JPH0517819A - Production of soft-magnetic alloy having fine crystal - Google Patents

Production of soft-magnetic alloy having fine crystal

Info

Publication number
JPH0517819A
JPH0517819A JP3842991A JP3842991A JPH0517819A JP H0517819 A JPH0517819 A JP H0517819A JP 3842991 A JP3842991 A JP 3842991A JP 3842991 A JP3842991 A JP 3842991A JP H0517819 A JPH0517819 A JP H0517819A
Authority
JP
Japan
Prior art keywords
annealing
alloy
fine
ribbon
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3842991A
Other languages
Japanese (ja)
Inventor
Yoko Fujii
陽子 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3842991A priority Critical patent/JPH0517819A/en
Publication of JPH0517819A publication Critical patent/JPH0517819A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a soft-magnetic alloy reduced in iron loss, increased in saturation magnetic flux density, and having fine crystals. CONSTITUTION:A foil which has a composition represented by general formula Fe100-x-y-z-a-bCuxPyCzMaM'b and also has a structure composed of a mixed structure of bcc crystalline phase and amorphous phase is worked at <=350 deg.C working temp. and at >=20% draft and then annealed at 380-450 deg.C for 10min-1hr, by which the crystalline structure is refined to <=500Angstrom grain size. In the above general formula, the symbols (x), (y), (z), (a), and (b) stand for, by atom, 0.1-2%, 5-10%, <=7%, <=2%, and <=2%, respectively, and (y+z) is 8 to 17%, M means one or more elements among Si, Ge, Ga, and Al, and M' means one or more elements among Nb, Mo, Zr, and W. Stress relief annealing can be made at 300-350 deg.C for 1-24hr after working - annealing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、良好な軟磁性を示す
微細結晶合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fine crystal alloy showing good soft magnetism.

【0002】[0002]

【従来の技術】結晶質の軟磁性合金では、軟磁性を向上
させるために結晶粒を微細化することが必要がある。従
来、微細結晶合金の製造は熱処理により行われてきた。
例えば、特開昭64−79342 号公報では、一旦、非晶質合
金として製造したものを熱処理して結晶化させ、微細粒
を析出させている。これは、Fe−Si−B−Cuを基本組成
とする合金を 450〜700 ℃の温度で5分から24時間熱処
理して、平均結晶粒径が1000Å以下の微細な結晶粒を析
出させる方法である。こうして得られた微細結晶合金
は、特に高周波域で良好な軟磁性を示す。
2. Description of the Related Art In crystalline soft magnetic alloys, it is necessary to make crystal grains finer in order to improve soft magnetism. Conventionally, the production of fine crystal alloys has been performed by heat treatment.
For example, in Japanese Unexamined Patent Publication No. 64-79342, a product manufactured as an amorphous alloy is once heat-treated to be crystallized to precipitate fine particles. This is a method in which an alloy having a basic composition of Fe-Si-B-Cu is heat-treated at a temperature of 450 to 700 ° C for 5 minutes to 24 hours to precipitate fine crystal grains having an average grain size of 1000 Å or less. . The fine crystal alloy thus obtained exhibits excellent soft magnetism particularly in the high frequency range.

【0003】[0003]

【発明が解決しようとする課題】前記の特開昭64−7934
2 号公報に示されているようなFe−Si−B−Cu系の微細
結晶合金は、軟磁性合金として優れているが、飽和磁束
密度が比較的低い。飽和磁束密度を高くするためには、
Feの比率を増やすのが早道であるが、従来の非晶質から
結晶化させて微細粒を析出させる方法では、Fe濃度を増
やすのに限界がある。なぜなら、非晶質形成のために
は、メタロイド元素を18〜20原子%程度含むことが必要
だからである。熱処理前に既に結晶相が析出している場
合、その結晶粒は粗大であることが多く、また、これら
の結晶粒は後続の熱処理によりさらに大きくなる。この
ような粗大化した結晶粒は軟磁性を損なう。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The Fe-Si-B-Cu-based fine crystal alloy as disclosed in Japanese Patent Publication No. 2 is excellent as a soft magnetic alloy, but has a relatively low saturation magnetic flux density. To increase the saturation magnetic flux density,
The fastest way is to increase the ratio of Fe, but there is a limit to increase the Fe concentration in the conventional method of crystallizing amorphous to precipitate fine particles. This is because it is necessary to contain the metalloid element in an amount of about 18 to 20 atomic% for forming an amorphous material. If the crystal phase has already precipitated before the heat treatment, the grains are often coarse, and these grains become larger by the subsequent heat treatment. Such coarsened crystal grains impair soft magnetism.

