JPH0325989A - Single axis mode semiconductor laser characteristic measuring apparatus - Google Patents

Single axis mode semiconductor laser characteristic measuring apparatus

Info

Publication number
JPH0325989A
JPH0325989A JP16145689A JP16145689A JPH0325989A JP H0325989 A JPH0325989 A JP H0325989A JP 16145689 A JP16145689 A JP 16145689A JP 16145689 A JP16145689 A JP 16145689A JP H0325989 A JPH0325989 A JP H0325989A
Authority
JP
Japan
Prior art keywords
band
semiconductor laser
pass filter
measured
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16145689A
Other languages
Japanese (ja)
Inventor
Kunio Uehara
上原 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16145689A priority Critical patent/JPH0325989A/en
Publication of JPH0325989A publication Critical patent/JPH0325989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To accurately sort single axis mode characteristic at the stage of a chip by providing an input light observing unit having a band pass filter function independently controllable with a band central wavelength and a transmitting band width, and a temperature control mechanism of a semiconductor laser to be measured. CONSTITUTION:A current If is supplied from a power source 2 to an element 1 to be measured, and the temperature Ta of the element 1 to be measured is controlled by a temperature regulator 3. The band central wavelength lambdac and the transmission band width W of a band pass filter 5 can be independently set. When the element is a DFB LD having 1.3mum band and the required operating range is about 25+ or -5 deg.C, if the junction current If of a predetermined light output L=10mW at Ta=25 deg.C is 50mA, the band central wavelength lambdac of the band pass filter is brought into coincidence with the maximum mode lambdao of the spectrum under the driving conditions, and the Ta is then varied over 20-30 deg.C with the If being constant with the transmission band width W=1nm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単一軸モード半導体レーザの特性測定装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a characteristic measuring device for a single-axis mode semiconductor laser.

〔従来の技術〕[Conventional technology]

幹線系光通信の伝送速度および中継距離が増大するのに
伴い、ファイバの持つ波長分散による伝送波形劣化を回
避する目的で、従来の多軸モード発振するファブリ・ペ
ロ( Fabry−Perot )型半導体レーザに代
って単一軸モードで発振する分布帰還型半導体レーザ(
 distributed feedback las
erdiode,以下DFB LDと略称)が用いられ
るようになってきた.このDFB LDは、結晶内部に
有する回折格子周期が均一ないわゆる均一回折格子型の
ものと、共振器の一部に通常媒質内波長の1/4に相当
する位相シフト領域を有するいわゆる位相シフト型のも
のに大別され、理論的に予測される単一軸モード発振確
率は後者の方が高く、素子設計パラメータの設定によっ
てはその確率は非常に1に近くなり得る。しかし実際の
素子作成においては、実現された素子パラメータが製造
上のばらつきを有するため、製作された素子のすべてが
単一軸モード発振をするとは限らない。加えて単一軸モ
ード半導体レーザにおいては、注入キャリアにより軸方
向空間的ホール・バーニング(hole−burnin
g)現象によって電界分布が変形して、副モード発振を
惹起する場合もあり、従って個々の素子に対する単一軸
モード特性の選別が必要である。
As the transmission speed and relay distance of trunk optical communications increases, conventional Fabry-Perot semiconductor lasers with multi-axis mode oscillation are being used to avoid deterioration of transmission waveforms due to wavelength dispersion of fibers. A distributed feedback semiconductor laser that oscillates in a single-axis mode instead of
distributed feedback las
(hereinafter abbreviated as DFB LD) has come to be used. These DFB LDs are of the so-called uniform diffraction grating type, which has a uniform diffraction grating period inside the crystal, and the so-called phase shift type, which has a phase shift region corresponding to 1/4 of the wavelength in the normal medium in a part of the resonator. The theoretically predicted single-axis mode oscillation probability is higher in the latter, and depending on the settings of element design parameters, the probability can be very close to 1. However, in actual device fabrication, the realized device parameters have manufacturing variations, so not all fabricated devices will oscillate in a single-axis mode. In addition, in single-axis mode semiconductor lasers, injected carriers cause axial spatial hole-burning (hole-burning).
g) The electric field distribution may change due to the phenomenon, causing sub-mode oscillation. Therefore, it is necessary to select the single-axis mode characteristics for each element.

