JPH03253543A - Cold rolled steel sheet or galvanized steel sheet for deep drawing having excellent secondary processing brittleness resistance or baking hardenability - Google Patents

Cold rolled steel sheet or galvanized steel sheet for deep drawing having excellent secondary processing brittleness resistance or baking hardenability

Info

Publication number
JPH03253543A
JPH03253543A JP2051273A JP5127390A JPH03253543A JP H03253543 A JPH03253543 A JP H03253543A JP 2051273 A JP2051273 A JP 2051273A JP 5127390 A JP5127390 A JP 5127390A JP H03253543 A JPH03253543 A JP H03253543A
Authority
JP
Japan
Prior art keywords
steel sheet
steel
amount
less
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2051273A
Other languages
Japanese (ja)
Other versions
JPH0530900B2 (en
Inventor
Shunichi Hashimoto
俊一 橋本
Mitsuru Kitamura
充 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2051273A priority Critical patent/JPH03253543A/en
Priority to CA002037316A priority patent/CA2037316C/en
Priority to US07/663,310 priority patent/US5133815A/en
Priority to DE69104747T priority patent/DE69104747T2/en
Priority to EP91301767A priority patent/EP0444967B1/en
Publication of JPH03253543A publication Critical patent/JPH03253543A/en
Publication of JPH0530900B2 publication Critical patent/JPH0530900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To provide the material having excellent secondary processing brittleness resistance or baking hardenability with good productivity without injuring the requirement as cold rolled steel sheets for deep drawing or for galvanizing by adjusting the chemical components of a extra low-carbon steel and regulating the content of solid soln. C and the distribution thereof in the thickness direction of the steel sheet. CONSTITUTION:This steel sheet consists of the steel contg., by weight %, <=0.01 C, <=0.2 Si, 0.05 to 1.0 Mn, <=0.10 P, <=0.02 S, 0.01 to 0.08 sol Al, and <=0.005 N, further, contains >=1 kinds of Ti and Nb in the range where the relation between the effective ratio of Ti (Ti*) defined by formula I and the ratio of C as the ratio of Nb satisfies formula II and consisting of the balance Fe. The steel sheet has the concn. gradient at which the ratio of the solid soln. C decrease in the thickness direction from the surface toward the center when subjected to a carburization treatment. The max. value of the concn. of the solid soln. C in the part of the thickness ratio at 1/10 of the surface layer is specified to 15ppm and the content of the solid soln. C over the entire part of the thickness to 2 to 10ppm.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は耐2次加工脆性又は焼付は硬化性に優れた深絞
り用冷延鋼板又は溶融亜鉛メッキ冷延鋼板に関する。 (従来の技術及び解決しようとする課題)近年、自動車
部材や電気機器外板に使用される冷延鋼板には高いプレ
ス成形性及び耐蝕性が要求されている。 このような要求を満たすことを意図した冷延鋼板の製造
方法としては、極低炭素鋼にTi、Nbなとの炭窒化物
形成元素を単独又は複合添加して鋼中のC,Nを固定す
ることにより深絞り性に有利な(111)面方位集合組
織を発達させ、更に亜鉛メッキを施す方法が提案されて
いる。 しかし、一方では、Ti、Nbなどの炭窒化物形成元素
により鋼中のC,Nを充分固定した極低炭素鋼では、プ
レス成形後の2次加工において脆性破断による割れが発
生する問題がある。更に、P添加鋼では粒界にPが偏析
し、粒界の脆化を助長するという問題がある。これは、
鋼中の固溶Cが固定され、フェライト粒界へのCの偏析
がなくなり、粒界が脆化するためである。特に溶融亜鉛
メッキ鋼板では、この脆弱化した粒界に溶融亜鉛が侵入
し易く、更に脆化を助長する。 この粒界脆化を解決する手段として、従来、予め鋼中の
C,Nが残存するようにTiやNbの添加量を制御して
溶製することが試みられていた。しかし、この方法では
、例え固溶C,Nが残存する成分鋼が溶製できたとして
も、この固溶C,Nは本質的に鋼のr値や延性を劣化さ
せるものであるので、プレス成形性の大幅な低下を来た
さざるを得なかった。すなわち、本質的にプレス成形性
と耐2次加工脆性は両立し得ないものであった。また一
方、このような微量C,Nを溶製段階で残存させること
は、技術上成り立つものでなかった。 この点、従来より、以下のような提案がなされているが
、プレス成形性と耐2次加工脆性を共に優れたものとす
ることは困難である。 例えば、深絞り用鋼板の耐2次加工脆性を改善する目的
で、Ti、Nbを添加して鋼中のCを固定し、冷延後オ
ープンコイル焼鈍時に浸炭を行い、鋼板表面に浸炭層を
形成する方法(特開昭63−38556号)が提案され
ている。しかし、この方法の場合、長時間に及ぶバッチ
焼鈍の際に浸炭を実施するため、鋼板の表層部に高濃度
の浸炭層(浸炭層の平均C量:0.02〜0.10%)
が形成され、また表層部と中心層でフェライト粒度に差
が生じている。更に、こうしたバッチ焼鈍タイプでは当
然ながら生産性が低いと共に圧延方向、板幅方向の材質
が不均一になり易い不利を生じる。 また、化成処理性を改善する目的で極く表面層にのみ極
めて微量の固溶C,Nを与える方法(特公平1−423
31号)が提案されているが、耐2次加工脆性を考慮し
たものでなく、したがって。 この方法では耐2次加工脆性を改善するに必要な浸炭を
行なうことは不可能である。 また、同様に、Ti、Nbを添加して深絞り用鋼板を製
造する方法として、冷延後再結晶焼鈍を行った後、更に
浸炭処理を施す方法(特開平1−96330号)もある
が、主に多量の炭化物、窒化物の析出による強度の上昇
を狙ったものであって。 耐2次加工脆性に対する配慮がなく、また焼鈍後にバッ
チにて長時間浸炭、浸炭処理を行なうため、浸炭量、浸
窒量が過剰且つ不均一となり易く、しかも生産性が低く
、工程も煩雑になるという欠点がある。 また、上述の耐2次加工脆性の改善の問題のほか、最近
では、耐テント性を向上させるために、塗装焼付は後に
鋼板の降伏応力が上昇する特性、いわゆる焼付は硬化性
の要求が高まっている。 この要求に対して、Cに対するTi添加量を少な目にし
て固溶Cを残存させる方法(特公昭61−2732号)
が提案されている。しかし、この方法では、例え固溶C
,Nを残存する成分鋼が溶製できたとしても、この固溶
C,Nは本質的に鋼のr値を劣化させるものであるので
、プレス成形性の大幅な低下を来たさざるを得なかった
。すなわち、本質的にプレス成形性と焼付は硬化性は両
立し得ないものであった。 また、前述の焼鈍過程での浸炭処理を利用した方法(特
開昭63−38556号)や、化成処理性を改善する方
法(特公平1−42331号)方法は。 いずれも焼付は硬化性を考慮したものではなく、焼付は
硬化性の向上は不可能である。 更にまた、前述の如く、Ti、Nbなどの炭窒化物形成
元素により鋼中のC,Nを充分固定した極低炭素鋼では
、焼付は硬化性を得ることはできない。 また、固溶Cを残存させる方法は、目標値より多すぎる
と常温時効を劣化させ、少なすぎると焼付は硬化性を確
保できない。製鋼工程において最適量のCの残存を制御
することは極めて困難である。 本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、極低炭素T1又はNb添加鋼を用い
て、深絞り性と耐2次加工脆性又は焼付は硬化性が共に
優れた冷延鋼板又は溶融亜鉛メッキ冷延鋼板を生産性よ
く製造する方法を提供することを目的とするものである
。 (課題を解決するための手段) 本発明者は、前記課題を解決するため、化学成分、並び
に固溶Cの量及び分布状況などについて鋭意研究を重ね
た結果、ここに本発明をなしたものである。 すなわち、本発明は、C:0.01%以下、Si:0.
2%以下、Mn:0.05〜1.0%、P:0.10%
以下、S:0.02%以下、sol、Al1:0.01
〜0.08%及びN:O,005%以下を含有し、更に
Ti及びNbの1種又は2種を、次式(1)で定義され
る有効Ti量(以下、Ti本という)及びNb量とC量
との関係が次式(2)を満足する範囲で含有し、 Ti*=tot、a Q Ti −((48/32) 
X S + (48/14) X N)・・・(1) 1 ≦(Ti本/48+Nb/93)/(C/12)≦
4.5・・・(2)必要に応じて更にB:O,003%
以下を含有し、残部がFe及び不可避的不純物よりなる
組成を有する鋼であって、浸炭処理により表面から中心
部にかけて板厚方向に固溶C量が低下するような濃度勾
配を有し、表層1/10の板厚比の部分の固溶C濃度の
最大量を15ppmとし、鋼板全体の固溶C量を2〜1
0pp−とすることを特徴とする耐2次加工脆性に優れ
た深絞り用冷延鋼板又は溶融亜鉛メッキ冷延鋼板を要旨
とするものである。 また、他の本発明は、前記組成を有する鋼であって、浸
炭処理により表面から中心部にかけて板厚方向に固溶C
量が低下するような濃度勾配を有し、表層1/10の板
厚比の部分の固溶C濃度の最大量を60ppmとして、
鋼板全体の固溶C量を5〜30ρρ−とすることを特徴
とする焼付は硬化性に優れた深絞り用冷延鋼板又は溶融
亜鉛メッキ冷延鋼板を要旨とするものである。 以下に本発明を更に詳細に説明する。 (作用) まず、本発明における鋼の化学成分限定理由について説
明する。 C: Cは、その含有量が増大するにつれてCを固定するTi
、Nbの添加量が増加し、製造費用の増加につながり、
更にTiC及びNbC析出量が増大し、粒成長を阻害し
てr値を劣化させるので、0.0工%以下とする必要が
ある。なお、下限値は特に制限しないが、製鋼技術上の
観点から製鋼段階におけるC含有量の下限値0.000
3%とするのが実際的である。したがって、C含有量は
0.01%以下とし、0.0003〜0.01%が望ま
しい。 更には、後述するように、優れた耐2次加工脆性を得る
ためには、表面から中心部にかけて板厚方向に固溶C量
が低下するような濃度勾配を有し、表層l/10の板厚
比の部分の固溶C濃度の最大量を15Pp■とし、鋼板
全体の固溶C量を2〜10 ppmとする必要がある。 但し、優れた焼付は硬化性を得るためには、上記濃度勾
配を有すると共に、表層1/10の板厚比の部分の固溶
C濃度の最大量は60pp+iまで許容でき、鋼板全体
の固溶C量を5〜30ppmとする。なお、このような
固溶Cの存在状態を与えるための手段は問わないが、メ
ッキ処理前の焼鈍過程においてCポテンシャルを有する
雰囲気から与えることが生産性の観点から好ましい。 Si: Siは溶鋼の脱酸を主目的に添加されるが、添加量方多
すぎると表面性状や亜鉛密着性、化成処理或いは塗装性
を劣化させるので、その含有量は0.2%以下とする。 Mn: Mnは熱間脆性の防止を主目的に添加されるが、0.0
5%より少ないとその効果が得られず、添加量が多すぎ
ると延性を劣化させるので、その含有量は0.05〜1
.0%の範囲とする。 P: Pはr値の低下を伴うことなく調速度を高める効果を有
するが1粒界に偏析し、2次加工脆性を起こし易くする
ので、その含有量は0.10%以下に抑制する。 S: SはT1と結合してTiSを形成するので、その含有量
が増大するとC,Nを固定するのに必要なTi量が増大
し、またMnS系伸長した介在物が増加して局部延性を
劣化させるので、その含有量は0.02%以下に抑制す