【0004】上記のとおり、Fe濃度の高い組成での微細
結晶粒の形成は、従来の熱処理法では困難である。しか
も熱処理により薄帯の脆化がおこり、後の加工が困難に
なるという問題もある。
As described above, it is difficult to form fine crystal grains with a composition having a high Fe concentration by the conventional heat treatment method. In addition, there is a problem that the ribbon becomes brittle due to the heat treatment, which makes subsequent processing difficult.

【0005】本発明の目的は、飽和磁束密度を高めるた
めにFe濃度を高くした合金においても微細結晶組織とす
ることができる方法を提供することにある。
It is an object of the present invention to provide a method capable of forming a fine crystal structure even in an alloy having a high Fe concentration in order to increase the saturation magnetic flux density.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、下記の
微細結晶の軟磁性合金の製造方法にある。
The gist of the present invention resides in the following method for producing a soft magnetic alloy of fine crystals.

【0007】『一般式Fe100-x-y-z-a-b Cu x P y C z M
a M′b で表される組成を有し、bcc結晶相と非晶質
相の混合組織よりなる薄帯を加工温度 350℃以下、圧下
率20%以上で加工し、その後 380〜450 ℃の温度で10分
〜1時間の焼鈍を行うことにより結晶組織を 500Å以下
の粒径に微細化することを特徴とする微細結晶の軟磁性
合金の製造方法』但し、上記一般式において、x, y, z,
aおよび bは原子%で、0.1 ≦x ≦2、5≦y ≦10、z
≦7、8≦y +z ≦17、 a≦2、 b≦2であり、Mは、
Si、Ge、GaおよびAlの中の1種以上の元素、M′は、N
b、Mo、ZrおよびWの中の1種以上の元素である。
[General formula Fe 100-xyzab Cu x P y C z M
A ribbon having a composition represented by a M ′ b and having a mixed structure of a bcc crystal phase and an amorphous phase is processed at a processing temperature of 350 ° C. or less and a rolling reduction of 20% or more, and then at 380 to 450 ° C. A method for producing a fine-grained soft magnetic alloy, characterized by refining the crystal structure to a grain size of 500 Å or less by annealing at a temperature of 10 minutes to 1 hour. "However, in the above general formula, x, y , z,
a and b are atomic% and are 0.1 ≤ x ≤ 2, 5 ≤ y ≤ 10, z
≦ 7, 8 ≦ y + z ≦ 17, a ≦ 2, b ≦ 2, and M is
One or more elements among Si, Ge, Ga and Al, M ′ is N
At least one element selected from b, Mo, Zr and W.

【0008】上記の本発明の方法において、加工によっ
て導入された歪みや欠陥を除去する必要がある場合は、
上記の加工および焼鈍の後に更に 300〜350 ℃で1〜24
時間の焼鈍を行うことができる。
In the above method of the present invention, when it is necessary to remove the strain or defect introduced by processing,
After the above processing and annealing, 1-24 at 300-350 ° C
Time annealing can be performed.

【0009】本発明方法の処理対象材は、例えば溶湯急
冷法によって製造した薄帯である。
The material to be treated by the method of the present invention is a ribbon produced by, for example, a melt quenching method.

【0010】この薄帯は、非晶質相とbcc結晶相が混
在した組織をもっており、これを加工することにより結
晶粒を微細化するのであるが、加工方法としては圧延が
好適である。
This ribbon has a structure in which an amorphous phase and a bcc crystal phase are mixed, and the crystal grains are made fine by processing this, and rolling is preferable as a processing method.

【0011】ケイ素鋼板の集合組織形成に冷間加工を利
用することは既に知られている。これは、冷間加工の加
工歪みによって誘起される再結晶現象を利用したもので
ある。本発明者は、Fe−P−C−Cu系の合金においても
薄帯作製後に存在する比較的粗大な結晶粒を微細化する
方法として、この加工による再結晶が有効であることを
見出した。
It is already known to use cold working to form the texture of silicon steel sheets. This utilizes the recrystallization phenomenon induced by the working strain of cold working. The present inventor has found that recrystallization by this processing is effective as a method of refining relatively coarse crystal grains that exist after the ribbon is formed even in the Fe-P-C-Cu alloy.