上述したように DFB I、Dに対しては、素子ごと
に単一軸モード特性を選別する必要があり、基本的には
製品最終形態、例えばファイバ付モジュールの形で選別
が実施される。その手法としては所期の光出力における
発振スペクトルを分解能O.lnm程度の分光器を用い
て測定し、所要の副モード抑圧比が得られていることを
確認するのが一般的である。一方、パッケージやその他
部材や組立調整工数等のコスト低減を目的として、チッ
プ段階である程度のi選別を実施するのが望ましい。そ
の際の光学調.整の簡便さ、温度変動による光軸ずれ、
処理能力を考慮すると、上述のような分解能を確保した
スペクトル特性測定は現実的でないため、第8図のブロ
ック・ダイヤグラムに示す測定系を用いて軸モード特性
の不安定性に起因して生ずる注入電流対光出力特性曲線
上の変曲点いわゆるL−1キンク(kink)を観測す
ることで代用していたく第9図〉。
As mentioned above, for DFB I and D, it is necessary to select the single-axis mode characteristics for each element, and the selection is basically performed in the final product form, for example, in the form of a fiber-equipped module. The method is to measure the oscillation spectrum at the desired optical output with a resolution of O. It is common to measure using a spectrometer of about 1 nm to confirm that the required sub-mode suppression ratio is obtained. On the other hand, for the purpose of reducing the cost of packages, other components, assembly and adjustment man-hours, etc., it is desirable to perform i-selection to some extent at the chip stage. Optical condition at that time. Easy adjustment, optical axis deviation due to temperature fluctuation,
Considering the processing capacity, it is not realistic to measure the spectral characteristics with the above-mentioned resolution, so we used the measurement system shown in the block diagram in Figure 8 to measure the injection current caused by the instability of the axial mode characteristics. This can be substituted by observing the inflection point, so-called L-1 kink, on the light output characteristic curve (Fig. 9).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし実際の素子では、副モード発振やモードジャンプ
を生ずるにもかかわらすL−Iキンク現象が顕著に現れ
ない場合もあり、上述の選別法は必ずしも十分ではない
。また前述した空間的ホール・バーニング現象に伴うL
−1キングは発振閾値近傍にも生じ易いため、判別が難
しいという欠点もある。さらに、素子に要求される動作
温度範囲が数十゜Cと広い場合には温度を変化させなが
ら多数回の繰り返し観測を必要とし、作業時間の増加を
余儀なくされるという欠点を有している。
However, in actual devices, there are cases where the L-I kink phenomenon does not appear conspicuously even though sub-mode oscillation or mode jump occurs, and the above-mentioned selection method is not necessarily sufficient. In addition, L due to the spatial hole burning phenomenon mentioned above.
Since −1 king tends to occur near the oscillation threshold, it also has the disadvantage that it is difficult to distinguish. Furthermore, when the operating temperature range required for the device is as wide as several tens of degrees Celsius, it is necessary to carry out repeated observations many times while changing the temperature, which has the disadvantage of unavoidably increasing the working time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の単一軸モード半導体レーザの特性測定装置は、
帯域中心波長と透過帯域幅が各々独立に制御可能なバン
ド・バス・フィルタ機能を有する入力光観測部と、被測
定半導体レーザの温度制御機構を有しており、あるいは
それに加えて被測定半導体レーザの温度注入電流および
観測された光出力の3種のパラメータのうちひとつを一
定値に保った状態で他のふたつのパラメータ相互間の相
関を測定することができる機能を有しており、あるいは
それに加えて前記3種のパラメータのうちの任意のふた
つを選んで2次元直交座標表示することができ、あるい
はまた3種のパラメータを3次元直交座標表示すること
ができる機能を有している。
The device for measuring characteristics of a single-axis mode semiconductor laser according to the present invention includes:
It has an input light observation section that has a band pass filter function that allows the band center wavelength and transmission bandwidth to be independently controlled, and a temperature control mechanism for the semiconductor laser to be measured, or in addition, it has a temperature control mechanism for the semiconductor laser to be measured. It has a function that can measure the correlation between the other two parameters while keeping one of the three parameters, the temperature injection current and the observed optical output, at a constant value, or In addition, it has the function of being able to select any two of the three types of parameters and displaying them in two-dimensional orthogonal coordinates, or to display the three types of parameters in three-dimensional orthogonal coordinates.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例のブロック・ダイアダラ
ムである。被測定素子1に対して電源2から電流■,が
供給され、また温度調節器3により被測定素子1の温度
Taが制御される。光出力Lは光学系4を介して光学的
バンド・バス・フィルタ5へ導かれる。このバンド・パ
ス・フィルタ5の帯域中心波長λ。と透過帯域幅Wは各
々独立に設定可能である。バンド・パス・フィルタ5を
透過した光Pdは光一電流変換部6で電流に変換される
。これらの3種のパラメータIf  T.およびPdは
各々結合系によって制御部7に統合され、必要に応じて
表示部8に表示される。
FIG. 1 is a block diaphragm of a first embodiment of the invention. A current (1) is supplied from a power source 2 to the device under test 1, and a temperature Ta of the device under test 1 is controlled by a temperature regulator 3. The light output L is guided via an optical system 4 to an optical bandpass filter 5 . The band center wavelength λ of this band pass filter 5. and transmission bandwidth W can be set independently. The light Pd transmitted through the band pass filter 5 is converted into a current by a photo-current converter 6. These three parameters IfT. and Pd are each integrated into the control section 7 by a coupling system, and displayed on the display section 8 as necessary.