る。 sol.Al: AQは溶鋼の脱酸を目的に添加されるが、その含有量が
sol、Aflで0.01%より少ないと、その目的が
遠戚されず、一方、0.08%を超えると脱酸効果は飽
和すると共にAQ203介在物が増加して加工成形性を
劣化させる。したがって、その含有量は、sol.Al
で0.01〜0.08%の範囲とする。 N: NはTiと結合してTiNを形成するので、その含有量
が増大するとCを固定するのに必要なTi量が増大する
。またTiN析出量が増加して粒成長が阻害され、r値
が劣化する。したがって、その含有量は、少ないほど好
ましく、0.005%以下に抑制する。 Ti、 Nb: Ti、NbはC,Nを固定することによってr値を高め
る作用がある。よって1本発明の目的に対してはTi本
量、Nb量とC量との関係が次式(2)%式%(2) を満足する範囲で含有させる必要がある。なお、Tiは
前述の如<S、Nと結合してTiS、TiNを形成する
ので、次式(1)に従い有効Ti量(Ti本量)に換算
する。 ’rim=totaQ ’ri−((48/32)X 
 S +(48/14)X N)・・・(1) (2)式の値が1より小さいとC,Nを充分に固定する
ことができずにr値を劣化させる。また4゜5を超える
とr値を高める作用が飽和すると共に、固溶Ti、Nb
が後工程での雰囲気焼鈍時に侵入したCをすぐに固定し
てしまい、Cの粒界偏析及び固溶Cとしての存在を阻止
するので好ましくない。 B: Bは耐2次加工脆性に対して有効な元素であり、必要に
応じて添加することができる。焼付は硬化性の向上を意
図する場合にも耐2次加工脆性を補充するために添加し
てもよい。しかし、0.003%を超えるとその効果は
飽和し、r値を低下させるので、経済性をも考慮し、そ
の含有量は0゜003%以下とする。なお、O,0OO
1%以下では上記効果が少ないので、0.0001〜0
.0O3%の範囲が望ましい。 次に、本発明に係る鋼板の製造方法は、特に制限される
ものではないが、以下にその一例について説明する。 上記成分組成の鋼について、通常の製造工程、すなわち
、1000〜1250℃に加熱した後、オーステナイト
域で熱間圧延を行う。熱間圧延後の巻取温度は鋼中の固
溶C,Nを炭窒化物として固定するために500〜80
0℃の範囲で行うことが好ましい。 冷間圧延においては、r値に有利な(111)面方位集
合組織を発達させるために、60〜90%のトータル圧
延率で行うことが好ましい。この冷間圧延後、浸炭雰囲
気ガス中で再結晶温度以上の範囲で連続焼鈍を行い、r
値に有利な(111)面方位集合組織を形成させる。 既に知られているように、r値は主として鋼の(111
)面方位集合組織に依存しており、再結晶焼鈍前に巻取
処理によって固溶C及び固溶Nを完全に除くのは、上記
の集合組織を得るためである。 しかし、−旦、再結晶が完了し集合組織が形成されれば
、その後に侵入するCやNはr値には悪影響を与えない
。焼鈍雰囲気はカーボンポテンシャルを制御した浸炭ガ
スとする。これにより、浸炭雰囲気中より侵入したCの
うち、TiC,NbCとして固定されなかったCが粒界
に偏析して耐2次加工脆性を改善し、所定量の固溶Cは
耐2次加工脆性や焼付は硬化性を改善する。 本発明では過時効処理を必要としないが、メッキ浴近傍
温度で過時効処理を行なってもよい。亜鉛メッキ冷延鋼
板を得る場合には、引き続いて溶融亜鉛メッキ浴に侵入
させ、メッキを行う。更に必要に応じて合金化処理を行
ってもよい。 勿論、焼鈍原板の製造方法として、フェライト域熱延、
ホットチャージローリング、薄スラブを用いての製造な
ど、如何なる手段を用いても良いことは云うまでもない
。 次に、固溶C量のコントロールと、耐2次加工脆性或い
は焼付は硬化性の関係について、以下に説明する。 2次加工脆性は、極低炭素Ti添加鋼等においては、粒
界の純度が向上し、粒界におけるFe−Fe結合力が低
下することにより生ずる。更に溶融亜鉛メッキ処理にお
いてZnが粒界に拡散浸透し、更にFe−Fe結合力を
低下する。したがって耐2次加工脆性を改善するために
は両者の要因を防止できれば達成される。前者の対策は
、Cを粒界に偏析させることであり、後者の対策は、同
様にCを粒界に偏析させることで達成される。特に後者
についてZnの浸透深さが結晶粒数個分、すなわち50
μ■程度であることから、その程度の板厚分だけ集中的
に浸炭させることが効果的である。よって、表面から中
心部にかけて板厚方向に固溶C量が低下するような濃度
勾配を有し、表層1/10の板厚比の部分の固溶C濃度
の最大量を15pp園とすることが最も優れた耐2次脆
性を発揮することとなる。また、深絞り成形後の脆性破
壊は表層部を起点することから1表層部の粒界強度が固
溶Cの粒界偏析により強化されておれば。 板厚中心部での粒界偏析Cが少なくとも、或いは0であ
っても、その顕著な効果が得られることも確認した。な
お、表層部の固溶C量が15ppmを超えると、鋼板全
体の平均固溶C量が10ppmを超えてしまい、その場
合には時効による材質劣化、強度の上昇、延性の低下等
の問題が生ずるため、好ましくない。鋼板全体の平均固
溶C量が2 ppm未満では、固溶Cが不足し、耐2次
加工脆性を得ることができない。 一方、焼付は硬化性は、通常、極低炭素Ti添加鋼等に
おいては固溶Cが残存しないため、付与することは不可
能であるが、再結晶が完了し集合組織が形成された後で
固溶Cの導入が図れるならば、高いr値を維持しつつ焼
付は硬化性を付与させることができる。更に表面から中
心部にかけて板厚方向に固溶C量が低下するような濃度
勾配を有し、表層1/10の板厚比の部分の固溶C濃度
の最大量を60ppmとすることにより、表層部の硬化
が最も促進され、疲労強度の向上、石などの衝突による
表面損傷の防止、耐プントレジスタンス性の向上など、
自動車外板に求められる特性にとって優れた効果を発揮
することになる。表層部の固溶C量が60pp−を超え
ると、鋼板全体の固溶C量を30ppm+以下とするこ
とが不可能となり、その場合には時効による材質劣化の
問題が生ずるため好ましくない。鋼板全体の固溶C量が
5 ppm未満では、固溶Cが不足し、焼付は硬化性を
付与することができない。 (実施例) 次に本発明の実施例を示す。 失嵐負上 第1表に示す化学成分を有する極低炭素鋼を1150℃
で30分間加熱して溶体化処理を行った後、仕上温度8
90℃で熱間圧延を終了し、その後670℃で巻取処理
を行い、酸洗後、圧下率75%で冷間圧延を行い、浸炭
雰囲気又は不活性ガス中において連続焼鈍により780
℃で40秒の再結晶焼鈍を行った。なお、浸炭ガスは0
.2〜0.8%CO+4%H2+N、を用い、不活性ガ
スは4%H,+ N、を用いた。 その後、450℃で溶融亜鉛メッキ処理を行い、0 、
8 %のスキンパスを施した。 得られた溶融亜鉛メッキ冷延鋼板の機械的性質と固溶C
量(全板厚方向平均値)及び2次加工脆性限界温度を第
2表に示す。 なお、脆性試験は、総絞り比2.7でカップ成形して得
られたカップを35■■高さにトリムした後、各試験温
度の冷媒中にカップを置いて、頂角40″′の円錐ポン
チに押し込んで脆性破壌の発生しない限界温度を測定し
、これを2次加工脆性限界温度とした。 第2表より明らかなように、本発明鋼は、従来鋼に比べ
、探絞り用溶融亜鉛メッキ冷延鋼板としての要求を損ね
ることなく、耐2次加工脆性が改善されている。 因みに、本発明鋼恥3について、固溶C量の板厚方向の
分布を調べた結果、第1図に示すように浸炭処理した場
合に表面から中心部にかけて板厚方向に固溶C量が低下
する濃度分布を示していた。 しかも、ガスBによる浸炭処理の場合1表層1/10の
板厚比の部分の固溶C濃度が15pp−以下であり、第
2図に示すように耐2次加工脆性及びr値が共に改善さ
れていることが確認された。 一方、第2表に示すように、本発明範囲の化学成分を有
していない比較鋼や、本発明範囲内の化学成分を有して
いても固溶C量に関する条件が本発明範囲外の比較鋼は
、r値又は耐2次加工脆性のいずれかが劣っている。
(Industrial Application Field) The present invention relates to a cold-rolled steel sheet for deep drawing or a hot-dip galvanized cold-rolled steel sheet that has excellent resistance to secondary processing brittleness or seizure hardening. (Prior Art and Problems to be Solved) In recent years, high press formability and corrosion resistance have been required of cold-rolled steel sheets used for automobile parts and outer panels of electrical equipment. A manufacturing method for cold-rolled steel sheets intended to meet these requirements involves adding carbonitride-forming elements such as Ti and Nb, either singly or in combination, to ultra-low carbon steel to fix C and N in the steel. A method has been proposed in which a (111) plane orientation texture, which is advantageous for deep drawability, is developed by applying zinc plating. However, on the other hand, ultra-low carbon steels in which C and N in the steel are sufficiently fixed by carbonitride-forming elements such as Ti and Nb have the problem of cracking due to brittle fracture during secondary processing after press forming. . Furthermore, P-added steel has the problem that P segregates at grain boundaries, promoting embrittlement of the grain boundaries. this is,
This is because the solid solution C in the steel is fixed, the segregation of C to the ferrite grain boundaries disappears, and the grain boundaries become brittle. Particularly in hot-dip galvanized steel sheets, molten zinc tends to penetrate into these weakened grain boundaries, further promoting embrittlement. As a means of solving this grain boundary embrittlement, conventional attempts have been made to control the amounts of Ti and Nb added so that C and N remain in the steel. However, with this method, even if a component steel in which solid solute C and N remain can be produced, since the solid solute C and N essentially deteriorate the r value and ductility of the steel, it is difficult to press the steel. This inevitably resulted in a significant decrease in moldability. In other words, press formability and resistance to secondary work brittleness were essentially incompatible. On the other hand, it has not been technically viable to allow such trace amounts of C and N to remain during the melting process. In this regard, the following proposals have been made in the past, but it is difficult to achieve both excellent press formability and resistance to secondary work brittleness. For example, in order to improve the secondary work brittleness resistance of a steel plate for deep drawing, Ti and Nb are added to fix C in the steel, and carburization is performed during open coil annealing after cold rolling to form a carburized layer on the surface of the steel plate. A method of forming such a material (Japanese Patent Laid-Open No. 63-38556) has been proposed. However, in the case of this method, since carburization is performed during batch annealing over a long period of time, a high concentration of carburized layer is formed on the surface layer of the steel sheet (average C content of carburized layer: 0.02 to 0.10%).