【0012】従来、Fe−P−C−Cu系の合金の結晶を微
細にするには、一旦非晶質にしたものを熱処理して微細
結晶粒を生じさせる方法をとっていたので、非晶質化す
るような組成範囲を選ばなければならなかったのである
が、本発明の方法では、最初の薄帯は非晶質でなくてよ
い。即ち、合金組成として非晶質を形成しない範囲を選
べるから、Fe濃度を高くして飽和磁束密度を向上させる
ことができる。また、本発明の方法では、仕上がりの薄
帯の厚みを変えることができ、更に従来の方法で問題に
なる熱処理による脆化を避けることができるという利点
もある。
Conventionally, in order to make fine the crystals of the Fe-P-C-Cu based alloy, a method of heat-treating an amorphous material to generate fine crystal grains has been adopted. In the method of the present invention, the initial ribbon need not be amorphous, although a compositional range had to be chosen to qualify. That is, since the alloy composition can be selected within a range where no amorphous is formed, the Fe concentration can be increased to improve the saturation magnetic flux density. Further, the method of the present invention has an advantage that the thickness of the finished ribbon can be changed, and further, embrittlement due to heat treatment, which is a problem in the conventional method, can be avoided.

【0013】[0013]

【作用】まず、本発明方法の対象となる合金の組成につ
いて説明する。合金は、一般式Fe100-x-y-z-a-b Cu x P
y C z M a M′b で表されるFeを主体とする合金であ
る。以下、各成分の作用と含有量の選定理由を説明す
る。なお、%は全て原子%を意味する。
First, the composition of the alloy which is the object of the method of the present invention will be described. The alloy has the general formula Fe 100-xyzab Cu x P
It is an alloy mainly composed of Fe represented by y C z M a M ′ b . Hereinafter, the action of each component and the reason for selecting the content will be described. In addition, all% mean atomic%.

【0014】Fe:高い飽和磁束密度を得るため、Feを主
体とする。
Fe: Mainly Fe in order to obtain a high saturation magnetic flux density.

【0015】Cu:Cuは、薄帯作製の際の液体急冷時にb
cc相を析出させるのに寄与する。Cuが0.1%未満の場
合にはbcc相のほかに金属間化合物相も析出してこれ
らの混合組織となり、加工−焼鈍後の組織の均一性が悪
化する。一方、2%を超えると薄帯が脆化し、加工が困
難になる。従って、望ましいCu量は 0.1〜2%、即ち、
前記一般式で 0.1≦ x≦2である。
Cu: Cu is b when the liquid is rapidly cooled during the production of the ribbon.
It contributes to the precipitation of the cc phase. When the Cu content is less than 0.1%, not only the bcc phase but also the intermetallic compound phase is precipitated to form a mixed structure of these, and the uniformity of the structure after working-annealing deteriorates. On the other hand, if it exceeds 2%, the ribbon becomes brittle and processing becomes difficult. Therefore, the desirable Cu content is 0.1-2%, that is,
In the above general formula, 0.1 ≦ x ≦ 2.

【0016】PおよびC:非晶質相の形成に寄与し、薄
帯作製後にbcc相と非晶質相の混合組織とするのに役
立つ。液体急冷法によって作製された薄帯が完全な結晶
質であると靱性が乏しく、加工が難しい。またPおよび
Cは、共晶組成付近で合金の融点を下げるのに寄与す
る。高融点の薄帯は、酸化等のために作製が困難であ
り、作製できても靱性の高いものにはならない。
P and C: Contribute to the formation of an amorphous phase and serve to form a mixed structure of a bcc phase and an amorphous phase after the ribbon is produced. If the ribbon produced by the liquid quenching method is completely crystalline, it has poor toughness and is difficult to process. Further, P and C contribute to lower the melting point of the alloy near the eutectic composition. A high-melting-point thin ribbon is difficult to produce due to oxidation or the like, and even if it can be produced, it does not have high toughness.