第1図のブロック・ダイアダラムを具体的に示したのが
第2図である。被測定素子の出力光■一はファイバ41
によりスリット511に導かれ、これを通過して光は回
折格子52により回折されてその一部がスリット512
によって選択されてホトダイオード6lに入射して電流
に変換される。
FIG. 2 specifically shows the block diadarum of FIG. 1. Output light of the device under test ■One is the fiber 41
After passing through this, the light is diffracted by a diffraction grating 52 and a part of it is guided to a slit 511.
is selected, enters the photodiode 6l, and is converted into a current.

ここで上述の帯域中心波長λ。と透過帯域幅Wは各々回
折格子52の回転角およびスリット5 1 1 ,51
2の開口幅により決定される。
Here, the band center wavelength λ mentioned above. and transmission bandwidth W are the rotation angle of the diffraction grating 52 and the slits 5 1 1 , 51 , respectively.
It is determined by the opening width of 2.

以上説明した装置を用いて単一軸モード半導体レーザの
特性を測定する例について述べる。単一軸モード半導体
レーザのスペクトル例を第3図に示す。主モード^。に
対して、副モードはある程度離れて存在し、最も近傍の
±1モードでもその波長λ+1の主モードλ。との差δ
λ=λ。一λ,Iは1.3μm帯の位相シフト型 DF
B LDで1.2nm程度、1.55μm帯の位相シフ
ト型 DFRLDで1.5nm程度になる。今、被測定
素子が、1.3μm帯のDFB LDであって要求され
る動作温度範囲が比較的狭く例えば、25±5℃程度で
ある場合には、まずT.=25℃における所要の光出力
L=10mWでの注入電流Irが50mAであったとす
ると、バント・パス・フィルタの帯域中心波長λ。を上
記駆動条件におけるスペクトルの最大モード^。に合致
させ、透過帯域幅W−1nmとして、次に■fを一定に
してT.を20’C〜30゜Cにわたって変化させる。
An example of measuring the characteristics of a single-axis mode semiconductor laser using the apparatus described above will be described. FIG. 3 shows an example of the spectrum of a single-axis mode semiconductor laser. Main mode. On the other hand, the secondary modes exist at some distance, and even the nearest ±1 mode has a main mode λ with a wavelength λ+1. difference δ
λ=λ. -λ, I is a phase shift type DF in the 1.3 μm band
It is approximately 1.2 nm for BLD, and approximately 1.5 nm for phase shift type DFRLD in the 1.55 μm band. Now, if the device to be measured is a 1.3 μm band DFB LD and the required operating temperature range is relatively narrow, for example, about 25±5° C., first the T. If the injection current Ir at the required optical power L=10 mW at =25°C is 50 mA, then the band center wavelength λ of the band pass filter. is the maximum mode of the spectrum under the above driving conditions. , the transmission band width is set to W-1 nm, and then f is kept constant and T. is varied over a range of 20'C to 30°C.