is formed, and there is a difference in ferrite grain size between the surface layer and the center layer. Furthermore, such a batch annealing type naturally has the disadvantage that productivity is low and the material quality tends to be non-uniform in the rolling direction and the sheet width direction. In addition, for the purpose of improving chemical conversion treatment properties, a method of applying extremely small amounts of solid solution C and N only to the surface layer (Japanese Patent Publication No. 1-423
No. 31) has been proposed, but it does not take into account secondary processing brittleness. With this method, it is impossible to perform the carburization necessary to improve the secondary work brittleness resistance. Similarly, as a method for manufacturing deep-drawing steel sheets by adding Ti and Nb, there is a method in which cold rolling is followed by recrystallization annealing, followed by further carburizing treatment (Japanese Unexamined Patent Publication No. 1-96330). , which mainly aims at increasing the strength by precipitating a large amount of carbides and nitrides. There is no consideration for secondary processing brittleness, and since carburizing and carburizing are performed in batches for a long time after annealing, the amount of carburizing and nitriding tends to be excessive and uneven, and productivity is low and the process is complicated. It has the disadvantage of becoming. In addition to the problem of improving secondary work brittleness mentioned above, recently, in order to improve tent resistance, there has been an increase in the demand for paint baking, which has the property of increasing the yield stress of the steel plate, and so-called baking hardenability. ing. In response to this requirement, a method of reducing the amount of Ti added to C to leave solid solution C (Japanese Patent Publication No. 61-2732)
is proposed. However, in this method, even solid solution C
Even if a steel containing residual C and N can be produced, the solid solution C and N essentially deteriorate the r-value of the steel, so there is no choice but to significantly reduce the press formability. I didn't get it. In other words, press formability, baking properties, and hardenability are essentially incompatible. Further, there is a method using carburizing treatment in the annealing process mentioned above (Japanese Patent Application Laid-Open No. 63-38556), and a method of improving chemical conversion properties (Japanese Patent Publication No. 1-42331). In either case, baking does not take hardenability into consideration, and it is impossible to improve hardenability with baking. Furthermore, as mentioned above, in ultra-low carbon steel in which C and N in the steel are sufficiently fixed by carbonitride-forming elements such as Ti and Nb, hardenability cannot be obtained by baking. In addition, in the method of leaving solid solution C, if the amount is too much than the target value, room temperature aging will be deteriorated, and if it is too little, hardenability cannot be ensured by baking. It is extremely difficult to control the optimum amount of C remaining in the steelmaking process. The present invention has been made to solve the problems of the prior art described above, and uses ultra-low carbon T1 or Nb-added steel to improve deep drawability, secondary work embrittlement resistance, and hardenability. The object of the present invention is to provide a method for manufacturing excellent cold-rolled steel sheets or hot-dip galvanized cold-rolled steel sheets with good productivity. (Means for Solving the Problems) In order to solve the above problems, the present inventor has hereby accomplished the present invention as a result of extensive research into chemical components, the amount and distribution of solid solution C, etc. It is. That is, in the present invention, C: 0.01% or less, Si: 0.
2% or less, Mn: 0.05-1.0%, P: 0.10%
Below, S: 0.02% or less, sol, Al1: 0.01
~0.08% and N:O, 0.05% or less, and further contains one or two of Ti and Nb, and an effective Ti amount (hereinafter referred to as Ti book) defined by the following formula (1) and Nb Ti*=tot, a Q Ti −((48/32)
X S + (48/14)
4.5...(2) Further B:O,003% if necessary
Steel containing the following, with the balance consisting of Fe and unavoidable impurities, and has a concentration gradient such that the amount of solid solute C decreases in the thickness direction from the surface to the center due to carburizing treatment, and the surface layer The maximum amount of solid solute C concentration in the part with a plate thickness ratio of 1/10 is 15 ppm, and the amount of solid solute C in the entire steel plate is 2 to 1.
The gist of the present invention is to provide a cold-rolled steel sheet for deep drawing or a hot-dip galvanized cold-rolled steel sheet with excellent resistance to secondary work brittleness, which is characterized by a 0 pp-. Another aspect of the present invention is a steel having the above-mentioned composition, wherein solid solution C is produced in the thickness direction from the surface to the center by carburizing treatment.
It has a concentration gradient such that the amount decreases, and the maximum amount of solid solution C concentration in the part with a plate thickness ratio of 1/10 of the surface layer is 60 ppm,
Baking, which is characterized by setting the amount of solid solute C in the entire steel sheet to 5 to 30 ρρ-, is aimed at producing cold-rolled steel sheets for deep drawing or hot-dip galvanized cold-rolled steel sheets with excellent hardenability. The present invention will be explained in more detail below. (Function) First, the reason for limiting the chemical composition of steel in the present invention will be explained. C: C is Ti that fixes C as its content increases
, the amount of Nb added increases, leading to an increase in manufacturing costs,
Furthermore, the amount of TiC and NbC precipitated increases, inhibiting grain growth and deteriorating the r value, so it is necessary to keep it at 0.0% or less. Note that the lower limit value is not particularly limited, but from the viewpoint of steel manufacturing technology, the lower limit value of C content at the steel manufacturing stage is 0.000.
