JP2001167862A - Heater and structure of heater terminal - Google Patents

Heater and structure of heater terminal

Info

Publication number
JP2001167862A
JP2001167862A JP35161699A JP35161699A JP2001167862A JP 2001167862 A JP2001167862 A JP 2001167862A JP 35161699 A JP35161699 A JP 35161699A JP 35161699 A JP35161699 A JP 35161699A JP 2001167862 A JP2001167862 A JP 2001167862A
Authority
JP
Japan
Prior art keywords
terminal
heat
heater
terminal portion
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35161699A
Other languages
Japanese (ja)
Other versions
JP4310563B2 (en
Inventor
Hideo Ito
英雄 伊藤
Shigeru Akimoto
茂 秋本
Takeshi Ito
毅 伊藤
Takeyuki Ueno
健之 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP35161699A priority Critical patent/JP4310563B2/en
Publication of JP2001167862A publication Critical patent/JP2001167862A/en
Application granted granted Critical
Publication of JP4310563B2 publication Critical patent/JP4310563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heater for heat treatment furnace and structure of the heater terminal that prevents nonuniformity of temperature distribution in the furnace by reducing heat radiation from the heater terminal. SOLUTION: The heater structure has a terminal 5 and heat radiator 4 for radiating heat by power supplied through the terminal. Cross section of the terminal 5 is smaller than that of the heat radiator 4. For example, the diameter (b) of the terminal 5 is made to be approximately half of the diameter (a) of the terminal 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばセラミック
を焼成する熱処理炉に採用されるヒータの端子部構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a terminal structure of a heater employed in a heat treatment furnace for firing ceramics, for example.

【0002】[0002]

【従来の技術】一般に、セラミック等を焼成する熱処理
炉では、SiCからなる棒状,あるいはスパイラル形状
のヒータが採用されている。図10は、従来の一般的な
SiC製ヒータを示しており、このヒータ50は、炉内
に挿入される発熱部50aと、炉壁51を貫通して炉外
に露出する端子部50bとを有しており、この端子部5
0bを介して発熱部50aに電力を供給することによっ
て該発熱部50aが発熱し、これにより炉内を所定温度
に昇温させる。
2. Description of the Related Art Generally, a heat treatment furnace for firing ceramics or the like employs a rod-shaped or spiral-shaped heater made of SiC. FIG. 10 shows a conventional general SiC heater. This heater 50 includes a heating section 50a inserted into the furnace and a terminal section 50b penetrating through the furnace wall 51 and exposed outside the furnace. The terminal part 5
By supplying electric power to the heat generating part 50a via Ob, the heat generating part 50a generates heat, thereby raising the temperature inside the furnace to a predetermined temperature.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記昇温時
の炉内の温度分布は、ヒータの配置構造,配置方法ある
いは発熱むら等のさまざまな要因によって影響を受け易
く、これらの問題を解決してもなおヒータ自体の構造に
よる影響が残り、炉内温度にばらつきが生じるという問
題がある。
Incidentally, the temperature distribution in the furnace at the time of the above-mentioned temperature rise is easily affected by various factors such as the arrangement structure of the heaters, the arrangement method thereof, and uneven heat generation. However, there still remains a problem that the influence of the structure of the heater itself remains, and the temperature inside the furnace varies.

【0004】このようなヒータ構造による原因には、図
10に示すように、上記ヒータ50の基材中の熱伝導に
よる端子部50bからの放熱、あるいはヒータ50と炉
壁51との僅かな隙間からの熱洩れによる放熱の影響が
考えられる。特に、ヒータ基材がSiCの場合、その熱
伝導率が高いことから、温度の低い端子部に熱がより流
れ易くなり、その結果ヒータ50の発熱部50aで発熱
むらが生じ易くなっている。
As a cause of such a heater structure, as shown in FIG. 10, heat is radiated from the terminal portion 50b due to heat conduction in the base material of the heater 50, or a slight gap between the heater 50 and the furnace wall 51. The effect of heat radiation due to heat leakage from the device is considered. In particular, when the heater base material is SiC, since the thermal conductivity is high, heat flows more easily to the terminal portion having a lower temperature, and as a result, heat generation unevenness is more likely to occur in the heating portion 50 a of the heater 50.

【0005】本発明は、上記従来の状況に鑑みてなされ
たもので、ヒータ端子部からの放熱を低減して炉内温度
分布のばらつきを防止できるヒータ及び該ヒータの端子
部構造を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional situation, and provides a heater capable of reducing heat radiation from a heater terminal portion and preventing variations in a furnace temperature distribution, and a terminal portion structure of the heater. It is an object.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、端子
部と、該端子部を介して供給された電力によって発熱す
る発熱部とを有するヒータの端子部構造において、上記
端子部の断面積を発熱部の断面積より小さく設定したこ
とを特徴としている。
According to a first aspect of the present invention, there is provided a heater terminal portion structure having a terminal portion and a heat generating portion which generates heat by electric power supplied through the terminal portion. It is characterized in that the area is set smaller than the cross-sectional area of the heat generating part.