【0017】PとCの合計量が8%未満では共晶組成か
ら大きくはずれて薄帯が脆化し、後の加工が困難にな
る。一方17%を超えると、飽和磁束密度が低下する。P
濃度の上限、下限も同様の理由により決定される。C
は、Pが多ければ添加しなくても目的は達成されるが、
P濃度が低い場合は、非晶質化を助けて性を向上させ
るため、7%以下の範囲でFeの一部との置換が推奨され
る。C濃度が7%を超えると飽和磁束密度が低下する。
以上、総合すると、前記一般式において 5≦ y≦10、z
≦ 7、8 ≦ y+z ≦17となる。
If the total amount of P and C is less than 8%, the ribbon is greatly deviated from the eutectic composition, and the ribbon becomes brittle, which makes subsequent processing difficult. On the other hand, if it exceeds 17%, the saturation magnetic flux density decreases. P
The upper limit and the lower limit of the concentration are determined for the same reason. C
, The purpose can be achieved without adding P,
If the P concentration is low, to improve the toughness properties help amorphization, substitution of a part of Fe is recommended in the range of 7% or less. When the C concentration exceeds 7%, the saturation magnetic flux density decreases.
Summing up above, in the above general formula, 5 ≦ y ≦ 10, z
≦ 7, 8 ≦ y + z ≦ 17.

【0018】M(Si、Ge、GeおよびAl):これらの元素
には、結晶磁気異方性を小さくする作用があるので、1
種または2種以上の合計で2%以下の範囲でFeの一部
との置換が推奨される。これらの元素が2%を超えると
飽和磁束密度が低下する。
M (Si, Ge, Ge and Al): Since these elements have the effect of reducing the magnetocrystalline anisotropy, 1
Substitution with a part of Fe is recommended in the range of 2% or less in total of two or more kinds. When the content of these elements exceeds 2%, the saturation magnetic flux density decreases.

【0019】M’(Nb、Mo、ZrおよびW):これらは、
後述する加工の際、および加工後の熱処理において、結
晶粒の粗大化を防ぐ作用を有するから、1種または2種
以上の合計で2%以下の範囲でFeの一部との置換するこ
とが推奨される。2%を超えると飽和磁束密度が低下す
る。
M '(Nb, Mo, Zr and W): These are
Since it has an effect of preventing the coarsening of crystal grains during the processing described later and in the heat treatment after the processing, it may be replaced with a part of Fe in the range of 2% or less in total of 1 type or 2 types or more. Recommended. If it exceeds 2%, the saturation magnetic flux density decreases.

【0020】以上の元素を含む組成の合金薄帯を単ロー
ル法、双ロール法等、公知の液体急冷法により作製す
る。この段階では、合金の組織は非晶質相とbcc結晶
相との混合組織である。
An alloy ribbon having a composition containing the above elements is produced by a known liquid quenching method such as a single roll method or a twin roll method. At this stage, the structure of the alloy is a mixed structure of an amorphous phase and a bcc crystal phase.

【0021】次に、上記の薄帯を加工温度 350℃以下、
圧下率20%以上で加工する。加工は室温で行っても有効
であり、350 ℃までは加工温度の粒径に及ぼす影響は小
さいから、350 ℃までのどの温度で加工してもよい。し
かしながら、加工温度が 350℃を超えると、既に存在し
ている結晶の粒成長が起こり、結晶粒の微細化が困難に
なる。圧下率は高いほど、次の焼鈍後の結晶粒は微細に
なる。その結晶粒径を500 Å以下にするには、20%以上
の圧下率が必要である。結晶粒径が 500Åを超えると軟
磁性が悪くなる。加工前の薄帯は通常 100μm 以下の厚
みであるから、これを圧延するにはゼンジミア圧延機の
ような多段ロール圧延機を用いる。
Next, the above ribbon is processed at a processing temperature of 350 ° C. or lower,
Processing with a reduction rate of 20% or more. The processing is effective even at room temperature, and since the effect of the processing temperature on the particle size is small up to 350 ° C, processing may be performed at any temperature up to 350 ° C. However, if the processing temperature exceeds 350 ° C, grain growth of already existing crystals occurs, and it becomes difficult to make the crystal grains fine. The higher the rolling reduction, the finer the crystal grains after the subsequent annealing. In order to reduce the crystal grain size to 500 Å or less, a reduction rate of 20% or more is required. If the crystal grain size exceeds 500Å, the soft magnetism deteriorates. Since the ribbon before processing usually has a thickness of 100 μm or less, a multi-stage rolling mill such as a Sendzimir rolling mill is used to roll it.