It is practical to set it at 3%. Therefore, the C content should be 0.01% or less, preferably 0.0003 to 0.01%. Furthermore, as will be described later, in order to obtain excellent secondary work brittleness resistance, it is necessary to have a concentration gradient such that the amount of solid solute C decreases in the thickness direction from the surface to the center, and to It is necessary to set the maximum amount of solid solute C concentration in the plate thickness ratio portion to 15 Pp■, and to set the solid solute C amount in the entire steel plate to 2 to 10 ppm. However, in order to obtain good hardenability, it is necessary to have the above-mentioned concentration gradient, and the maximum solid solution C concentration in the surface layer with a plate thickness ratio of 1/10 is allowed to be up to 60 pp+i, and the solid solution C concentration in the entire steel plate must be maintained. The amount of C is set to 5 to 30 ppm. Although any means for providing such a state of solid solution C exists, it is preferable from the viewpoint of productivity to provide it from an atmosphere having C potential in the annealing process before plating. Si: Si is added mainly for the purpose of deoxidizing molten steel, but if it is added in too much, it will deteriorate the surface quality, zinc adhesion, chemical conversion treatment, or paintability, so its content should be 0.2% or less. do. Mn: Mn is added mainly to prevent hot embrittlement, but 0.0
If it is less than 5%, the effect cannot be obtained, and if it is added too much, the ductility deteriorates, so the content should be 0.05 to 1.
.. The range is 0%. P: Although P has the effect of increasing control speed without reducing the r value, it segregates at one grain boundary and tends to cause secondary work embrittlement, so its content is suppressed to 0.10% or less. S: S combines with T1 to form TiS, so when its content increases, the amount of Ti required to fix C and N increases, and the number of MnS-based elongated inclusions increases, resulting in local ductility. The content is suppressed to 0.02% or less. sol. Al: AQ is added for the purpose of deoxidizing molten steel, but if its content is less than 0.01% in sol and Afl, this purpose will not be achieved, whereas if it exceeds 0.08%, it will not be able to deoxidize. As the acid effect becomes saturated, AQ203 inclusions increase and the processability deteriorates. Therefore, its content is sol. Al
The range is 0.01 to 0.08%. N: Since N combines with Ti to form TiN, as its content increases, the amount of Ti required to fix C increases. Furthermore, the amount of TiN precipitated increases, grain growth is inhibited, and the r value deteriorates. Therefore, the content is preferably as low as possible, and is suppressed to 0.005% or less. Ti, Nb: Ti and Nb have the effect of increasing the r value by fixing C and N. Therefore, for the purpose of the present invention, it is necessary to contain Ti within a range where the relationship between the amount of Ti, the amount of Nb, and the amount of C satisfies the following formula (2). Incidentally, since Ti combines with S and N to form TiS and TiN as described above, it is converted into an effective Ti amount (Ti amount) according to the following equation (1). 'rim=totaQ'ri-((48/32)X
S + (48/14)X N) (1) If the value of equation (2) is smaller than 1, C and N cannot be fixed sufficiently, resulting in a deterioration of the r value. Moreover, when the temperature exceeds 4°5, the effect of increasing the r value is saturated, and the solid solution Ti, Nb
This is not preferable because it immediately fixes the C that has entered during the atmosphere annealing in the subsequent process, which prevents the segregation of C at grain boundaries and the presence of solid solute C. B: B is an element effective in improving resistance to secondary work brittleness, and can be added as necessary. Baking may be added to supplement secondary processing brittleness even when the intention is to improve hardenability. However, if it exceeds 0.003%, the effect will be saturated and the r value will decrease, so taking economic efficiency into consideration, the content should be 0°003% or less. In addition, O, 0OO
If it is less than 1%, the above effect will be small, so 0.0001 to 0.
.. A range of 0O3% is desirable. Next, although the method for manufacturing a steel plate according to the present invention is not particularly limited, an example thereof will be described below. Steel having the above-mentioned composition is subjected to a normal manufacturing process, that is, after being heated to 1000 to 1250°C, hot rolling is performed in the austenite region. The coiling temperature after hot rolling is 500-800℃ to fix solid solution C and N in the steel as carbonitrides.
Preferably, the temperature is 0°C. Cold rolling is preferably performed at a total rolling rate of 60 to 90% in order to develop a (111) plane orientation texture that is advantageous for the r value. After this cold rolling, continuous annealing is performed in a carburizing atmosphere gas at a temperature above the recrystallization temperature, and r
A (111) plane orientation texture with favorable values is formed. As is already known, the r value is mainly determined by the (111
) It depends on the surface orientation texture, and the purpose of completely removing solid solution C and solid solution N by winding treatment before recrystallization annealing is to obtain the above texture. However, once recrystallization is completed and a texture is formed, C and N that invade afterwards do not have an adverse effect on the r value. The annealing atmosphere is carburizing gas with controlled carbon potential. As a result, among the C that penetrated from the carburizing atmosphere, the C that was not fixed as TiC and NbC segregates at the grain boundaries and improves secondary work brittleness, and a predetermined amount of solid solution C improves secondary work brittleness. Baking improves hardenability. Although the present invention does not require overaging treatment, overaging treatment may be performed at a temperature near the plating bath. When obtaining a galvanized cold-rolled steel sheet, the steel sheet is subsequently introduced into a hot-dip galvanizing bath and plated. Furthermore, alloying treatment may be performed as necessary. Of course, the methods for producing annealed original sheets include ferrite region hot rolling,