DFB LDの発振スペクトルの温度依存性は約0 .
 0 9 n m/degであるから、上述の温度範囲
においてモード・ジャンプや副モード発振を生じない素
子Aは第5図に示したようにその光電流変換素子への光
入力Pdは温度T.に対して第4図に示したI−L特性
を反映して単調に減少゜する特性を示すが、25℃の低
温側で副モード発振を生ずる素子Bの場合はバンド・バ
ス・フィルタを透過する主モードの光P6が急激に低下
するため第5図に示すようなPd−T.特性を示すため
、これを容易に判定除外することができる。
The temperature dependence of the oscillation spectrum of the DFB LD is approximately 0.
0 9 nm/deg, the element A which does not cause mode jump or sub-mode oscillation in the above temperature range has a light input Pd to the photocurrent conversion element at a temperature T. However, in the case of element B, which produces secondary mode oscillation on the low temperature side of 25°C, it passes through the band pass filter. Since the main mode light P6 of the Pd-T. Since it shows the characteristics, it can be easily excluded from the judgment.

要求される温度範囲が比較的広い場合には、帯域中心波
長λ。を固定せず例えば0.09nm/degで温度T
,の変化に伴って変化させてやれば、副モードを確実に
遮断でき、かつ光軸調整に過度の負担がかからないW〜
1.nmを維持することができる。
If the required temperature range is relatively wide, the band center wavelength λ. For example, without fixing the temperature T at 0.09 nm/deg
If it is changed in accordance with the change in , the secondary mode can be reliably blocked and the optical axis adjustment will not be overly burdened W~
1. nm can be maintained.

第6図は本発明の第2の実施例を示す測定結果の例であ
って、第1図において、バンド・パス・フィルタのλ。
FIG. 6 is an example of measurement results showing the second embodiment of the present invention, in which λ of the band pass filter in FIG.

、Wを第1の実施例と同様に設定し、Pa=10dBm
一定となるように工,を負帰還制御して温度T,を変動
させた場合のIfT.特性である。所期の温度範囲で安
定な基本モード発振をする素子AのIfはTaに対し単
調な増加を示すが、スペクトルの不安定な素子Bの場合
は、副モード発振を生ずるのに伴って、所期のPdを維
持するためのIrの値が急激に増大ずるため、これを容
易に判定除外することができる。
, W are set in the same way as in the first embodiment, and Pa=10 dBm.
IfT. when the temperature T is varied by negative feedback control to keep it constant. It is a characteristic. If of element A, which exhibits stable fundamental mode oscillation in the desired temperature range, shows a monotonous increase with respect to Ta, in the case of element B, whose spectrum is unstable, as secondary mode oscillation occurs, Since the value of Ir for maintaining the Pd in the period increases rapidly, this can be easily judged and excluded.