【0007】請求項2の発明は、請求項1において、上
記端子部の外径が発熱部の外径より小径に設定されてい
ることを特徴としている。
A second aspect of the present invention is characterized in that, in the first aspect, the outer diameter of the terminal portion is set smaller than the outer diameter of the heat generating portion.

【0008】請求項3の発明は、請求項1において、上
記端子部の外径と発熱部の外径とが同一に設定されてお
り、該端子部は中空に発熱部は中実に形成されているこ
とを特徴としている。
According to a third aspect of the present invention, in the first aspect, the outer diameter of the terminal portion and the outer diameter of the heat generating portion are set to be the same, and the terminal portion is hollow and the heat generating portion is formed solid. It is characterized by having.

【0009】請求項4の発明は、炉外に位置するように
配置される端子部と、炉内に位置するように配置され、
上記端子部を介して供給された電力によって発熱する発
熱部とを有する熱処理炉用ヒータの端子部構造におい
て、上記端子部の断面積を発熱部の断面積より小さく設
定したことを特徴としている。
According to a fourth aspect of the present invention, there is provided a terminal portion arranged outside the furnace, and a terminal portion arranged inside the furnace.
In a terminal structure of a heater for a heat treatment furnace having a heat generating portion that generates heat by electric power supplied through the terminal portion, a cross-sectional area of the terminal portion is set smaller than a cross-sectional area of the heat generating portion.

【0010】請求項5の発明は、請求項4において、上
記端子部の外径が発熱部の外径より小径に設定されてい
ることを特徴としている。
A fifth aspect of the present invention is characterized in that, in the fourth aspect, the outer diameter of the terminal portion is set smaller than the outer diameter of the heat generating portion.

【0011】請求項6の発明は、炉外に位置するように
配置される端子部と、炉内に位置するように配置され、
上記端子部を介して供給された電力によって発熱する発
熱部とを有する熱処理炉用ヒータの端子部構造におい
て、上記端子部の外表面を断熱材で覆ったことを特徴と
している。
According to a sixth aspect of the present invention, there is provided a terminal portion arranged outside the furnace, and a terminal portion arranged inside the furnace,
In a terminal structure of a heater for a heat treatment furnace having a heat generating portion that generates heat by electric power supplied through the terminal portion, an outer surface of the terminal portion is covered with a heat insulating material.

【0012】請求項7の発明は、請求項1から請求項6
のいずれかに記載の端子部構造を有することを特徴とす
るヒータである。
The invention according to claim 7 is the invention according to claims 1 to 6.
A heater having the terminal portion structure according to any one of the above.

【0013】本発明にかかるヒータの材質としては、炭
化珪素,二珪化モリブデン,ジルコニア等が挙げられる
が、加工しやすいなどの理由から炭化珪素を用いること
が好ましい。
As the material of the heater according to the present invention, silicon carbide, molybdenum disilicide, zirconia and the like can be mentioned, but silicon carbide is preferably used because it is easy to work.

【0014】[0014]

【発明の作用効果】本発明にかかるヒータ及び該ヒータ
端子部構造によれば、端子部の断面積を発熱部の断面積
より小さくしたので、発熱部からの端子部への熱伝導に
より伝達される熱量が低減され、それだけ端子部からの
放熱が抑制されることとなる。その結果、発熱部での発
熱むらを回避でき、ひいては炉内の温度分布のばらつき
を防止できる。
According to the heater and the heater terminal structure according to the present invention, since the cross-sectional area of the terminal portion is smaller than the cross-sectional area of the heat generating portion, the heat is transmitted by heat conduction from the heat generating portion to the terminal portion. The amount of heat generated is reduced, and the heat radiation from the terminal portion is suppressed accordingly. As a result, it is possible to avoid uneven heat generation in the heat generating portion, and to thereby prevent the temperature distribution in the furnace from fluctuating.

【0015】また上記端子部の断面積を発熱部より小さ
くしたことから、ヒータに熱伝導率の高いSiCを採用
した場合の発熱部から端子部への熱の移動を抑制でき、
端子部の温度低下が防止されることとなり、発熱部の発
熱むらを回避できる。
Further, since the cross-sectional area of the terminal portion is made smaller than that of the heat-generating portion, the transfer of heat from the heat-generating portion to the terminal portion when SiC having a high thermal conductivity is employed for the heater can be suppressed.
The temperature of the terminal portion is prevented from lowering, and the heat generation of the heat generating portion can be prevented.

【0016】ここで、上記端子部の断面積を小さくした
ことによる抵抗値の増加が懸念されるが、端子部の小径
化による発熱量は、発熱部の発熱量に比べて極僅かであ
り、抵抗値増加分の発熱量増加による温度上昇は無視で
きるレベルである。
Here, there is a concern that the resistance value may increase due to the reduction in the cross-sectional area of the terminal portion. However, the amount of heat generated by reducing the diameter of the terminal portion is very small as compared with the amount of heat generated by the heating portion. The rise in temperature due to the increase in the amount of heat generated by the increase in the resistance is negligible.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて説明する。図1及び図2は、請求項1,
2,4,5の発明の一実施形態(第1実施形態)による
熱処理炉用ヒータの端子部構造を説明するための図であ
り、図1はヒータが配設された熱処理炉の概略図、図2
はヒータ端子部の要部の断面図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 and FIG.
FIG. 2 is a diagram for explaining a terminal structure of a heat treatment furnace heater according to an embodiment (first embodiment) of the inventions 2, 4, and 5, and FIG. 1 is a schematic diagram of a heat treatment furnace provided with a heater; FIG.
FIG. 4 is a sectional view of a main part of a heater terminal portion.