Needless to say, any method such as hot charge rolling or production using a thin slab may be used. Next, the relationship between control of the amount of solid solute C and secondary processing brittleness or seizure hardenability will be explained below. Secondary work embrittlement occurs in ultra-low carbon Ti-added steel and the like because the purity of the grain boundaries improves and the Fe-Fe bonding strength at the grain boundaries decreases. Furthermore, during the hot-dip galvanizing process, Zn diffuses into the grain boundaries and further reduces the Fe--Fe bonding strength. Therefore, improvement in secondary work brittleness can be achieved if both factors can be prevented. The former measure is achieved by segregating C at the grain boundaries, and the latter measure is achieved by similarly segregating C at the grain boundaries. Especially for the latter, the penetration depth of Zn is several grains, that is, 50
Since the thickness is approximately μ■, it is effective to intensively carburize the plate thickness to that extent. Therefore, there should be a concentration gradient such that the amount of solid solute C decreases in the thickness direction from the surface to the center, and the maximum amount of solid solute C concentration in the part where the thickness ratio of the surface layer is 1/10 should be 15pp. exhibits the best secondary embrittlement resistance. Furthermore, since brittle fracture after deep drawing starts from the surface layer, the grain boundary strength of the first surface layer should be strengthened by grain boundary segregation of solid solution C. It was also confirmed that significant effects can be obtained even when the grain boundary segregation C at the center of the plate thickness is at least or zero. In addition, if the amount of solid solute C in the surface layer exceeds 15 ppm, the average amount of solid solute C in the entire steel sheet will exceed 10 ppm, and in this case, problems such as material deterioration due to aging, increase in strength, and decrease in ductility occur. This is not desirable because it occurs. If the average amount of solid solute C in the entire steel sheet is less than 2 ppm, there will be insufficient solid solute C, and secondary work brittleness resistance cannot be obtained. On the other hand, hardening by baking is usually impossible in ultra-low carbon Ti-added steel because no solid solution C remains, but after recrystallization is completed and a texture is formed, If solid solution C can be introduced, baking can impart hardenability while maintaining a high r value. Furthermore, by having a concentration gradient such that the amount of solid solute C decreases in the thickness direction from the surface to the center, and by setting the maximum amount of solute C concentration in the portion where the thickness ratio of the surface layer is 1/10 to 60 ppm, Hardening of the surface layer is accelerated the most, improving fatigue strength, preventing surface damage caused by collisions with stones, etc., and improving punto resistance.
This results in excellent effects on the properties required for automobile exterior panels. If the amount of solid solute C in the surface layer portion exceeds 60 pp-, it becomes impossible to reduce the amount of solid solute C in the entire steel sheet to 30 ppm+ or less, and in this case, the problem of material deterioration due to aging occurs, which is not preferable. If the amount of solid solute C in the entire steel sheet is less than 5 ppm, the solid solute C is insufficient and baking cannot impart hardenability. (Example) Next, an example of the present invention will be shown. Ultra-low carbon steel having the chemical composition shown in Table 1 was heated to 1150℃.
After solution treatment by heating for 30 minutes at a finishing temperature of 8.
Hot rolling was completed at 90°C, followed by winding at 670°C, pickling, cold rolling at a rolling reduction of 75%, and continuous annealing in a carburizing atmosphere or inert gas to 780°C.
Recrystallization annealing was performed at ℃ for 40 seconds. In addition, carburizing gas is 0
.. 2 to 0.8% CO + 4% H + N was used, and 4% H, + N was used as the inert gas. After that, hot-dip galvanizing treatment was performed at 450℃, and
A skin pass of 8% was applied. Mechanical properties and solid solution C of the obtained hot-dip galvanized cold-rolled steel sheet
Table 2 shows the amount (average value in the entire plate thickness direction) and secondary processing brittleness limit temperature. In addition, the brittleness test was performed by trimming the cup obtained by molding the cup at a total drawing ratio of 2.7 to a height of 35mm, and then placing the cup in a refrigerant at each test temperature. The limit temperature at which brittle fracture does not occur was measured by pressing the steel into a conical punch, and this was taken as the brittle limit temperature for secondary processing. The resistance to secondary work brittleness is improved without compromising the requirements for a hot-dip galvanized cold-rolled steel sheet.Incidentally, as a result of investigating the distribution of the amount of solid solute C in the thickness direction of the steel of the present invention 3, it was found that As shown in Figure 1, when carburized, the concentration distribution showed that the amount of solid solute C decreased in the thickness direction from the surface to the center.Moreover, in the case of carburizing with gas B, 1/10 of the surface layer of the plate It was confirmed that the solid solution C concentration in the thickness ratio part was 15 pp- or less, and as shown in Figure 2, the secondary work brittleness resistance and r value were both improved.On the other hand, as shown in Table 2 As such, comparative steels that do not have chemical components within the scope of the present invention, and comparative steels that have chemical components within the scope of the present invention but whose conditions regarding the amount of solid solute C are outside the scope of the present invention, have an r value or Poor secondary processing brittleness.