半導体レーザは通常低出力駆動条件で実用に供されるた
め、所要の動作温度範囲における所期の光出力での特性
保証が必要であるが、この実施例では該条件下での特性
測定を直接実施できるため、第1の実施例の場合のよう
に低温側で過剰な測定マージンを必要としないという利
点がある。
Semiconductor lasers are usually put into practical use under low-output driving conditions, so it is necessary to guarantee the characteristics at the desired optical output in the required operating temperature range, but in this example, the characteristics can be directly measured under these conditions. Since this method can be implemented, there is an advantage that an excessive measurement margin is not required on the low temperature side as in the case of the first embodiment.

これまでの説明では、測定結果の表示を2次元直交座標
系とした例について述べたが、3種のパラメータを3次
元直交座標系に表示してもよく、この例を第7図に示す
。被測定素子の特性を詳細に検討する際には有利な点が
多い. 〔発明の効果〕 以上説明したように本発明にかかる装置を単一軸モード
半導体レーザの特性測定に適用することにより、必要な
透過帯域幅がnmオーダ以上でよいため、現実的な処理
能力でもってチップ段階での単一軸モード特性選別を精
度良く実施できる効果がある。加えて単一軸モード半導
体レーザの軸モード安定性の温度、注入電流および光出
力依存性を詳細に測定・検討する上で従来装置によるも
のより視覚的に優れた測定結果表示を可能とする効果が
ある。
In the explanation so far, an example has been described in which measurement results are displayed in a two-dimensional orthogonal coordinate system, but three types of parameters may also be displayed in a three-dimensional orthogonal coordinate system, and this example is shown in FIG. There are many advantages when examining the characteristics of the device under test in detail. [Effects of the Invention] As explained above, by applying the device according to the present invention to the characteristic measurement of a single-axis mode semiconductor laser, the necessary transmission bandwidth may be on the order of nm or more, so that the device can be used with practical processing power. This has the effect of allowing single-axis mode characteristic selection to be carried out with high accuracy at the chip stage. In addition, when measuring and examining in detail the temperature, injection current, and optical output dependence of the axial mode stability of single-axis mode semiconductor lasers, it is possible to display measurement results visually superior to those using conventional equipment. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1.の実施例である単一軸モード半
導体レーザ特性測定装置のブロック・ダイアグラム、第
2図は第1図の実施例を具体化した概念図、第3図は単
一軸モード半導体レーザのスペクトル特性例、第4図は
単一軸モード半導体レーザの注入電流対光出力特性の温
度依存性の一例、第5図、第6図および第7図は各々第
1−図に示した系を用いて測定した単一軸モード半導体
レーザの特性例、第8図は従来の半導体レーザの注入電
流対光出力特性測定装置のブロック・ダイアダラム、第
9図は第8図の装置を用いて測定した単一軸モード半導
体レーザの特性例である。 1・・・被測定素子、2・・・電源、3・・・温度調節
器、4・・・光学系、5・・・光学的バンドパス・フィ
ルタ、6・・・光一電流変換部、7・・・制御部、8・
・・表示部、31・・・電子冷却器、32・・・サーミ
スタ、41・・・ファイバ、52・・・回折格子、61
・・・ボトダイオード、100・・・レーザバー、11
2・・・プローブ、511,512・・・スリット。
FIG. 1 shows the first embodiment of the present invention. FIG. 2 is a conceptual diagram embodying the embodiment of FIG. 1, and FIG. 3 is an example of the spectral characteristics of a single-axis mode semiconductor laser. Figure 4 is an example of the temperature dependence of the injection current vs. optical output characteristic of a single-axis mode semiconductor laser, and Figures 5, 6, and 7 are examples of single-axis measurements taken using the system shown in Figures 1-1. Example of the characteristics of a mode semiconductor laser. Figure 8 shows the block diadam of a conventional semiconductor laser injection current vs. optical output characteristic measurement device. Figure 9 shows the characteristics of a single-axis mode semiconductor laser measured using the device shown in Figure 8. This is an example. DESCRIPTION OF SYMBOLS 1... Element to be measured, 2... Power source, 3... Temperature controller, 4... Optical system, 5... Optical band pass filter, 6... Optical current converter, 7 ...Control unit, 8.
...Display section, 31...Electronic cooler, 32...Thermistor, 41...Fiber, 52...Diffraction grating, 61
... Boto diode, 100 ... Laser bar, 11
2...Probe, 511,512...Slit.

Claims (1)

【特許請求の範囲】[Claims] 帯域中心波長と透過帯域幅が各々独立に制御可能なバン
ド・バス・フィルタ機能を有する入力光観測部と、被測
定半導体レーザの温度制御機構とを具備したことを特徴
とする単一軸モード半導体レーザの特性測定装置。
A single-axis mode semiconductor laser comprising an input light observation section having a band pass filter function in which the band center wavelength and transmission bandwidth can be independently controlled, and a temperature control mechanism for the semiconductor laser to be measured. Characteristic measuring device.
JP16145689A 1989-06-23 1989-06-23 Single axis mode semiconductor laser characteristic measuring apparatus Pending JPH0325989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16145689A JPH0325989A (en) 1989-06-23 1989-06-23 Single axis mode semiconductor laser characteristic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16145689A JPH0325989A (en) 1989-06-23 1989-06-23 Single axis mode semiconductor laser characteristic measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0325989A true JPH0325989A (en) 1991-02-04

Family

ID=15735452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16145689A Pending JPH0325989A (en) 1989-06-23 1989-06-23 Single axis mode semiconductor laser characteristic measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0325989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020031369A (en) * 2002-04-04 2002-05-01 전경호 Elasticity buckle
CN112147490A (en) * 2020-11-26 2020-12-29 上海菲莱测试技术有限公司 Method and system for laser chip integration test

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020031369A (en) * 2002-04-04 2002-05-01 전경호 Elasticity buckle
CN112147490A (en) * 2020-11-26 2020-12-29 上海菲莱测试技术有限公司 Method and system for laser chip integration test

Similar Documents

Publication Publication Date Title
CN113557643B (en) Wavelength control method of silicon photon external cavity tunable laser
US7257142B2 (en) Semi-integrated designs for external cavity tunable lasers
US6188705B1 (en) Fiber grating coupled light source capable of tunable, single frequency operation
US5682237A (en) Fiber strain sensor and system including one intrinsic and one extrinsic fabry-perot interferometer
US20030016707A1 (en) Wavelength reference apparatus and method
CN106058641A (en) Semiconductor chip and method of configuring same
US20210281046A1 (en) Tunable laser assembly
CN107490822A (en) Optical device, tunable light source and optical transmitter
JPH0810776B2 (en) Narrow spectrum short pulse light source device and voltage detection device
CN113316876A (en) Integrated optics based external cavity laser for mode hop free wavelength tuning
US6961128B2 (en) Apparatus for detecting cross-talk and method therefor
US20060140228A1 (en) Semi-integrated designs with in-waveguide mirrors for external cavity tunable lasers
JP2009031238A (en) Optical coherence tomography device
JPH0325989A (en) Single axis mode semiconductor laser characteristic measuring apparatus
Lee et al. Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry-Perot grating-lens external cavity
D’Agostino et al. Widely tunable coupled cavity laser based on a Michelson interferometer with doubled free spectral range
JPH0277630A (en) Optical interferometer and method for stabilizing oscillation frequency of semiconductor laser using the same
CN115810976A (en) Wavelength locker, tunable laser and wavelength locking control method
US20190041581A1 (en) Tunable light source and optical module
Kumar et al. Fully integrated tunable III-V/Si laser with on-chip SOA
JP3317656B2 (en) Optical component chromatic dispersion measuring device
JP2002016317A (en) Semiconductor laser light source and measuring apparatus using the same
Barcaya et al. C-band tunable laser control for wdm optical communications networks
KR101011562B1 (en) Wavelength Tunable Ring Laser
Zhang et al. Photonic Integrated Chaotic Lasers