【0022】加工後の薄帯には、次に 380〜450 ℃の温
度域で10分から1時間の焼鈍を施して再結晶を起こさせ
微細結晶組織とする。380 ℃よりも低温では長時間の焼
鈍でも再結晶は起こらず、既に存在する結晶が成長する
だけである。一方、450 ℃よりも高温では、結晶粒の合
体、成長が起き、微細結晶組織が得られない。焼鈍時間
は低温ほど長くする必要があるが、380 ℃でも1時間以
内で充分である。いたずらに長時間焼鈍すると結晶粒の
成長が始まる。450 ℃でも10分より短い焼鈍では再結晶
が不十分である。
The processed ribbon is then annealed in the temperature range of 380 to 450 ° C. for 10 minutes to 1 hour to cause recrystallization to form a fine crystal structure. At temperatures lower than 380 ° C, recrystallization does not occur even if annealed for a long time, only existing crystals grow. On the other hand, at a temperature higher than 450 ° C, crystal grains coalesce and grow, and a fine crystal structure cannot be obtained. It is necessary to lengthen the annealing time at lower temperatures, but one hour is sufficient even at 380 ° C. Unnecessarily annealed for a long time, the growth of crystal grains starts. Even at 450 ° C, recrystallization is insufficient when annealed for less than 10 minutes.

【0023】加工および再結晶中により導入された歪み
や欠陥は、磁壁のピニングを引き起こし軟磁性を損なう
ことがある。そのような場合は、前記の加工および焼鈍
の後に、更に歪み取り焼鈍を行うのが望ましい。この焼
鈍は、窒素、アルゴン等の不活性ガス中あるいは真空中
において、300 〜350 ℃の間で1時間から24時間保持す
ることで行われる。300 ℃未満では長時間保持しても歪
み取りの効果はなく、350 ℃を超えると、焼鈍中に粒成
長がおこる。焼鈍は、高温になるほど短時間で済むが、
350 ℃でも、1時間未満では十分な歪取りは行われな
い。また、300 ℃でも24時間焼鈍すれば十分である。
The strains and defects introduced during processing and recrystallization may cause domain wall pinning and impair soft magnetism. In such a case, it is desirable to further perform strain relief annealing after the above-mentioned working and annealing. This annealing is carried out by holding in an inert gas such as nitrogen or argon or in vacuum at 300 to 350 ° C. for 1 to 24 hours. If the temperature is less than 300 ° C, there is no effect of strain relief even if it is held for a long time, and if it exceeds 350 ° C, grain growth occurs during annealing. The higher the temperature, the shorter the annealing, but
Even at 350 ° C, sufficient strain relief is not performed in less than 1 hour. Further, even at 300 ° C, annealing for 24 hours is sufficient.

【0024】[0024]

【実施例1】Fe83Cu0.5P9C6Si1Mo0.5 なる組成を有し、
厚みが60μm の薄帯を双ロール法により作製した。この
薄帯の組織は非晶質相が35体積%bcc結晶相が65体積
%であった。
Example 1 has a composition of Fe 83 Cu 0.5 P 9 C 6 Si 1 Mo 0.5 ,
A thin ribbon with a thickness of 60 μm was prepared by the twin roll method. The structure of this ribbon had an amorphous phase of 35% by volume and a bcc crystal phase of 65% by volume.

【0025】この薄帯を室温でゼンジミア圧延機を用い
て厚み40μm まで圧延し、その後、400 ℃で20分間焼鈍
した。圧延前後の薄帯の鉄損値と結晶粒径、および圧延
−焼鈍後の薄帯の飽和磁束密度を表1に示す。鉄損値は
試料を内径25mm、外径30mmのリングに打ち抜き、圧延前
の試料については50枚、圧延後の試料については75枚積
層してコアをつくり測定した。結晶粒径は透過型電子顕
微鏡観察を行い、50個の結晶粒を抽出して直径を測り、
平均して求めた。飽和磁束密度はVSMにより測定し
た。
This ribbon was rolled at room temperature using a Sendzimir rolling machine to a thickness of 40 μm, and then annealed at 400 ° C. for 20 minutes. Table 1 shows the iron loss value and crystal grain size of the ribbon before and after rolling, and the saturation magnetic flux density of the ribbon after rolling-annealing. The core loss was measured by punching a sample into a ring having an inner diameter of 25 mm and an outer diameter of 30 mm, stacking 50 sheets of the sample before rolling and 75 sheets of the sample after rolling to form a core. The crystal grain size is observed by a transmission electron microscope, 50 crystal grains are extracted and the diameter is measured,
Calculated on average. The saturation magnetic flux density was measured by VSM.

