shown as
In N46 alloy and AP-esYzNiH0 alloy, embrittlement begins when the crystalline phase content is around 40% by volume.

方、線X、で示すAf、。Y6Nia合金においては、
結晶質相の含有量20体積%近傍にて脆化が始まるもの
で、この合金は組成上、本発明には含まれない。
On the other hand, Af, indicated by line X. In Y6Nia alloy,
Embrittlement begins when the crystalline phase content is around 20% by volume, and this alloy is not included in the present invention due to its composition.

結晶質相の平均直径は、前記のように300Å以上、8
00λ以下が適当である。その平均直径が300人未満
では、結晶質相を現出させることの意義が失われ、一方
、800λを上回ると、結晶質相の安定化が図れず、ま
た均一な分散が不可能となり、非晶質AI!合金全体の
強度が低下する。
The average diameter of the crystalline phase is 300 Å or more, 8
00λ or less is appropriate. If the average diameter is less than 300 λ, the significance of making the crystalline phase appear is lost, while if it exceeds 800 λ, the crystalline phase cannot be stabilized and uniform dispersion becomes impossible, resulting in non-uniformity. Crystalline AI! The overall strength of the alloy decreases.

希土類元素は非晶質化達成のために必要な元素であるが
、その希土類元素は比較的大きな原子半径(例えば、Y
では1.8人)を有するため、結晶質相を構成するAf
fiの結晶格子(fcc)に規定量以上の希土類元素が
侵入すると、その格子定数(α=4.05人)が増加し
て跪くなる。
Rare earth elements are necessary elements to achieve amorphization, but the rare earth elements have a relatively large atomic radius (for example, Y
1.8 people), the Af constituting the crystalline phase
When more than a specified amount of rare earth elements invades the crystal lattice (fcc) of fi, its lattice constant (α=4.05) increases and it collapses.

こ\で、希土類元素の含有量をa原子%、第2添加元素
の含有量をb原子%とした場合の結晶質相における希土
類元素成分値CRを、 C,l = a+b と定義すると、希土類元素成分値Cmは0.5以下に設
定される。
Here, if the rare earth element content CR in the crystalline phase is defined as C, l = a + b, where the content of the rare earth element is a atomic % and the content of the second additive element is b atomic %, then the rare earth element The elemental component value Cm is set to 0.5 or less.

結晶質相における希土類元素成分値C3を前記のように
設定することによって結晶格子の格子定数を純粋なAf
のそれに近似させることが可能となる。
By setting the rare earth element component value C3 in the crystalline phase as described above, the lattice constant of the crystal lattice becomes pure Af.
It becomes possible to approximate that of .

このように構成すると、高い硬さを有する非晶質相に比
較的軟らかい結晶質相が分散することになるので、その
結晶質相がそれと非晶質相間の界面歪を吸収するため、
非晶質合金全体の靭性が改善されるものと思われる。
With this structure, a relatively soft crystalline phase is dispersed in a highly hard amorphous phase, and the crystalline phase absorbs the interfacial strain between it and the amorphous phase.
It is believed that the toughness of the entire amorphous alloy is improved.

第7〜第9図は、結晶質相の含有量20体積%のAN−
Y−Ni系非晶質合金におけるYt2分値C*  (a
 / a + b、た\し、a−Y、b−・・Ni)と
、結晶質相における結晶格子の格子定数、引張強さおよ
びヤング率との関係をそれぞれ示す。
Figures 7 to 9 show AN- with a crystalline phase content of 20% by volume.
Yt2-minute value C* (a
/ a + b, \, a-Y, b-...Ni) and the lattice constant, tensile strength, and Young's modulus of the crystal lattice in the crystalline phase, respectively.

第7図から明らかなように、Y成分値CR+を0゜5以
下に設定することにより、格子定数を、純Alのそれ(
4,05人)に近似させることができる。
As is clear from Fig. 7, by setting the Y component value CR+ to 0°5 or less, the lattice constant can be changed to that of pure Al (
4.05 people).

また第8.第9図から明らかなように、Y成分値CRを
0.5以下に設定することにより、引張強さおよびヤン
グ率を高い値に保つことができる。
Also the 8th. As is clear from FIG. 9, by setting the Y component value CR to 0.5 or less, the tensile strength and Young's modulus can be maintained at high values.

前記a / a + b≦0.5よりa≦bの関係が成
立し、これは、Y、La、Ce等の高価な希土類元素を
減少させ得ることを意味するので、非晶質A1合金のコ
ストを低減する上に有効である。
From the above a/a + b≦0.5, the relationship a≦b is established, which means that expensive rare earth elements such as Y, La, Ce, etc. can be reduced. This is effective in reducing costs.

第10図は、A1.。。−XYx系非晶質合金(線y+
)および” qs−xYx N i Z系非晶質合金(
線y2)において、それらの結晶質相の含有量を5〜4
0体積%に設定したときの各結晶質相における結晶格子
の格子定数とY含有量との関係を示す。
FIG. 10 shows A1. . . -XYx amorphous alloy (line y+
) and “qs-xYx N i Z-based amorphous alloy (
In line y2), the content of those crystalline phases is 5 to 4
The relationship between the lattice constant of the crystal lattice and Y content in each crystalline phase when set to 0 volume % is shown.

第10図Hy+ 、)’z より、Y含有量が2原子%
以下であれば格子定数は略一定であるが、2原子%を上
回ると格子定数が増加する。
From Figure 10 Hy+,)'z, the Y content is 2 atomic%.
If it is below, the lattice constant is approximately constant, but if it exceeds 2 atomic %, the lattice constant increases.

したがって、A iL 9l−XYX N j z系非
晶質合金においては、その強度確保−ヒ、Y含有量は0
.5原子%以上、2原子%以下に設定される。
Therefore, in the A iL 9l-XYX Nj z-based amorphous alloy, ensuring its strength, the Y content is 0.
.. The content is set to 5 atomic % or more and 2 atomic % or less.

第11〜第13図は、非晶質Af金合金ある三種のA 
l 119Ys N l b合金の示差熱量分析図を示
す。第11図は非晶質単相の場合に、また第12図は結
晶質相の含有量が26体積%の場合に、さらに第13図
は結晶質相の含有量が37体積%の場合にそれぞれ該当
する。
Figures 11 to 13 show three types of amorphous Af gold alloys.
1 shows a differential calorimetry analysis diagram of l 119Ys N l b alloy. Figure 11 shows the case of an amorphous single phase, Figure 12 shows the case where the crystalline phase content is 26% by volume, and Figure 13 shows the case where the crystalline phase content is 37% by volume. Applicable to each.

第11図に示す非晶質単相AP、合金の結晶化温度Tx
は89°Cであるが、結晶質相の含有量が増加するに従
って結晶化温度Txが高くなる傾向があり、そのため第
12図に示す非晶質Aff合金の結晶化温度Txは99
゛cに、また第13図に示す非晶質A1合金の結晶化温
度Txは109℃にそれぞれ上昇する。
Crystallization temperature Tx of amorphous single phase AP and alloy shown in Figure 11
is 89°C, but the crystallization temperature Tx tends to increase as the content of the crystalline phase increases, so the crystallization temperature Tx of the amorphous Aff alloy shown in Fig. 12 is 99°C.
The crystallization temperature Tx of the amorphous A1 alloy shown in FIG.

また結晶化温度Txを超えた後における発熱量、したが
って山の高さを比較すると、第11図の非晶質単相A1
合金の場合が最も高く、結晶質相の含有量の増加に伴い
山の高さが低くなることが判る。これは結晶化により生
じる結晶質相の量が少ないことを意味する。
Moreover, when comparing the calorific value after exceeding the crystallization temperature Tx, and therefore the height of the peak, we find that the amorphous single phase A1 in Fig. 11
It is seen that the height is highest for alloys, and the height of the peak decreases as the content of crystalline phase increases. This means that the amount of crystalline phase produced by crystallization is small.

したがって、第12.第13図に示すような熱的特性を
有する非晶質A1合金より素材を形威し、その素材を用
いて熱間塑性加工、例えば熱間押出し加工を行う場合、
素材に対する熱的管理が比較的容易となる。
Therefore, the 12th. When forming a material from an amorphous A1 alloy having thermal properties as shown in FIG. 13 and performing hot plastic working, such as hot extrusion, using the material,
Thermal management of the material becomes relatively easy.

なお、非晶質単相Af金合金熱処理を施した場合にも結
晶質相が現出するが、この場合の結晶質相は結晶粒成長
が速いために粗大化し、また分散状態が不均一となり、
その上結晶質相の偏析が生しるため、本発明に係る非晶
質AI!、合金に比べて強度および靭性が低くなる。ま
た本発明には、主金属元素をMgとする非晶tMg合金
も包含される。
Note that a crystalline phase also appears when an amorphous single-phase Af gold alloy is heat-treated, but the crystalline phase in this case becomes coarse due to rapid crystal grain growth, and the dispersion state becomes non-uniform. ,
Moreover, since segregation of the crystalline phase occurs, the amorphous AI according to the present invention! , lower strength and toughness compared to alloys. The present invention also includes an amorphous tMg alloy in which Mg is the main metal element.

C1発明の効果 本発明によれば、マトリックスである非晶質相に特定の
結晶質相を均一に分散させた非晶質合金において、結晶
質相における主金属元素の含有量および希土類元素成分
値を前記のように特定することにより、強度が高く、ま
た熱間塑性加工性の良好な非晶質合金を提供することが
できる。
C1 Effect of the invention According to the invention, in an amorphous alloy in which a specific crystalline phase is uniformly dispersed in an amorphous phase that is a matrix, the content of the main metal element and the rare earth element component value in the crystalline phase can be reduced. By specifying as described above, it is possible to provide an amorphous alloy with high strength and good hot plastic workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は非晶質合金製造装置の概略図、第2〜第5図は
非晶質A42合金のX線回折図、第6図は非晶質合金に
おける結晶質相の含有量と引張強さとの関係を示すグラ
フ、第7図はY成分値と格子定数との関係を示すグラフ
、第8図はY成分値と引張強さとの関係を示すグラフ、
第9図はY成分値とヤング率との関係を示すグラフ、第
10図はY含有量と格子定数との関係を示すグラフ、第
11図〜第13図は非晶fAI!、合金の示差熱量分析
図を示す。 m・・・溶融合金、1・・・冷却ロール、2・・・ノズ
ル、3・・・高周波加熱用コイル 第1図
Figure 1 is a schematic diagram of the amorphous alloy manufacturing equipment, Figures 2 to 5 are X-ray diffraction diagrams of the amorphous A42 alloy, and Figure 6 is the content of crystalline phase and tensile strength in the amorphous alloy. 7 is a graph showing the relationship between Y component value and lattice constant, FIG. 8 is a graph showing the relationship between Y component value and tensile strength,
FIG. 9 is a graph showing the relationship between Y component value and Young's modulus, FIG. 10 is a graph showing the relationship between Y content and lattice constant, and FIGS. 11 to 13 are graphs showing amorphous fAI! , shows a differential calorimetry diagram of the alloy. m... Molten alloy, 1... Cooling roll, 2... Nozzle, 3... High frequency heating coil Fig. 1

Claims (4)

【特許請求の範囲】[Claims] (1)主金属元素、希土類元素よりなる第1添加元素お
よび希土類元素以外の元素よりなる第2添加元素を含ん
でマトリックスを構成する非晶質相と、前記主金属元素
および第1、第2添加元素を含み、且つそれら第1、第
2添加元素を過飽和に固溶して、前記非晶質相に均一に
分散する結晶質相とより構成される高強度非晶質合金に
おいて、前記結晶質相における前記主金属元素の含有量
を85原子%以上、99.8原子%以下に設定し、前記
第1添加元素である希土類元素の含有量をa原子%、前
記第2添加元素の含有量をb原子%とした場合の前記結
晶質相における希土類元素成分値C_Rを、C_R=a
/a+b と定義したとき、希土類元素成分値C_Rを0.5以下
に設定したことを特徴とする高強度非晶質合金。
(1) An amorphous phase constituting a matrix containing a main metal element, a first additive element consisting of a rare earth element, and a second additive element consisting of an element other than the rare earth element; A high-strength amorphous alloy comprising an additive element and a crystalline phase uniformly dispersed in the amorphous phase with the first and second additive elements in supersaturated solid solution; The content of the main metal element in the qualitative phase is set to 85 atomic % or more and 99.8 atomic % or less, the content of the rare earth element that is the first additional element is set to a atomic %, and the content of the second additional element is set to a The rare earth element component value C_R in the crystalline phase when the amount is b atomic % is expressed as C_R=a
A high-strength amorphous alloy characterized in that a rare earth element component value C_R is set to 0.5 or less when defined as /a+b.
(2)前記第1添加元素である希土類元素が0.1原子
%以上、5原子%以下のY、La、Ce、Sm、Nd、
Mm(ミッシュメタル)から選択される少なくとも一種
であり、前記第2添加元素が10原子%以下のNi、F
e、Coから選択される少なくとも一種である、第(1
)項記載の高強度非晶質合金。
(2) Y, La, Ce, Sm, Nd in which the rare earth element as the first additive element is 0.1 atomic % or more and 5 atomic % or less;
At least one kind selected from Mm (misch metal), and the second additive element is 10 atomic % or less of Ni, F
e, Co.
) High-strength amorphous alloy described in item 2.
(3)前記結晶質相の含有量を5体積%以上、40体積
%以下に設定した、第(1)または第(2)項記載の高
強度非晶質合金。
(3) The high-strength amorphous alloy according to item (1) or item (2), wherein the content of the crystalline phase is set to 5% by volume or more and 40% by volume or less.
(4)前記結晶質相の平均直径を300Å以上、800
Å以下に設定した、第(1)、第(2)または第(3)
項記載の高強度非晶質合金。
(4) The average diameter of the crystalline phase is 300 Å or more, 800 Å or more
(1), (2) or (3) set below Å
High-strength amorphous alloy described in Section 1.
JP2059139A 1990-03-09 1990-03-09 High strength amorphous alloy Expired - Lifetime JP2639455B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2059139A JP2639455B2 (en) 1990-03-09 1990-03-09 High strength amorphous alloy
NO910906A NO180205C (en) 1990-03-09 1991-03-07 High-strength aluminum-based, amorphous alloy
FR9102831A FR2659355B1 (en) 1990-03-09 1991-03-08 HIGH RESISTANCE AMORPHOUS ALLOY.
AU72751/91A AU634866B2 (en) 1990-03-09 1991-03-08 High strength amorphous alloy
CA002037818A CA2037818C (en) 1990-03-09 1991-03-08 High strength amorphous alloy
DE4107532A DE4107532C2 (en) 1990-03-09 1991-03-08 High strength amorphous body
GB9104956A GB2243617B (en) 1990-03-09 1991-03-08 High strength amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059139A JP2639455B2 (en) 1990-03-09 1990-03-09 High strength amorphous alloy

Publications (2)

Publication Number Publication Date
JPH03260037A true JPH03260037A (en) 1991-11-20
JP2639455B2 JP2639455B2 (en) 1997-08-13

Family

ID=13104688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059139A Expired - Lifetime JP2639455B2 (en) 1990-03-09 1990-03-09 High strength amorphous alloy

Country Status (7)

Country Link
JP (1) JP2639455B2 (en)
AU (1) AU634866B2 (en)
CA (1) CA2037818C (en)
DE (1) DE4107532C2 (en)
FR (1) FR2659355B1 (en)
GB (1) GB2243617B (en)
NO (1) NO180205C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693393A (en) * 1992-08-05 1994-04-05 Takeshi Masumoto Aluminum-base alloy with high strength and corrosion resistance
JPH06316738A (en) * 1992-02-07 1994-11-15 Toyota Motor Corp High strength aluminum alloy
CN103290340A (en) * 2013-05-30 2013-09-11 济南大学 Rare earth-based bulk metallic glass with adjustable rear earth ingredient content

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2945205B2 (en) * 1992-03-18 1999-09-06 健 増本 Amorphous alloy material and manufacturing method thereof
EP0564998B1 (en) * 1992-04-07 1998-11-04 Koji Hashimoto Amorphous alloys resistant against hot corrosion
JPH0673479A (en) * 1992-05-06 1994-03-15 Honda Motor Co Ltd High strength and high toughness al alloy
JPH0617161A (en) * 1992-06-30 1994-01-25 Honda Motor Co Ltd Production of metallic material excellent in mechanical characteristic, etc.
EP0584596A3 (en) * 1992-08-05 1994-08-10 Yamaha Corp High strength and anti-corrosive aluminum-based alloy
JP3852805B2 (en) * 1998-07-08 2006-12-06 独立行政法人科学技術振興機構 Zr-based amorphous alloy excellent in bending strength and impact strength and its production method
EP1111079A1 (en) * 1999-12-20 2001-06-27 Alcoa Inc. Supersaturated aluminium alloy
US7520944B2 (en) * 2003-02-11 2009-04-21 Johnson William L Method of making in-situ composites comprising amorphous alloys
US8333924B2 (en) * 2006-03-20 2012-12-18 National University Corporation Kumamoto University High-strength and high-toughness magnesium alloy and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127641A (en) * 1987-11-10 1989-05-19 Takeshi Masumoto High tensile and heat-resistant aluminum-based alloy
JPH01275732A (en) * 1988-04-28 1989-11-06 Takeshi Masumoto High strength and heat-resistant aluminum-based alloy
JPH024902A (en) * 1988-06-17 1990-01-09 Takeshi Masumoto Aluminum alloy powder used for coating material and coating material
JPH0375344A (en) * 1989-08-15 1991-03-29 Honda Motor Co Ltd Connecting member
JPH03100130A (en) * 1989-09-13 1991-04-25 Honda Motor Co Ltd Manufacture of structural member made of amorphous alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743317A (en) * 1983-10-03 1988-05-10 Allied Corporation Aluminum-transition metal alloys having high strength at elevated temperatures
US4675157A (en) * 1984-06-07 1987-06-23 Allied Corporation High strength rapidly solidified magnesium base metal alloys
DE3524276A1 (en) * 1984-07-27 1986-01-30 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Aluminium alloy for producing ultrafine-grained powder having improved mechanical and microstructural properties
JPH0637695B2 (en) * 1988-03-17 1994-05-18 健 増本 Corrosion resistant aluminum base alloy
JPH01240631A (en) * 1988-03-17 1989-09-26 Takeshi Masumoto High tensile and heat-resistant aluminum-based alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127641A (en) * 1987-11-10 1989-05-19 Takeshi Masumoto High tensile and heat-resistant aluminum-based alloy
JPH01275732A (en) * 1988-04-28 1989-11-06 Takeshi Masumoto High strength and heat-resistant aluminum-based alloy
JPH024902A (en) * 1988-06-17 1990-01-09 Takeshi Masumoto Aluminum alloy powder used for coating material and coating material
JPH0375344A (en) * 1989-08-15 1991-03-29 Honda Motor Co Ltd Connecting member
JPH03100130A (en) * 1989-09-13 1991-04-25 Honda Motor Co Ltd Manufacture of structural member made of amorphous alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316738A (en) * 1992-02-07 1994-11-15 Toyota Motor Corp High strength aluminum alloy
JPH0693393A (en) * 1992-08-05 1994-04-05 Takeshi Masumoto Aluminum-base alloy with high strength and corrosion resistance
CN103290340A (en) * 2013-05-30 2013-09-11 济南大学 Rare earth-based bulk metallic glass with adjustable rear earth ingredient content

Also Published As

Publication number Publication date
AU7275191A (en) 1991-09-12
DE4107532A1 (en) 1991-09-12
CA2037818A1 (en) 1991-09-10
CA2037818C (en) 1998-07-07
NO910906D0 (en) 1991-03-07
GB9104956D0 (en) 1991-04-24
FR2659355B1 (en) 1993-11-26
NO180205C (en) 1997-03-05
GB2243617A (en) 1991-11-06
GB2243617B (en) 1994-02-09
DE4107532C2 (en) 1996-08-29
NO180205B (en) 1996-11-25
NO910906L (en) 1991-09-10
AU634866B2 (en) 1993-03-04
FR2659355A1 (en) 1991-09-13
JP2639455B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
JP2911673B2 (en) High strength aluminum alloy
US7914628B2 (en) Magnetic refrigeration material and method of manufacturing thereof
JPH04218637A (en) Manufacture of high strength and high toughness aluminum alloy
JPH03260037A (en) High strength amorphous alloy
US5405462A (en) Superplastic aluminum-based alloy material and production process thereof
JPH06184712A (en) Production of high strength aluminum alloy
EP0905268A1 (en) High-strength amorphous alloy and process for preparing the same
EP0530844B1 (en) Process for producing amorphous alloy materials having high toughness and high strength
JPH0565584A (en) Production of high strength aluminum alloy powder
JP4332647B2 (en) High-strength amorphous alloy and method for producing the same
US5647919A (en) High strength, rapidly solidified alloy
US7901521B2 (en) Aluminum base alloy
US5714018A (en) High-strength and high-toughness aluminum-based alloy
JPS6411704B2 (en)
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JP3208051B2 (en) Iron-based amorphous alloy with excellent thermal stability
JP2718261B2 (en) Magnetic alloy and method for producing the same
JPH0517819A (en) Production of soft-magnetic alloy having fine crystal
Hasegawa et al. Comparative study on glassy phase stabilities of Zr–Co–Al and Zr–Ni–Al metallic glasses
JPH0610105A (en) Fe base soft magnetic alloy
JPH0222445A (en) Alloy having superfine crystalline structure and its manufacture
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JPH04341544A (en) Fe base soft magnetic alloy
JPH06212320A (en) High perfrmance al alloy material and its prduction
JPH01142049A (en) Fe-based magnetic alloy