【0018】図において、1はバッチ式熱処理炉を示し
ており、これは耐火断熱材からなる炉壁2aにより密閉
された炉本体2を形成し、該炉本体2に、図示していな
いが、セラミック等の被処理材を出し入れする開口を形
成するとともに、該開口にこれを開閉する炉扉を配設し
て構成されている。
In the drawing, reference numeral 1 denotes a batch type heat treatment furnace, which forms a furnace main body 2 which is sealed by a furnace wall 2a made of a refractory heat insulating material. An opening through which a material to be processed such as ceramic is put in and taken out is formed, and a furnace door for opening and closing the opening is provided in the opening.

【0019】上記炉本体2内には天井部2bにより懸吊
支持された複数本のヒータ3が挿入されており、この各
ヒータ3は被処理材を囲むように配置されている。
A plurality of heaters 3 suspended and supported by a ceiling portion 2b are inserted into the furnace body 2, and each of the heaters 3 is arranged so as to surround a material to be processed.

【0020】上記ヒータ3は炭化珪素(SiC)からな
る非金属円柱状発熱部4をU字状に折り曲げて形成され
たものであり、この発熱部4の両端部には円柱状の端子
部5が接続形成されている。
The heater 3 is formed by bending a non-metallic columnar heating section 4 made of silicon carbide (SiC) into a U-shape. Both ends of the heating section 4 have cylindrical terminal sections 5. Is formed.

【0021】上記ヒータ3の発熱部4は炉本体2内に位
置しており、端子部5は天井部2bから炉外に露出して
いる。この端子部5には不図示の電極部を介して電源が
接続されており、端子部5を介して発熱部4に電力を供
給することにより炉内を所定温度に昇温させる。
The heating portion 4 of the heater 3 is located inside the furnace main body 2, and the terminal portion 5 is exposed outside the furnace from the ceiling portion 2b. A power supply is connected to the terminal unit 5 via an electrode unit (not shown), and power is supplied to the heating unit 4 via the terminal unit 5 to raise the temperature of the furnace to a predetermined temperature.

【0022】そして、上記端子部5の断面積は発熱部4
の断面積より小さく設定されており、具体的には発熱部
4の直径a20mmφに対して端子部5の直径bは10
mmφと1/2となっている。上記端子部5は発熱部4
とともに一体成形した後、切削加工を施して形成された
ものである。なお、端子部のみ別途製作し、これを発熱
部に接着剤等により固着してもよい。
The sectional area of the terminal portion 5 is
Is smaller than the cross-sectional area of the terminal portion 5. Specifically, the diameter b of the terminal portion 5 is 10
mmφ and 1/2. The terminal part 5 is a heating part 4
It is formed by performing a cutting process after being integrally molded with the above. Note that only the terminal portion may be separately manufactured, and this may be fixed to the heat generating portion with an adhesive or the like.

【0023】上記天井部2bには発熱部4が挿入可能な
大きさを有する大径孔2cと該大径孔2cに続いて端子
部5が挿通可能な大きさを有する小径孔2dとが同軸を
なすように段付き形成されており、これにより端子部5
の発熱部4との接続部は炉壁2aに埋設されている。
A large-diameter hole 2c large enough to receive the heat-generating part 4 and a small-diameter hole 2d large enough to allow the terminal 5 to be inserted through the large-diameter hole 2c are coaxial with the ceiling 2b. And the terminal portion 5 is formed.
Is connected to the heating part 4 is buried in the furnace wall 2a.

【0024】ここで、上記ヒータ3の基材中を移動する
熱量は、 Q=λ/L(t1−t2)・A λ:ヒータの熱伝導率(W/m・K) L:発熱部と端子部間の距離(m) t1:発熱部の温度(K) t2:端子部の温度(K) A:ヒータ断面積(m2 ) で表されることから、端子部5の直径bを発熱部4の直
径aより小さくすることにより、端子部5内を移動する
熱量を低減できる。
Here, the amount of heat of the heater 3 moving in the base material is as follows: Q = λ / L (t1-t2) · A λ: Heat conductivity of the heater (W / m · K) L: Heat generation portion Distance between terminals (m) t1: Temperature of heating part (K) t2: Temperature of terminal part (K) A: Heater cross-sectional area (m 2 ) By making the diameter smaller than the diameter a of the portion 4, the amount of heat moving in the terminal portion 5 can be reduced.