【0026】比較例は、Fe76Cu1Nb3Si8B12の組成の微細
結晶合金で、単ロール法による作製後、585 ℃で5分間
焼鈍したものである。
In the comparative example, a fine crystal alloy having a composition of Fe 76 Cu 1 Nb 3 Si 8 B 12 was prepared by the single roll method and then annealed at 585 ° C. for 5 minutes.

【0027】表1に見られるように、本発明方法により
作製した合金は、320 Åの微細結晶になっている。この
合金の非晶質相と結晶相の体積比は30:70であった。そ
してこの合金の鉄損は小さく、飽和磁束密度は高い。比
較例は、結晶粒は微細であるが、鉄損は本発明方法によ
るものより大きく、高飽和磁束密度も小さい。
As can be seen from Table 1, the alloy produced by the method of the present invention has 320Å fine crystals. The volume ratio of amorphous phase to crystalline phase of this alloy was 30:70. The iron loss of this alloy is small and the saturation magnetic flux density is high. In the comparative example, the crystal grains are fine, but the iron loss is larger than that according to the method of the present invention, and the high saturation magnetic flux density is also small.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【実施例2】表2に示す組成の薄帯を双ロール法により
作製した。その後、薄帯を表2に示す圧下率、加工温度
で圧延し、その後すべて 420℃で15分焼鈍し、結晶粒
径、鉄損、飽和磁束密度を測定した。結晶粒径は、X線
回析のα−Fe(110)ピークの半値幅から計算して求め
た。鉄損、飽和磁束密度は、実施例1と同様の方法で求
めた。大部分の材料には圧延−焼鈍の後、更に歪み取り
の焼鈍を施した。その条件も表2に併記する。
Example 2 A ribbon having the composition shown in Table 2 was prepared by the twin roll method. Then, the ribbon was rolled at the rolling reduction and processing temperature shown in Table 2, and then annealed at 420 ° C. for 15 minutes, and the crystal grain size, iron loss, and saturation magnetic flux density were measured. The crystal grain size was calculated from the half width of the α-Fe (110) peak of X-ray diffraction. The iron loss and the saturation magnetic flux density were obtained by the same method as in Example 1. Most materials were rolled-annealed and then further strain relief annealed. The conditions are also shown in Table 2.

【0030】比較例は、Fe77Cu1Nb3Si7B12の組成の微細
結晶合金で、単ロール法による作製後、590 ℃で5分焼
鈍したものである。本発明方法により作製した合金は、
いずれも比較例よりも高い飽和磁束密度を示している。
In the comparative example, a fine crystal alloy having a composition of Fe 77 Cu 1 Nb 3 Si 7 B 12 was prepared by the single roll method and then annealed at 590 ° C. for 5 minutes. The alloy produced by the method of the present invention,
Both show higher saturation magnetic flux densities than the comparative examples.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】本発明方法によれば、Feの含有量の多い
素材を使用して飽和磁束密度が大きい微細結晶の軟磁性
合金を製造することができる。
According to the method of the present invention, it is possible to produce a fine crystalline soft magnetic alloy having a high saturation magnetic flux density by using a material having a high Fe content.

【0033】[0033]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式Fe100-x-y-z-a-b Cu x P y C z M a
M′b で表される組成を有し、bcc結晶相と非晶質相
の混合組織よりなる薄帯を加工温度 350℃以下、圧下率
20%以上で加工し、その後 380〜450 ℃の温度で10分〜
1時間の焼鈍を行うことにより結晶組織を 500Å以下の
粒径に微細化することを特徴とする微細結晶の軟磁性合
金の製造方法。但し、上記一般式において、y, y, z, a
および bは原子%で、 0.1 ≦x ≦2、5≦y ≦10、z ≦7、8≦y +z ≦17、
a≦2、 b≦2であり、 Mは、Si、Ge、GaおよびAlの中の1種以上の元素、 M′は、Nb、Mo、ZrおよびWの中の1種以上の元素であ
る。
1. A general formula Fe 100-xyzab Cu x P y C z M a
A thin strip having a composition represented by M ′ b and having a mixed structure of a bcc crystal phase and an amorphous phase is processed at a processing temperature of 350 ° C. or less at a reduction rate.
Processing at 20% or more, then at 380-450 ℃ for 10 minutes-
A method for producing a fine-grained soft magnetic alloy, characterized by refining the crystal structure to a grain size of 500Å or less by carrying out annealing for 1 hour. However, in the above general formula, y, y, z, a
And b are atomic%, and 0.1 ≤ x ≤ 2, 5 ≤ y ≤ 10, z ≤ 7, 8 ≤ y + z ≤ 17,
a ≦ 2, b ≦ 2, M is one or more elements in Si, Ge, Ga and Al, M ′ is one or more elements in Nb, Mo, Zr and W .
【請求項2】加工および焼鈍の後に、更に 300〜350 ℃
で1〜24時間の焼鈍を行うことを特徴とする請求項1に
記載の微細結晶の軟磁性合金の製造方法。
2. After working and annealing, further 300-350 ° C.
The method for producing a fine-grained soft magnetic alloy according to claim 1, wherein annealing is performed for 1 to 24 hours.
JP3842991A 1991-03-05 1991-03-05 Production of soft-magnetic alloy having fine crystal Pending JPH0517819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3842991A JPH0517819A (en) 1991-03-05 1991-03-05 Production of soft-magnetic alloy having fine crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3842991A JPH0517819A (en) 1991-03-05 1991-03-05 Production of soft-magnetic alloy having fine crystal