【以下余白】[Left below]

矢10生え 第1表に示す化学成分を有する供試鋼について。 実施例1において、浸炭雰囲気又は不活性ガス中での連
続焼鈍による再結晶焼鈍を行った後、0゜8%のスキン
パスを施して冷延鋼板を得た。他の条件は実施例1と同
じである。 得られた冷延鋼板の機械的性質と固溶C量(全板厚方向
平均値)及び2次加工脆性限界温度を第3表に示す。 第3表より明らかなように、本発明鋼は、従来鋼に比べ
、深絞り用冷延鋼板としての要求を損ねることなく、耐
2次加工脆性が改善されている。 因みに、第3表中の本発明鋼血3について、固溶C量の
板厚方向の分布を調べた結果、第3図に示すように浸炭
処理した場合に表面から中心部にかけて板厚方向に固溶
C量が低下する濃度分布を示していた。しかも、ガスB
による浸炭処理の場合1表層1/10の板厚比の部分の
固溶C濃度が15pρ■以下であり、第4図に示すよう
に耐2次加工脆性及びr値が共に改善されていることが
確認された。 一方、第3表に示すように、本発明範囲の化学成分を有
していない比較鋼や、本発明範囲内の化学成分を有して
いても固溶C量に関する条件が本発明範囲外の比較鋼は
、r値又は耐2次加工脆性のいずれかが劣っている。
Regarding the test steel having the chemical composition shown in Table 1. In Example 1, after performing recrystallization annealing by continuous annealing in a carburizing atmosphere or inert gas, a 0°8% skin pass was applied to obtain a cold rolled steel sheet. Other conditions are the same as in Example 1. Table 3 shows the mechanical properties, solute C content (average value in the entire sheet thickness direction), and secondary processing brittleness limit temperature of the obtained cold rolled steel sheet. As is clear from Table 3, the steel of the present invention has improved resistance to secondary work brittleness compared to the conventional steel without impairing the requirements as a cold-rolled steel plate for deep drawing. Incidentally, as a result of investigating the distribution of the amount of solid solute C in the thickness direction of the steel plate 3 of the present invention shown in Table 3, it was found that when carburized, as shown in Figure 3, the distribution in the thickness direction from the surface to the center It showed a concentration distribution in which the amount of solid solute C decreased. Moreover, gas B
In the case of carburizing treatment, the solid solution C concentration in the surface layer with a plate thickness ratio of 1/10 is 15 pρ or less, and as shown in Figure 4, both the secondary work brittleness resistance and the r value are improved. was confirmed. On the other hand, as shown in Table 3, there are comparison steels that do not have chemical components within the scope of the present invention, and conditions regarding the amount of solid solute C that are outside the scope of the present invention even though they have chemical components within the scope of the present invention. Comparative steels are inferior in either r value or secondary work brittleness resistance.

【以下余白】[Left below]

去114工 第1表に示す化学成分を有する供試鋼について、実施例
1において、冷間圧延後、浸炭雰囲気又は不活性ガス中
においてメッキ処理前の焼鈍工程で800℃で1分間の
再結晶焼鈍を行い、その後、450℃で溶融亜鉛メッキ
処理を行い、0.8%のスキンパスを施した。 得られた溶融亜鉛メッキ冷延鋼板の機械的性質と固溶C
量(全板厚方向平均値)、並びに常温時効性(AI)及
び焼付は硬化性(B H)を第4表に示す。 なお、常温時効性はAIで評価した。AIは。 10%引張時の応力(σ、)と100℃X1hrの時効
処理後の再引張時の下降状応力(σ2)から、A4=σ
2−σ□で求めた。 焼付は硬化性はBHで評価した。BHは、2%引張時の
応力(σ3)と17 o’cx 20m1nの時効処理
後の再、引張時の下降状応力(σ4)から、BH=σ、
−σ3で求めた。 第4表より明らかなように、本発明鋼は、従来鋼に比べ
、深絞り用溶融亜鉛メッキ冷延鋼板としての要求を損ね
ることなく、優れた焼付は硬化性が付与されている。ま
た常温時効性も良好である。 因みに、第4表中の本発明鋼Na7について、固溶C量
の板厚方向の分布を調べた結果、第5図に示すように浸
炭処理した場合に表面から中心部にかけて板厚方向に固
溶C量が低下する濃度分布を示していた。しかも、ガス
Bによる浸炭処理の場合、表層1/10の板厚比の部分
の固溶C濃度が60ppm以下であり、第6図に示すよ
うに焼付は硬化性及びr値が共に改善されていることが
確認された。 一方、第4表に示すように1本発明範囲の化学成分を有
していない比較鋼や、本発明範囲内の化学成分を有して
いても固溶C量に関する条件が本発明範囲外の比較鋼は
、r値又は焼付は硬化性のいずれかが劣っている。
In Example 1, the test steel having the chemical composition shown in Table 1 was recrystallized for 1 minute at 800°C in an annealing process before plating in a carburizing atmosphere or inert gas after cold rolling. Annealing was performed, followed by hot-dip galvanizing at 450° C. and a 0.8% skin pass. Mechanical properties and solid solution C of the obtained hot-dip galvanized cold-rolled steel sheet
Table 4 shows the amount (average value in the entire plate thickness direction), room temperature aging property (AI), and baking hardenability (BH). In addition, room temperature aging property was evaluated by AI. AI is. From the stress at 10% tension (σ,) and the descending stress (σ2) at re-tension after aging treatment at 100°C for 1 hr, A4=σ
It was determined by 2-σ□. Baking and hardenability were evaluated using BH. BH is calculated from the stress at 2% tension (σ3) and the descending stress at re-tension after aging treatment of 17 o'cx 20m1n (σ4), BH=σ,
-σ3. As is clear from Table 4, the steel of the present invention has excellent baking and hardenability compared to the conventional steel without impairing the requirements as a hot-dip galvanized cold-rolled steel sheet for deep drawing. It also has good aging properties at room temperature. Incidentally, as a result of investigating the distribution of solid solution C content in the thickness direction of the invention steel Na7 shown in Table 4, it was found that when carburized, as shown in Figure 5, hardening occurs in the thickness direction from the surface to the center. The concentration distribution showed a decreasing amount of dissolved C. Furthermore, in the case of carburizing treatment with gas B, the solid solution C concentration in the surface layer with a plate thickness ratio of 1/10 is 60 ppm or less, and as shown in Fig. 6, both the hardenability and the r value are improved in the case of baking. It was confirmed that there is. On the other hand, as shown in Table 4, there are comparative steels that do not have chemical components within the scope of the present invention, and conditions regarding the amount of solid solute C that are outside the scope of the present invention even if the steels have chemical components within the scope of the present invention. Comparative steels are inferior in either r-value or seizure hardenability.

【以下余白】[Left below]