【0025】図3〜図5は、端子温度計算のモデルを説
明するための図である。これは、熱処理炉を炉外径20
0φ×炉高さ650mm×断熱材厚さ50mmとし、ヒ
ータ発熱部を直径20φ×長さ500mmとし、炉外に
露出するヒータ端子部の炉外長さを50mmとするとと
もに、端子部の直径をそれぞれ20,10,6mmφの
3条件とした。
FIGS. 3 to 5 are diagrams for explaining a model of terminal temperature calculation. This means that the heat treatment furnace is
0 mm x furnace height 650 mm x heat insulation material thickness 50 mm, heater heating part diameter 20 mm x length 500 mm, heater terminal exposed outside the furnace 50 mm outside furnace length, and terminal diameters respectively Three conditions of 20, 10, and 6 mmφ were set.

【0026】上記ヒータ発熱部を1000℃の温度に1
0℃/minの昇温速度でもって昇温し、1000℃に
2hrキープした後の温度を評価した。ヒータ端子部の
自然対流伝達係数は上面部で10.48Kcal/m2
・h・℃、側面部で7.57Kcal/m2 ・h・℃で
ある。また端子温度の計算結果は、端子部20mmφで
上面部Ave=641℃,側面部Ave=670℃、端
子部10mmφで上面部Ave=608℃,側面部Av
e=660℃、端子部6mmφで上面部Ave=590
℃,側面部Ave=673℃である。
The heater heating section is heated to a temperature of 1000 ° C.
The temperature was raised at a rate of 0 ° C./min and kept at 1000 ° C. for 2 hours, and the temperature was evaluated. The natural convection transfer coefficient of the heater terminal is 10.48 Kcal / m 2 at the upper surface.
H · ° C. and 7.57 Kcal / m 2 · h · ° C. on the side surface. The calculation results of the terminal temperature are as follows: upper surface Ave = 641 ° C., side surface Ave = 670 ° C. at terminal 20 mmφ, upper surface Ave = 608 ° C., side Av at terminal 10 mmφ.
e = 660 ° C., terminal part 6 mmφ, upper surface part Ave = 590
° C, side surface Ave = 673 ° C.

【0027】[0027]

【表1】 [Table 1]

【0028】表1は、各端子部の放散熱量の計算結果を
示しており、第1欄aは端子上面部表面積,第2欄bは
端子上面部温度差,第3欄cは端子側面部表面積,第4
欄dは端子側面部温度である。表1からも明らかなよう
に、端子部の直径を発熱部と同じ20mmφとした場合
の放熱量は17.5Kcal/hと高くなっている。こ
れに対して、端子部の直径を10mmφとした場合の放
熱量は8.09Kcal/hであり、従来端子部に比べ
て約半減している。また端子部の直径を6mmφとした
場合の放熱量は4.83Kcal/hであり、従来端子
部に比べて大幅に低減されている。
Table 1 shows the calculation results of the amount of heat dissipated in each terminal portion. The first column a is the surface area of the upper surface of the terminal, the second column b is the temperature difference of the upper surface of the terminal, and the third column c is the side surface of the terminal. Surface area, 4th
Column d shows the terminal side surface temperature. As is clear from Table 1, when the diameter of the terminal portion is set to 20 mmφ, which is the same as that of the heat generating portion, the heat radiation amount is as high as 17.5 Kcal / h. On the other hand, when the diameter of the terminal portion is 10 mmφ, the heat radiation amount is 8.09 Kcal / h, which is about half that of the conventional terminal portion. When the diameter of the terminal portion is 6 mmφ, the heat radiation amount is 4.83 Kcal / h, which is significantly reduced as compared with the conventional terminal portion.

【0029】ここで、本実施形態の端子部を発熱部の約
1/2としたことによって、端子部の抵抗値が増加する
ことが懸念される。しかしながら、端子部の抵抗値増加
により生じる発熱量は、20mmφ端子部が0.02W
(電圧50V,電流20A時)となる。これに対して1
0mmφ端子部の場合は0.08Wとなり、約4倍とな
るものの両者とも発熱部の1KWと比較すると0.1%
程度であり、抵抗値増加分に伴う発熱量の増加による温
度上昇は無視できるレベルである。
Here, there is a concern that the resistance value of the terminal portion may be increased by making the terminal portion of the present embodiment approximately half of the heat generating portion. However, the amount of heat generated by the increase in the resistance value of the terminal portion is 0.02 W for the 20 mmφ terminal portion.
(At a voltage of 50 V and a current of 20 A). 1
In the case of 0mmφ terminal part, it is 0.08W, which is about 4 times, but both are 0.1% compared to 1KW of the heat generating part.
The temperature rise due to the increase in the amount of heat generated by the increase in the resistance is negligible.

【0030】このように本実施形態によれば、端子部5
の直径bを発熱部4の直径aの約1/2としたので、発
熱部4からの端子部5へ伝達される熱量が低減され、そ
れだけ端子部5からの放熱が抑制されることとなる。そ
の結果、発熱部での発熱むらを回避でき、ひいては炉内
の温度分布のばらつきを防止できる。
As described above, according to the present embodiment, the terminal 5
Is set to about 1/2 of the diameter a of the heat generating portion 4, the amount of heat transmitted from the heat generating portion 4 to the terminal portion 5 is reduced, and the heat radiation from the terminal portion 5 is suppressed accordingly. . As a result, it is possible to avoid uneven heat generation in the heat generating portion, and to thereby prevent the temperature distribution in the furnace from fluctuating.

【0031】本実施形態では、端子部5の直径bを発熱
部4の直径aより小径にしたので、熱伝導率の高いSi
Cを採用した場合の発熱部4から端子部5への熱の移動
を抑制でき、端子部5の温度低下が防止されることとな
り、発熱部4の発熱むらを回避できる。
In the present embodiment, since the diameter b of the terminal portion 5 is smaller than the diameter a of the heat generating portion 4, Si having high thermal conductivity is used.
When C is used, the transfer of heat from the heat generating portion 4 to the terminal portion 5 can be suppressed, the temperature of the terminal portion 5 is prevented from lowering, and uneven heat generation of the heat generating portion 4 can be avoided.

【0032】図6は、請求項3の発明の一実施形態(第
2実施形態)によるヒータの端子部構造を説明するため
の図である。
FIG. 6 is a view for explaining a terminal structure of a heater according to an embodiment (second embodiment) of the third aspect of the present invention.

【0033】本実施形態のヒータ10は、発熱部11に
端子部12を接続形成するとともに、該端子部12の外
径と発熱部11の外径とを同一に設定し、上記端子部1
2は中空に発熱部11は中実に形成して構成されてい
る。
In the heater 10 according to the present embodiment, the terminal portion 12 is connected to the heating portion 11 and the outer diameter of the terminal portion 12 and the outer diameter of the heating portion 11 are set to be the same.
2 is hollow and the heat generating portion 11 is formed solid.

【0034】本実施形態によれば、発熱部11と端子部
12との外径は同じでありながら、端子部12を中空に
して発熱部11の断面積より小さくしたので、発熱部1
1から端子部12へ伝達される熱量が低減され、それだ
け端子部12からの放熱が抑制されることとなり、上記
実施形態と同様の効果が得られる。
According to the present embodiment, since the outer diameter of the heat generating portion 11 and the terminal portion 12 are the same, the terminal portion 12 is made hollow and smaller than the cross-sectional area of the heat generating portion 11.
The amount of heat transmitted from the terminal 1 to the terminal portion 12 is reduced, and the heat radiation from the terminal portion 12 is suppressed accordingly, and the same effect as in the above embodiment can be obtained.

【0035】図7は、請求項6の発明の一実施形態(第
3実施形態)によるヒータの端子部構造を説明するため
の図である。
FIG. 7 is a view for explaining a terminal structure of a heater according to an embodiment (third embodiment) of the invention.

【0036】本実施形態のヒータ20は、炉内に位置す
る発熱部21と、炉外に露出する端子部22とを同じ外
径とし、この炉外に露出する端子部22の外表面を断熱
材23により覆って構成されている。
In the heater 20 of this embodiment, the heating portion 21 located in the furnace and the terminal portion 22 exposed outside the furnace have the same outer diameter, and the outer surface of the terminal portion 22 exposed outside the furnace is insulated. It is configured to be covered by a material 23.

【0037】本実施形態では、発熱部21と端子部22
との外径は同一とし、炉外に露出する端子部22の外表
面を断熱材23で覆ったので、端子部22の見掛けの断
面積が略ゼロになり、端子部12からの放熱が抑制され
ることとなり、この場合も上記実施形態と同様の効果が
得られる。
In this embodiment, the heating section 21 and the terminal section 22
And the outer surface of the terminal portion 22 exposed outside the furnace is covered with a heat insulating material 23, so that the apparent cross-sectional area of the terminal portion 22 becomes substantially zero, and the heat radiation from the terminal portion 12 is suppressed. In this case, the same effect as in the above embodiment can be obtained.

【0038】図8は、請求項1,3,4,6の発明の一
実施形態(第4実施形態)によるヒータの端子部構造を
説明するための図である。
FIG. 8 is a view for explaining a terminal structure of a heater according to an embodiment (fourth embodiment) of the first, third, fourth and sixth aspects of the present invention.

【0039】本実施形態のヒータ30は、SiCからな
る一対の発熱部31,31を非接触状態で互いに巻きつ
けてなるスパイラル形状のものであり、各発熱部31の
上端には端子部32が接続形成されている。
The heater 30 of the present embodiment has a spiral shape in which a pair of heat generating portions 31 made of SiC are wound around each other in a non-contact state, and a terminal portion 32 is provided at the upper end of each heat generating portion 31. The connection is formed.

【0040】上記ヒータ30の発熱部31は炉壁2aを
挿通して炉内に位置しており、端子部32は炉壁2aか
ら炉外に露出している。そして、各端子部32の断面積
は発熱部31の断面積より小さく設定されており、かつ
各端子部32の外表面は断熱材33により覆われてい
る。
The heating portion 31 of the heater 30 is located inside the furnace through the furnace wall 2a, and the terminal portion 32 is exposed from the furnace wall 2a to the outside of the furnace. The cross-sectional area of each terminal section 32 is set smaller than the cross-sectional area of the heat generating section 31, and the outer surface of each terminal section 32 is covered with a heat insulating material 33.

【0041】上記断熱材33は端子部32に隙間が生じ
ないように一体成形され、かつヒータ基材との間に隙間
が生じないように炉壁2aの外面に気密に接している。
この断熱材33は熱伝導率0.01〜0.04W/m・
K程度のアルミナ−シリカ系のファイバー質からなるも
のである。なお、ブロック状の断熱材を別途形成し、こ
の断熱材に端子部挿入用に孔を繰り抜いて形成してもよ
い。
The heat insulating material 33 is integrally formed so that no gap is formed in the terminal portion 32, and is in airtight contact with the outer surface of the furnace wall 2a so as not to form a gap between the terminal 32 and the heater base material.
The heat insulating material 33 has a thermal conductivity of 0.01 to 0.04 W / m.
It is made of K-alumina-silica fiber. Note that a block-shaped heat insulating material may be separately formed, and the heat insulating material may be formed by punching out a hole for inserting a terminal portion.

【0042】また上記各端子部32には軸直角方向に延
びる電極部34が接続されており、この各電極部34の
先端部は断熱材33を貫通して外部に露出している。こ
の各電極部34の露出部にはアルミ網線35が巻きつけ
られており、該アルミ網線35に不図示の電源が接続さ
れる。
Each of the terminal portions 32 is connected to an electrode portion 34 extending in a direction perpendicular to the axis. The tip of each of the electrode portions 34 penetrates the heat insulating material 33 and is exposed to the outside. An aluminum wire 35 is wound around the exposed portion of each of the electrode portions 34, and a power supply (not shown) is connected to the aluminum wire 35.

【0043】本実施形態によれば、端子部32の断面積
を発熱部31の断面積より小さくするとともに、各端子
部32の外表面を断熱材33により覆ったので、発熱部
31を伝導して端子部32に移動した熱が、該端子部3
2の表面から外気に伝達されるのをより確実に防止で
き、これにより発熱部31から端子部32への熱伝達量
を大幅に低減できる。その結果、端子部32近傍の発熱
部31の温度低下を防止でき、ひいては炉内の温度分布
のばらつきを防止できる。
According to the present embodiment, the cross-sectional area of the terminal portion 32 is made smaller than the cross-sectional area of the heat generating portion 31, and the outer surface of each terminal portion 32 is covered with the heat insulating material 33. The heat transferred to the terminal portion 32 by the
2 can be more reliably prevented from being transmitted to the outside air, whereby the amount of heat transferred from the heat generating portion 31 to the terminal portion 32 can be significantly reduced. As a result, it is possible to prevent the temperature of the heat generating portion 31 near the terminal portion 32 from lowering, and to prevent the temperature distribution in the furnace from fluctuating.

【0044】ここで、上記端子部32を断熱材33で覆
うことにより、端子部32の異常温度上昇が懸念され
る。本実施形態では、通常ターミナルとして使用するア
ルミ網線35の耐久性について実験を行ったところ、特
に問題が生じることはなかったことから、温度上昇によ
る影響はほとんどないと考えられる。
Here, by covering the terminal portion 32 with the heat insulating material 33, there is a concern that an abnormal temperature rise of the terminal portion 32 will occur. In the present embodiment, an experiment was conducted on the durability of the aluminum mesh wire 35 used as a normal terminal. Since no particular problem occurred, it is considered that the temperature rise has almost no influence.

【0045】図9は、本実施形態の効果を確認するため
に行った実験結果を示す図である。この実験では、本実
施形態のスパイラルヒータ30により炉内を昇温し、炉
内に載置した被熱処理材37の上端部と下端部の温
度差を測定して行った(図9(b)参照)。また比較す
るために端子部38を炉外に露出した従来のスパイラル
ヒータ39により炉内を昇温し、上記同様に被熱処理材
37の上端部と下端部の温度差を測定した(図9
(a)参照)。
FIG. 9 is a diagram showing the results of an experiment performed to confirm the effects of the present embodiment. In this experiment, the inside of the furnace was heated by the spiral heater 30 of the present embodiment, and the temperature difference between the upper end and the lower end of the heat-treated material 37 placed in the furnace was measured (FIG. 9B). reference). For comparison, the inside of the furnace was heated by a conventional spiral heater 39 in which the terminal portion 38 was exposed outside the furnace, and the temperature difference between the upper end and the lower end of the heat-treated material 37 was measured in the same manner as described above (FIG. 9).
(A)).

【0046】従来ヒータ39の場合は、被熱処理材37
の上端部と下端部との温度差は約20℃と、上端部
側の温度が低くなっている。これは端子部38からの放
熱の影響により該端子部38付近の温度が低下し、この
ため発熱部40に温度分布のばらつきが生じ、このため
炉内において温度勾配が生じるからである。
In the case of the conventional heater 39, the material to be heat-treated 37
The temperature difference between the upper end and the lower end is about 20 ° C., and the temperature on the upper end is low. This is because the temperature in the vicinity of the terminal portion 38 decreases due to the influence of heat radiation from the terminal portion 38, and thus the temperature distribution of the heat generating portion 40 varies, thereby causing a temperature gradient in the furnace.

【0047】これに対して、本実施形態のヒータ30の
場合には、端子部33からの放熱が低減されることか
ら、被熱処理材37に生じる温度差は約10℃以下とな
っており、温度差が半減していることが分かる。このよ
うに端子部の断面積を発熱部より小さくするとともに端
子部を断熱材で覆うことにより、炉内の温度勾配が小さ
くなり、焼成時の被熱処理材の温度差を小さくすること
ができ、ひいては焼結差の小さい高品質の焼結体を得る
ことができる。
On the other hand, in the case of the heater 30 of the present embodiment, since the heat radiation from the terminal portion 33 is reduced, the temperature difference generated in the heat-treated material 37 is about 10 ° C. or less. It can be seen that the temperature difference has been reduced by half. In this way, by reducing the cross-sectional area of the terminal portion to be smaller than the heat generating portion and covering the terminal portion with a heat insulating material, the temperature gradient in the furnace is reduced, and the temperature difference of the material to be heat-treated at the time of firing can be reduced. As a result, a high-quality sintered body with a small difference in sintering can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態によるヒータ及び該ヒー
タの端子部構造を説明するための熱処理炉の概略図であ
る。
FIG. 1 is a schematic view of a heat treatment furnace for explaining a heater and a terminal structure of the heater according to a first embodiment of the present invention.

【図2】上記ヒータの端子部の断面図である。FIG. 2 is a sectional view of a terminal portion of the heater.

【図3】上記端子部の放熱量の計算モデルを説明するた
めの図である。
FIG. 3 is a diagram for explaining a calculation model of a heat radiation amount of the terminal unit.

【図4】上記計算モデルの図である。FIG. 4 is a diagram of the calculation model.

【図5】上記計算モデルの図である。FIG. 5 is a diagram of the calculation model.

【図6】本発明の第2実施形態による端子部構造を説明
するための図である。
FIG. 6 is a view for explaining a terminal portion structure according to a second embodiment of the present invention.

【図7】本発明の第3実施形態による端子部構造を説明
するための図である。
FIG. 7 is a diagram illustrating a terminal structure according to a third embodiment of the present invention.

【図8】本発明の第4実施形態による端子部構造を説明
するための図である。
FIG. 8 is a diagram illustrating a terminal structure according to a fourth embodiment of the present invention.

【図9】上記実施形態の効果を確認するために行った実
験結果を示す図である。
FIG. 9 is a diagram showing the results of an experiment performed to confirm the effects of the embodiment.

【図10】従来の端子部構造を示す断面図である。FIG. 10 is a cross-sectional view showing a conventional terminal portion structure.

【符号の説明】[Explanation of symbols]

3,10,20,30 ヒータ 4,11,21,31 発熱部 5,12,22,32 端子部 23,33 断熱材 a 発熱部の直径 b 端子部の直径 3,10,20,30 Heater 4,11,21,31 Heating part 5,12,22,32 Terminal part 23,33 Heat insulation material a Heating part diameter b Terminal part diameter

フロントページの続き (72)発明者 伊藤 毅 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内 (72)発明者 上野 健之 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内 Fターム(参考) 3K092 PP09 QA01 QB06 QB09 QB11 QB24 QC03 QC18 QC42 QC46 RA05 SS02 TT09 VV22 4K063 AA05 BA04 CA01 CA03 FA07 FA18 FA25 Continuing from the front page (72) Inventor Takeshi Ito 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto Inside Murata Manufacturing Co., Ltd. (72) Inventor Takeyuki Ueno 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd. F term (reference) 3K092 PP09 QA01 QB06 QB09 QB11 QB24 QC03 QC18 QC42 QC46 RA05 SS02 TT09 VV22 4K063 AA05 BA04 CA01 CA03 FA07 FA18 FA25

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 端子部と、該端子部を介して供給された
電力によって発熱する発熱部とを有するヒータの端子部
構造において、上記端子部の断面積を発熱部の断面積よ
り小さく設定したことを特徴とするヒータの端子部構
造。
In a terminal structure of a heater having a terminal portion and a heat generating portion that generates heat by electric power supplied through the terminal portion, a cross-sectional area of the terminal portion is set smaller than a cross-sectional area of the heat generating portion. A terminal structure of a heater, characterized in that:
【請求項2】 請求項1において、上記端子部の外径が
発熱部の外径より小径に設定されていることを特徴とす
るヒータの端子部構造。
2. The heater terminal structure according to claim 1, wherein the outer diameter of the terminal portion is set smaller than the outer diameter of the heat generating portion.
【請求項3】 請求項1において、上記端子部の外径と
発熱部の外径とが同一に設定されており、該端子部は中
空に発熱部は中実に形成されていることを特徴とするヒ
ータの端子部構造。
3. The terminal according to claim 1, wherein the outer diameter of the terminal portion and the outer diameter of the heat generating portion are set to be the same, and the terminal portion is hollow and the heat generating portion is formed solid. Terminal structure of the heater.
【請求項4】 炉外に位置するように配置される端子部
と、炉内に位置するように配置され、上記端子部を介し
て供給された電力によって発熱する発熱部とを有する熱
処理炉用ヒータの端子部構造において、上記端子部の断
面積を発熱部の断面積より小さく設定したことを特徴と
する熱処理炉用ヒータの端子部構造。
4. A heat treatment furnace having a terminal portion arranged outside the furnace and a heat generating portion arranged inside the furnace and generating heat by electric power supplied through the terminal portion. A terminal structure of a heater for a heat treatment furnace, wherein a cross-sectional area of the terminal is set to be smaller than a cross-sectional area of a heat generating part.
【請求項5】 請求項4において、上記端子部の外径が
発熱部の外径より小径に設定されていることを特徴とす
る熱処理炉用ヒータの端子部構造。
5. The terminal structure of a heat treatment furnace heater according to claim 4, wherein the outer diameter of the terminal portion is set smaller than the outer diameter of the heat generating portion.
【請求項6】 炉外に位置するように配置される端子部
と、炉内に位置するように配置され、上記端子部を介し
て供給された電力によって発熱する発熱部とを有する熱
処理炉用ヒータの端子部構造において、上記端子部の外
表面を断熱材で覆ったことを特徴とする熱処理炉用ヒー
タの端子部構造。
6. A heat treatment furnace having a terminal portion arranged outside the furnace and a heat generating portion arranged inside the furnace and generating heat by electric power supplied through the terminal portion. A terminal structure of a heater for a heat treatment furnace, wherein an outer surface of the terminal is covered with a heat insulating material.
【請求項7】 請求項1から請求項6のいずれかに記載
の端子部構造を有することを特徴とするヒータ。
7. A heater having the terminal structure according to claim 1. Description:
JP35161699A 1999-12-10 1999-12-10 Heater and terminal structure of heater Expired - Lifetime JP4310563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35161699A JP4310563B2 (en) 1999-12-10 1999-12-10 Heater and terminal structure of heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35161699A JP4310563B2 (en) 1999-12-10 1999-12-10 Heater and terminal structure of heater

Publications (2)

Publication Number Publication Date
JP2001167862A true JP2001167862A (en) 2001-06-22
JP4310563B2 JP4310563B2 (en) 2009-08-12

Family

ID=18418475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35161699A Expired - Lifetime JP4310563B2 (en) 1999-12-10 1999-12-10 Heater and terminal structure of heater

Country Status (1)

Country Link
JP (1) JP4310563B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302887A (en) * 2005-04-20 2006-11-02 Ngk Insulators Ltd Power supply member and heating device
JP2007003129A (en) * 2005-06-24 2007-01-11 Kanto Yakin Kogyo Co Ltd Carbon heater for heat treatment furnace
US8395096B2 (en) 2009-02-05 2013-03-12 Sandvik Thermal Process, Inc. Precision strip heating element
JP2017119593A (en) * 2015-12-28 2017-07-06 日本特殊陶業株式会社 Ceramic member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065525A1 (en) * 2019-10-03 2021-04-08 株式会社Ihi Gear pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302887A (en) * 2005-04-20 2006-11-02 Ngk Insulators Ltd Power supply member and heating device
JP2007003129A (en) * 2005-06-24 2007-01-11 Kanto Yakin Kogyo Co Ltd Carbon heater for heat treatment furnace
US8395096B2 (en) 2009-02-05 2013-03-12 Sandvik Thermal Process, Inc. Precision strip heating element
JP2017119593A (en) * 2015-12-28 2017-07-06 日本特殊陶業株式会社 Ceramic member
US10880955B2 (en) 2015-12-28 2020-12-29 Ngk Spark Plug Co., Ltd. Ceramic member

Also Published As

Publication number Publication date
JP4310563B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP4026761B2 (en) Ceramic heater
JP6674800B2 (en) Substrate support device
JP5766348B2 (en) Tubular heater
KR101078626B1 (en) An electric heating element that includes a radiant tube
TW200527580A (en) Heating device
US11574822B2 (en) Wafer support table with ceramic substrate including core and surface layer
JP2004171834A (en) Heating device
JP2009009795A (en) Ceramic heater
JP2013037985A (en) Immersion heater
JP2001167862A (en) Heater and structure of heater terminal
JP2010061850A (en) Heat treatment device
JP3014901B2 (en) Heat treatment equipment
US20050173411A1 (en) Heating resistances and heaters
US11979950B2 (en) Heater for contaminant remediation
JP2604944B2 (en) Semiconductor wafer heating equipment
JP4539895B2 (en) Mounting method of heater mainly composed of MoSi2
KR100650988B1 (en) Low temperature furnace comprising thermal conductive barrier within chamber
TW201512111A (en) Method and apparatus for glass sheet manufacturing including an induction heated enclosure
CN211481494U (en) Ceramic fiber heating device
JP2988810B2 (en) Heat treatment equipment
JP5686467B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
US20210251048A1 (en) Air heater
JP6903525B2 (en) Ceramic member
KR20160078362A (en) Heating apparatus and heating furnace
JP3768093B2 (en) MoSi2 module heater with excellent heat uniformity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4310563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

EXPY Cancellation because of completion of term