Publications (1)

Publication Number Publication Date
JPH0517819A true JPH0517819A (en) 1993-01-26

Family

ID=12525069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3842991A Pending JPH0517819A (en) 1991-03-05 1991-03-05 Production of soft-magnetic alloy having fine crystal

Country Status (1)

Country Link
JP (1) JPH0517819A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133302A1 (en) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
WO2008133301A1 (en) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. Soft magnetic alloy, process for production thereof and magnetic parts
JP2014005492A (en) * 2012-06-22 2014-01-16 Daido Steel Co Ltd Fe-BASED ALLOY COMPOSITION
JP2016094652A (en) * 2014-11-14 2016-05-26 株式会社リケン Soft magnetic alloy and magnetic part
JP6436206B1 (en) * 2017-09-15 2018-12-12 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP2019052367A (en) * 2018-07-06 2019-04-04 Tdk株式会社 Soft magnetic alloy and magnetic member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133302A1 (en) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
WO2008133301A1 (en) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. Soft magnetic alloy, process for production thereof and magnetic parts
US8007600B2 (en) 2007-04-25 2011-08-30 Hitachi Metals, Ltd. Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
JP2014005492A (en) * 2012-06-22 2014-01-16 Daido Steel Co Ltd Fe-BASED ALLOY COMPOSITION
JP2016094652A (en) * 2014-11-14 2016-05-26 株式会社リケン Soft magnetic alloy and magnetic part
JP6436206B1 (en) * 2017-09-15 2018-12-12 Tdk株式会社 Soft magnetic alloys and magnetic parts
WO2019053950A1 (en) * 2017-09-15 2019-03-21 Tdk株式会社 Soft magnetic alloy and magnetic component
JP2019052357A (en) * 2017-09-15 2019-04-04 Tdk株式会社 Soft magnetic alloy and magnetic member
JP2019052367A (en) * 2018-07-06 2019-04-04 Tdk株式会社 Soft magnetic alloy and magnetic member

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
JPH06322472A (en) Production of fe base soft magnetic alloy
JP2710948B2 (en) Ultrafine crystalline Fe-based alloy with excellent corrosion resistance and method for producing the same
JP2868121B2 (en) Method for producing Fe-based magnetic alloy core
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
JPH0517819A (en) Production of soft-magnetic alloy having fine crystal
US4253883A (en) Fe-Cr-Co Permanent magnet alloy and alloy processing
JP2006291234A (en) Microcrystalline alloy ribbon
JP3460763B2 (en) Manufacturing method of soft magnetic alloy
JP2001073125A (en) Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION
JP3705446B2 (en) Nanocrystallization heat treatment method for nanocrystalline alloys
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JP3706765B2 (en) Hot rolled electrical steel sheet having excellent magnetic properties and corrosion resistance and method for producing the same
JPS5924177B2 (en) Square hysteresis magnetic alloy
JP2000144349A (en) Iron base soft magnetic alloy
JPH076046B2 (en) Method for producing Ni-Fe alloy plate having excellent magnetic properties
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0798975B2 (en) Method for producing Fe-Ni alloy
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JPH0610105A (en) Fe base soft magnetic alloy
JPS6218619B2 (en)
JP2000144347A (en) Iron base soft magnetic alloy and control of magnetostriction therein
JPS5814499B2 (en) Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou
JPH05186829A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation