JPH03257334A - Radiation source - Google Patents

Radiation source

Info

Publication number
JPH03257334A
JPH03257334A JP2055111A JP5511190A JPH03257334A JP H03257334 A JPH03257334 A JP H03257334A JP 2055111 A JP2055111 A JP 2055111A JP 5511190 A JP5511190 A JP 5511190A JP H03257334 A JPH03257334 A JP H03257334A
Authority
JP
Japan
Prior art keywords
heat
layer
surface layer
oxidation
heat equalizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2055111A
Other languages
Japanese (ja)
Inventor
Isao Hishikari
功 菱刈
Yasushi Sakaino
境野 靖
Yukio Matsui
幸雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP2055111A priority Critical patent/JPH03257334A/en
Publication of JPH03257334A publication Critical patent/JPH03257334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To provide a stable surface and to emit heat of uniform temp. distribution from the entire surface of a heat emitting surface layer by providing an oxidized heat emitting surface layer to the surface of an heat equalizing layer. CONSTITUTION:A slot-shape insertion hole 1c is provided to the side part of a heat equalizing layer 1 formed from material having good heat conductivity such as copper and a projection part 1d is provided to the rear 1b thereof and insulated heater wires 4 are continuously provided to a plurality of groove parts 1e provided to the layer 1 in parallel under tension. A heat emitting surface layer 2 preliminarily oxidized and composed of material quality such as nickel enhanced in emissivity is fixed to the surface 1a of the heat equalizing layer 1. The fixing of the layer 2 is performed by an explosion deposition method. That is, the heat equalizing layer 1 and the heat emitting surface layer 2 are combined and a buffer material 8a and detonator 8b are provided on the layer 2 and the detonator 8b is exploded to generate high temp. flowable metal jets at the collision part of the heat equalizing layer 1 and the surface layer 2 and the metal jets are entangled in a wavy form to be fixed mutually. The heat due to a heater 4 is equalized by the heat equalizing layer 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、放射温度計校正等に用いられる放射源に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radiation source used for radiation thermometer calibration and the like.

[従来の技術] 放射温度計等は、黒体炉等で構成される放射源からの放
射エネルギーを測定し、校正することができる。
[Prior Art] Radiation thermometers and the like can be calibrated by measuring radiant energy from a radiation source such as a blackbody furnace.

この放射源は高熱で作動し、かつ放射部分が均熱化され
、熱放射を向上させていることが望まれる。
The radiant source operates at high temperatures and it is desired that the radiant portion be uniformly heated to improve heat radiation.

従来は、この均熱化のために銅やアルミのような熱伝導
のよい材料で均熱層を構成し、この均熱層裏面にヒータ
を設けると共に、これら全表面には前記高温度に耐えか
つ熱放射の高い酸化ニッケル等をコーティングしていた
。また、このコーティングにより均熱層の酸化を防止す
ることができる。
Conventionally, in order to equalize the heat, a heat-uniforming layer was constructed of a material with good thermal conductivity such as copper or aluminum, and a heater was provided on the back side of the heat-uniforming layer, and a layer was provided on all surfaces that could withstand the high temperature. It was also coated with nickel oxide, etc., which has high heat radiation. Moreover, this coating can prevent oxidation of the heat-uniforming layer.

[発明が解決しようとする課題] しかしながら、従来の放射源では、高温度になると均熱
層と放射表面との熱膨張の差によりフーティング表面に
クラックが生じた。このクラックにより放射状態が変化
したり、均熱層が酸化し易くなる問題が生じた。
[Problems to be Solved by the Invention] However, in the conventional radiation source, when the temperature becomes high, cracks occur on the footing surface due to the difference in thermal expansion between the heat-uniforming layer and the radiation surface. These cracks caused problems such as changes in the radiation state and the tendency for the heat-uniforming layer to oxidize.

またヒータ部分では、コーティング剥離、および酸化が
生じた。
In addition, coating peeling and oxidation occurred in the heater portion.

また、均熱層には測温センサが埋め込まれるが酸化によ
りこの測温センサが抜けなくなり、交換保守を行なえな
い問題も生じている。
Furthermore, although a temperature sensor is embedded in the heat-uniforming layer, oxidation prevents the temperature sensor from coming out, creating a problem in which replacement and maintenance cannot be performed.

放射源は熱伝導のよい銅等で構成すれば安価で製作する
ことができるが、銅のみでは酸化し易く構成出ない問題
があった。
The radiation source can be manufactured at low cost if it is made of copper or the like, which has good thermal conductivity, but there is a problem that copper alone is easily oxidized and cannot be made.

本発明は、上記問題点に鑑みてなされたものであり、表
面状態が安定で放射温度分布が長期的に安定な放射源を
安価に提供することを目的としている。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide, at low cost, a radiation source with a stable surface state and a long-term stable radiation temperature distribution.

[課題を解決するための手段] 上記目的を達成するため本発明の放射源は、請求項1で
は、熱伝導特性の良好な材質により形成され裏面部分に
熱源としてのヒータが設けられる均熱層と、予め酸化さ
れかつ放射率が高く安定した特性を有する材質により形
成される熱放射表面層と、を爆着により固着して構成し
たことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the radiation source of the present invention has a heat-uniforming layer formed of a material having good thermal conductivity and having a heater as a heat source provided on the back surface thereof. and a heat radiating surface layer made of a material that has been oxidized in advance and has high emissivity and stable properties, and are fixed by explosion bonding.

また、請求項2では、上記均熱層裏面には、ヒータとの
接触部分に対酸化性の特性を有する対酸化性層を設ける
Further, in a second aspect of the present invention, an oxidation-resistant layer having oxidation-resistant properties is provided on the back surface of the heat-uniforming layer at a portion in contact with the heater.

[作用] 均熱層1表面には酸化された熱放射表面層2が設けられ
ており、表面状態が安定な放射源を構成でき、かつ熱源
としてのヒータ4の熱は、均熱層1および熱放射表面層
2によって均熱化され、放射温度計等に安定した放射エ
ネルギーを放射することができる。
[Function] An oxidized heat radiation surface layer 2 is provided on the surface of the heat-uniforming layer 1, and a radiation source with a stable surface condition can be constructed. The heat is uniformized by the heat radiating surface layer 2, and stable radiant energy can be radiated to a radiation thermometer or the like.

[第1実施例1 第1図(a)は、本発明による放射源の第1の実施例を
示す平面図、第1図(b)は、同図(a)のA−A線側
断面図である。
[First Embodiment 1] Fig. 1(a) is a plan view showing a first embodiment of the radiation source according to the present invention, and Fig. 1(b) is a side cross section taken along line A-A in Fig. 1(a). It is a diagram.

1は、銅、アルミ等の熱伝導の良い材質で形成された均
熱層である。この均熱層lは、直方体形状に形成され、
側部には長穴形状の挿入穴1cが設けられる。
Reference numeral 1 denotes a heat-uniforming layer made of a material with good thermal conductivity, such as copper or aluminum. This heat-uniforming layer l is formed in the shape of a rectangular parallelepiped,
An elongated insertion hole 1c is provided on the side.

この均熱層1の裏面1b(第1図(a)の平面図側)に
は、さらに突起部1dが設けられ、この突起部1dには
平行に複数本の溝部1eが設けられる。この溝部1eに
は、熱源としての絶縁管6で絶縁されたヒータ線4が連
続的に張設される。
A protrusion 1d is further provided on the back surface 1b (the side in the plan view of FIG. 1(a)) of the heat-uniforming layer 1, and a plurality of grooves 1e are provided in parallel with the protrusion 1d. A heater wire 4 insulated by an insulating tube 6 serving as a heat source is continuously stretched in this groove portion 1e.

さらに、均熱層1の表面la側には、熱放射表面層2が
固着される。
Further, a heat radiating surface layer 2 is fixed to the surface la side of the heat equalizing layer 1.

前記熱放射表面層2は、予め酸化させ、放射率を高めた
ニッケル、あるいはインコネル等の材質により成る。こ
れらの材質は約1000度程度で酸化し、この酸化によ
り放射率が1に近くなる性質を有している。この熱放射
表面層2の表面2aは、第1図(c)の如く凹凸が設け
られていて熱放射率を向上させたものである。
The heat radiation surface layer 2 is made of a material such as nickel or Inconel which has been oxidized in advance to increase its emissivity. These materials have the property of being oxidized at about 1000 degrees and having an emissivity close to 1 due to this oxidation. The surface 2a of the heat radiating surface layer 2 is provided with irregularities as shown in FIG. 1(c) to improve the heat emissivity.

そして、これら均熱層1と熱放射表面層2との固着には
爆着法を用いる。この爆着法は、第3図の拡大図に示す
ように均熱層1と熱放射表面層2を合わせ、熱放射表面
層上部に緩衝材8a、および爆薬8bを設けて、爆薬8
bを爆発させるもので、この爆薬8bの爆発により均熱
層1と熱放射表面層2とが衝突し、その衝突部に高温で
流動性のメタルジェットが発生し、それが波状にかみ合
って相互に固着されるものである。この爆着は瞬時に行
なオ)れるものであり、爆着時、均熱層1側が酸化する
以前に固着される。
The explosion bonding method is used to bond the heat-uniforming layer 1 and the heat-radiating surface layer 2 together. In this explosive bonding method, as shown in the enlarged view of FIG.
The explosion of this explosive 8b causes the thermal soaking layer 1 and the heat radiation surface layer 2 to collide, and a high temperature and fluid metal jet is generated at the collision part, which engages in a wave pattern and mutually It is fixed to. This explosive bonding is instantaneous and is fixed before the heat-uniforming layer 1 side is oxidized during the explosive bonding.

次に、熱放射表面層2以外の均熱層l全面にはプラズマ
溶着等でアルミナコーティング7を施す。このアルミナ
コーティング7により、第2図の拡大図に示すようにヒ
ーター線4との間での絶縁を取れると共に、均熱層1の
酸化を防止することができる。
Next, an alumina coating 7 is applied to the entire surface of the heat-uniforming layer 1 other than the heat radiating surface layer 2 by plasma welding or the like. This alumina coating 7 provides insulation from the heater wire 4 as shown in the enlarged view of FIG. 2, and also prevents the heat-uniforming layer 1 from oxidizing.

また、前記挿入穴1cには、対酸化材質の保護管9を圧
入し穴の表面酸化を防ぐ。この保護管9内空部には、測
温センサが設けられる。これにより、測温センサの交換
が容易にできる。この測温センサは、放射源の正確な温
度測定に用いられる。
Further, a protective tube 9 made of an oxidation-resistant material is press-fitted into the insertion hole 1c to prevent surface oxidation of the hole. A temperature sensor is provided in the inner space of the protection tube 9. This makes it easy to replace the temperature sensor. This temperature sensor is used to accurately measure the temperature of the radiation source.

上記構成の放射源は、熱放射表面層2部分以外の部分に
断熱材が設けられて使用される。
The radiation source having the above configuration is used with a heat insulating material provided in a portion other than the heat radiation surface layer 2 portion.

そして、ヒータ4による熱は、均熱層1で均熱化され、
熱放射表面層2表面から面状に放射される。放射される
温度は600度程度である。熱放射表面層2表面2aは
凹凸が設けられていて面」−全てが均一温度で熱放射さ
れることになる。
Then, the heat generated by the heater 4 is equalized by the equalizing layer 1,
Heat is emitted from the surface of the heat emitting surface layer 2 in a planar manner. The temperature of the radiation is about 600 degrees. The surface 2a of the heat radiating surface layer 2 is provided with irregularities, so that the entire surface 2a radiates heat at a uniform temperature.

なお、放射源の形状は、正方形、円形等何れでも良い。Note that the radiation source may have any shape such as square or circular.

[第2実施例] 第4図に示すのは第2の実施例を示す側断面図であり、
この実施例は、前記第1の実施例の変形例であり同一箇
所には同一符号を(=Iして説明を省略する。
[Second Embodiment] FIG. 4 is a side sectional view showing a second embodiment,
This embodiment is a modification of the first embodiment, and the same parts are denoted by the same reference numerals (=I) and the explanation will be omitted.

前記均熱層1の裏面1bは平面状とされ、この裏面1b
には、対酸化性層13を設ける。この対酸化性層13は
、アルミニウム青銅により構成される。アルミニウム青
銅は均熱層1よりも熱伝導率が悪いが、この対酸化性層
13には前記ヒータ4が設けられ、全体の中で一番高温
状態となるため、酸化防止を図ることを主とする目的で
使用する。そして、対酸化性層13には突起部13dが
設けられ、この突起部13dには平行に複数本の溝部1
3eが設けられる。この溝部13eには、絶縁管6で絶
縁されたヒータ線4が連続的に張設される。
The back surface 1b of the heat-uniforming layer 1 is planar, and this back surface 1b
An oxidation-resistant layer 13 is provided. This oxidation-resistant layer 13 is made of aluminum bronze. Aluminum bronze has a lower thermal conductivity than the heat-uniforming layer 1, but this oxidation-resistant layer 13 is provided with the heater 4 and is in the highest temperature state of the whole, so the main purpose is to prevent oxidation. be used for the purpose of The oxidation-resistant layer 13 is provided with a protrusion 13d, and the protrusion 13d has a plurality of grooves 1 in parallel.
3e is provided. A heater wire 4 insulated by an insulating tube 6 is continuously stretched in this groove portion 13e.

これら均熱層lと対酸化性層13との溶着には爆着法を
用いる。
The explosion bonding method is used to weld the heat-uniforming layer 1 and the oxidation-resistant layer 13 together.

上記構成によっても第1実施例と同様に熱放射表面層2
表面2aから均熱面放射を行なうことができる。
Even with the above configuration, the heat radiation surface layer 2 is similar to the first embodiment.
Soaking surface radiation can be performed from the surface 2a.

[第3実施例] 第5図には、本発明の第3実施例の一部裁断側面図を示
した。この実施例では、現在使用されている標準的な黒
体炉の形状である。
[Third Embodiment] FIG. 5 shows a partially cutaway side view of a third embodiment of the present invention. This example is a standard blackbody furnace geometry currently in use.

そして、第1実施例と同様の材質で形成された均熱層3
0は、中心が中空部30gを有する一端部30fが開口
された円筒形状に成型する。均熱層30外部面には、絶
縁管6に挿入されたヒータ4を保持するための突起部3
0d、および溝部30eを設ける。
A heat equalizing layer 3 made of the same material as in the first embodiment
0 is molded into a cylindrical shape with a hollow portion 30g at the center and an open end portion 30f. A protrusion 3 for holding the heater 4 inserted into the insulating tube 6 is provided on the outer surface of the heat equalizing layer 30.
0d, and a groove portion 30e are provided.

そして、内空部30gの壁面30h全面には対応する形
状で形成され、第1実施例同様の材質の熱放射表面層3
5を爆着により固着する。この熱放射表面層35の表面
35aには凹凸を形成しておいてもよい。
The entire wall surface 30h of the inner cavity 30g is formed in a corresponding shape, and a heat radiation surface layer 3 made of the same material as the first embodiment.
5 is fixed by explosive bonding. The surface 35a of the heat radiating surface layer 35 may be provided with projections and depressions.

さらに、均熱層30表面には第1実施例同様、アルミナ
コーティングを施す。
Further, the surface of the heat-uniforming layer 30 is coated with alumina as in the first embodiment.

また、高温度(1000度以上)で使用するものの場合
には、均熱層1部分についても熱放射表面層2と同一の
材質で一体に形成することが望ましい。この場合、溝部
30eにアルミナコーティングを施すのみで良い。
Further, in the case of a device used at high temperatures (1000 degrees or higher), it is desirable that the 1 portion of the heat-uniforming layer is also formed integrally with the heat radiating surface layer 2 from the same material. In this case, it is sufficient to simply apply alumina coating to the groove portion 30e.

[発明の効果] 請求項1によれば、均熱層表面に酸化された熱放射表面
層が設けられており、表面が安定で、かつこの熱放射表
面層全面から均一温度分布の熱を放射することができる
[Effects of the Invention] According to claim 1, an oxidized heat radiating surface layer is provided on the surface of the soaking layer, the surface is stable, and heat is radiated with a uniform temperature distribution from the entire surface of the heat radiating surface layer. can do.

請求項2によれば、高温状態となるヒータ部分に対酸化
性層を設けたので、高温による酸化、および酸化によっ
て生じる問題を防止できる。
According to the second aspect, since the oxidation-resistant layer is provided in the heater portion that is exposed to high temperatures, oxidation due to high temperatures and problems caused by oxidation can be prevented.

【図面の簡単な説明】 第1図(a)は、本発明による放射源の第1の実施例を
示す真平面図、第1図(b)は、同図(a)のA−A線
側断面図、第1図(c)は、同放射源の表平面図、第2
図は、溝部の拡大断面図、第3図は、爆着動作を示す断
面図、第4図は、同放射源の第2実施例を示す側断面図
、第5図は、同放射源の第3実施例を示す一部裁断側面
図である。 1・・・均熱層、ld、13d、35d・・・突起部、
le、13e、35e・・・溝部、2.35・・・熱放
射表面層、4・・・ヒータ、6・・・絶縁管、7・・・
アルミナコーティング、8b・・・爆薬、9・・・保護
管、13・・・対酸化性層。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1(a) is a true plan view showing a first embodiment of a radiation source according to the present invention, and FIG. 1(b) is a line AA in FIG. 1(a). The side sectional view, FIG. 1(c) is the top plan view of the same radiation source, FIG.
The figure is an enlarged sectional view of the groove, FIG. 3 is a sectional view showing the explosive bonding operation, FIG. 4 is a side sectional view showing the second embodiment of the radiation source, and FIG. 5 is a sectional view of the radiation source. FIG. 7 is a partially cutaway side view showing a third embodiment. 1... Soaking layer, ld, 13d, 35d... Protrusion,
le, 13e, 35e... Groove, 2.35... Heat radiation surface layer, 4... Heater, 6... Insulating tube, 7...
Alumina coating, 8b...Explosive, 9...Protection tube, 13...Anti-oxidation layer.

Claims (2)

【特許請求の範囲】[Claims] (1)熱伝導特性の良好な材質により形成され裏面部分
に熱源としてのヒータが設けられる均熱層と、予め酸化
されかつ放射率が高く安定した特性を有する材質により
形成される熱放射表面層と、を爆着により固着して構成
したことを特徴とする放射源。
(1) A heat-uniforming layer made of a material with good thermal conductivity properties and equipped with a heater as a heat source on the back side, and a heat-radiating surface layer made of a pre-oxidized material with high emissivity and stable properties. A radiation source characterized by being configured by fixing and by explosive bonding.
(2)上記均熱層裏面には、ヒータとの接触部分に対酸
化性の特性を有する対酸化性層を設けた請求項1記載の
放射源。
(2) The radiation source according to claim 1, wherein an oxidation-resistant layer having oxidation-resistant properties is provided on the back surface of the heat-uniforming layer at a portion in contact with the heater.
JP2055111A 1990-03-08 1990-03-08 Radiation source Pending JPH03257334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2055111A JPH03257334A (en) 1990-03-08 1990-03-08 Radiation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2055111A JPH03257334A (en) 1990-03-08 1990-03-08 Radiation source

Publications (1)

Publication Number Publication Date
JPH03257334A true JPH03257334A (en) 1991-11-15

Family

ID=12989640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2055111A Pending JPH03257334A (en) 1990-03-08 1990-03-08 Radiation source

Country Status (1)

Country Link
JP (1) JPH03257334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501469A (en) * 2014-11-19 2018-01-18 レイセオン カンパニー Multi-walled carbon nanotube blackbody for small, lightweight on-demand infrared calibration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501469A (en) * 2014-11-19 2018-01-18 レイセオン カンパニー Multi-walled carbon nanotube blackbody for small, lightweight on-demand infrared calibration

Similar Documents

Publication Publication Date Title
US10236103B2 (en) Moisture resistant layered sleeve heater and method of manufacture thereof
JPWO2004049414A1 (en) Electric heater for semiconductor processing equipment
JPH03257334A (en) Radiation source
US2335358A (en) Thermocouple structure
JP2604944B2 (en) Semiconductor wafer heating equipment
JP5592706B2 (en) Sheath heater lead wire connection terminal
JP6454859B2 (en) Immersion heater
JPS6341753Y2 (en)
JP2861699B2 (en) Electric heater
JP2929844B2 (en) Electric heater
KR20040035281A (en) Molding heater for heating semiconductor substrate
JPH051891B2 (en)
JP2001167862A (en) Heater and structure of heater terminal
US2416455A (en) Thermoelectric generating device
JPH0527829Y2 (en)
JPH07146185A (en) Temperature sensor
JPH08273807A (en) Heater built-in type radiation tube
JPH044390Y2 (en)
JPH0224078Y2 (en)
JP2001289715A (en) Temperature-sensing substrate
JPH01233332A (en) Thermocouple
JP3834319B2 (en) Infrared bulb, heating / heating device, and method of manufacturing infrared bulb
JPH0247075B2 (en)
JPH05205855A (en) Electric heater
JPH02147166A (en) Heating element assembling body for electric soldering iron and electric soldering iron