矢1u生渠 第1表に示す化学成分を有する供試鋼について、実施例
3において、浸炭雰囲気又は不活性ガス中での連続焼鈍
による再結晶焼鈍を行った後、約80℃/Sの冷却速度
で400℃まで冷却した後、その温度で3分間の過時効
処理を行ない、工%のスキンパスを施して冷延鋼板を得
た。他の条件は実施例3と同じである。 得られた冷延鋼板の機械的性質と固溶C量(全板厚方向
平均値)、並びに常温時効性(AI)及び焼付は硬化性
(B H)を第5表に示す。 第5表より明らかなように1本発明鋼は、従来鋼に比べ
、深絞り用冷延鋼板としての要求を損ねることなく、優
れた焼付は硬化性が付与されている。また常温時効性も
良好である。 因みに、第5表中の本発明鋼NQ7について、固溶C量
の板厚方向の分布を調べた結果、第7図に示すように浸
炭処理した場合に表面から中心部にかけて板厚方向に固
溶C量が低下する濃度分布を示していた。しかも、ガス
Bによる浸炭処理の場合、表層1/10の板厚比の部分
の固溶C濃度が6Qpp+m以下であり、第8図に示す
ように焼付は硬化性及びr値が共に改善されていること
が確認された。 一方、第5表に示すように、本発明範囲の化学成分を有
していない比較鋼や、本発明範囲内の化学成分を有して
いても固溶C量に関する条件が本発明範囲外の比較鋼は
、r値又は焼付は硬化性のいずれかが劣っている。
In Example 3, the test steel having the chemical composition shown in Table 1 was recrystallized by continuous annealing in a carburizing atmosphere or inert gas, and then cooled at about 80°C/S. After cooling at a speed of 400° C., an overaging treatment was performed at that temperature for 3 minutes, and a skin pass of 10% was performed to obtain a cold rolled steel sheet. Other conditions are the same as in Example 3. Table 5 shows the mechanical properties and solute C content (average value in the entire plate thickness direction) of the obtained cold rolled steel sheet, as well as room temperature aging property (AI) and baking hardenability (BH). As is clear from Table 5, the steel of the present invention has excellent baking and hardenability compared to the conventional steel without impairing the requirements for cold-rolled steel sheets for deep drawing. It also has good aging properties at room temperature. Incidentally, as a result of investigating the distribution of the amount of solute C in the thickness direction of the steel of the present invention, NQ7 in Table 5, it was found that when carburized, as shown in Figure 7, hardening occurs in the thickness direction from the surface to the center. The concentration distribution showed a decreasing amount of dissolved C. Moreover, in the case of carburizing treatment with gas B, the solid solution C concentration in the surface layer with a plate thickness ratio of 1/10 is 6Qpp+m or less, and as shown in Figure 8, both the hardenability and the r value are improved. It was confirmed that there is. On the other hand, as shown in Table 5, there are comparison steels that do not have chemical components within the scope of the present invention, and conditions regarding the amount of solid solute C that are outside the scope of the present invention even though they have chemical components within the scope of the present invention. Comparative steels are inferior in either r-value or seizure hardenability.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、極低炭素鋼の化
学成分を調整すると共に固溶C量及びその板厚方向分布
を規制したので、深絞り用冷延鋼板又は溶融亜鉛メッキ
冷延鋼板としての要求を損なうことなく、優れた耐2次
加工脆性又は焼付は硬化性を有する材料を生産性よく提
供することができる。
(Effects of the Invention) As detailed above, according to the present invention, the chemical composition of ultra-low carbon steel is adjusted, and the amount of solid solute C and its distribution in the thickness direction are regulated, so cold-rolled steel sheets for deep drawing are Alternatively, it is possible to provide a material with excellent secondary processing brittleness or seizure resistance and hardenability with good productivity without impairing the requirements for a hot-dip galvanized cold-rolled steel sheet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図、第5図及び第7図は実施例における鋼
板について板厚方向に研削によって1/↓Oの厚さに削
り出した試料の内部摩擦値から換算した板厚方向の固溶
C量分布を示す図で、第1図は実施例1の鋼尚3、第3
図は実施例2の鋼尚3、第5図は実施例3の鋼面7、第
7図は実施例4の鋼NQ7の場合であり、 第2図、第4図、第6図及び第8図は実施例におけるP
添加量0.02%以下の鋼板についての(Tie/48
+ Nb/93)/ (C/12)と機械的性質の関係
を示す図で、各実施例の鋼Ncl、N112、Nα3.
 NQ&5、 正7、 Nα8の場合である。
Figures 1, 3, 5, and 7 show the values of the steel plates in the thickness direction calculated from the internal friction values of samples that were ground to a thickness of 1/↓O in the thickness direction. This is a diagram showing the solid solute C content distribution, and FIG.
The figure shows the steel surface 3 of Example 2, the figure 5 shows the case of steel surface 7 of Example 3, and the figure 7 shows the case of steel NQ7 of Example 4. Figure 8 shows P in the example.
(Tie/48
+ Nb/93)/(C/12) and the mechanical properties of the steels Ncl, N112, Nα3.
This is the case of NQ&5, positive 7, and Nα8.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、C:0.01%以下、
Si:0.2%以下、Mn:0.05〜1.0%、P:
0.10%以下、S:0.02%以下、sol.Al:
0.01〜0.08%及びN:0.005%以下を含有
し、更にTi及びNbの1種又は2種を、次式(1)で
定義される有効Ti量(以下、Ti*という)及びNb
量とC量との関係が次式(2)を満足する範囲で含有し
、 Ti*=totalTi−{(48/32)×S+(4
8/14)×N}・・・(1) 1≦(Ti*/48+Nb/93)/(C/12)≦4
.5・・・(2)残部がFe及び不可避的不純物よりな
る組成を有する鋼であって、浸炭処理により表面から中
心部にかけて板厚方向に固溶C量が低下するような濃度
勾配を有し、表層1/10の板厚比の部分の固溶C濃度
の最大量を15ppmとし、鋼板全体の固溶C量を2〜
10ppmとすることを特徴とする耐2次加工脆性に優
れた深絞り用冷延鋼板又は溶融亜鉛メッキ冷延鋼板。
(1) In weight% (the same applies hereinafter), C: 0.01% or less,
Si: 0.2% or less, Mn: 0.05-1.0%, P:
0.10% or less, S: 0.02% or less, sol. Al:
0.01 to 0.08% and N: 0.005% or less, and further contains one or two of Ti and Nb to reduce the effective Ti amount defined by the following formula (1) (hereinafter referred to as Ti*). ) and Nb
Ti*=totalTi−{(48/32)×S+(4
8/14)×N}...(1) 1≦(Ti*/48+Nb/93)/(C/12)≦4
.. 5...(2) A steel having a composition in which the remainder consists of Fe and unavoidable impurities, and has a concentration gradient such that the amount of solid solute C decreases in the thickness direction from the surface to the center due to carburizing treatment. , the maximum amount of solid solute C concentration in the surface layer with a plate thickness ratio of 1/10 is 15 ppm, and the amount of solid solute C in the entire steel plate is 2 to 2.
A cold-rolled steel sheet for deep drawing or a hot-dip galvanized cold-rolled steel sheet with excellent resistance to secondary work brittleness, characterized by a concentration of 10 ppm.
(2)請求項1に記載の組成を有する鋼であって、浸炭
処理により表面から中心部にかけて板厚方向に固溶C量
が低下するような濃度勾配を有し、表層1/10の板厚
比の部分の固溶C濃度の最大量を60ppmとして、鋼
板全体の固溶C量を5〜30ppmとすることを特徴と
する焼付け硬化性に優れた深絞り用冷延鋼板又は溶融亜
鉛メッキ冷延鋼板。
(2) A steel having the composition according to claim 1, which has a concentration gradient such that the amount of solid solute C decreases in the thickness direction from the surface to the center by carburizing, and the steel has a concentration gradient of 1/10 of the surface layer. Cold-rolled steel sheet for deep drawing or hot-dip galvanizing with excellent bake hardenability, characterized in that the maximum amount of solid solute C concentration in the thickness ratio part is 60 ppm, and the amount of solid solute C in the entire steel sheet is 5 to 30 ppm. Cold rolled steel plate.
(3)前記組成を有する鋼が更にB:0.003%以下
を含有するものである請求項1又は2に記載の鋼板。
(3) The steel plate according to claim 1 or 2, wherein the steel having the composition further contains B: 0.003% or less.
JP2051273A 1990-03-02 1990-03-02 Cold rolled steel sheet or galvanized steel sheet for deep drawing having excellent secondary processing brittleness resistance or baking hardenability Granted JPH03253543A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2051273A JPH03253543A (en) 1990-03-02 1990-03-02 Cold rolled steel sheet or galvanized steel sheet for deep drawing having excellent secondary processing brittleness resistance or baking hardenability
CA002037316A CA2037316C (en) 1990-03-02 1991-02-28 Cold-rolled steel sheets or hot-dip galvanized cold-rolled steel sheets for deep drawing
US07/663,310 US5133815A (en) 1990-03-02 1991-03-01 Cold-rolled steel sheets or hot-dip galvanized cold-rolled steel sheets for deep drawing
DE69104747T DE69104747T2 (en) 1990-03-02 1991-03-04 Cold-rolled steel sheets or cold-rolled and hot-dip galvanized steel sheets for deep drawing.
EP91301767A EP0444967B1 (en) 1990-03-02 1991-03-04 Cold-rolled steel sheets or hot-dip galvanized cold rolled steel sheets for deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2051273A JPH03253543A (en) 1990-03-02 1990-03-02 Cold rolled steel sheet or galvanized steel sheet for deep drawing having excellent secondary processing brittleness resistance or baking hardenability

Publications (2)

Publication Number Publication Date
JPH03253543A true JPH03253543A (en) 1991-11-12
JPH0530900B2 JPH0530900B2 (en) 1993-05-11

Family

ID=12882341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2051273A Granted JPH03253543A (en) 1990-03-02 1990-03-02 Cold rolled steel sheet or galvanized steel sheet for deep drawing having excellent secondary processing brittleness resistance or baking hardenability

Country Status (1)

Country Link
JP (1) JPH03253543A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466647A (en) * 1990-07-07 1992-03-03 Kobe Steel Ltd Hot-dip galvanized cold rolled steel sheet for deep drawing having galvanized film excellent in adhesion and its manufacture
JPH05195148A (en) * 1992-01-20 1993-08-03 Nippon Steel Corp Cold-rolled steel sheet excellent in curing performance for baking paint and secondary workability, galvanized cold-rolled steel sheet and production thereof
JPH05302125A (en) * 1992-04-06 1993-11-16 Kobe Steel Ltd Production of baking hardened high strength steel sheet for hot dip galvannealing excellent in plating adhesion and production of the plated steel sheet
JPH05331612A (en) * 1992-06-01 1993-12-14 Kobe Steel Ltd Production of galvannealed steel sheet excellent in deep drawability and plating adhesion
US5372654A (en) * 1992-09-21 1994-12-13 Kawasaki Steel Corporation Steel sheet for press working that exhibits excellent stiffness and satisfactory press workability
EP1347070A1 (en) * 2000-12-21 2003-09-24 Toyo Kohan Co., Ltd. Steel sheet for porcelain enameling and method for production thereof, and enameled product and method for production thereof
CN116164616A (en) * 2022-12-13 2023-05-26 揭阳市汇宝昌电器有限公司 Product quality key index system detection method for mirror surface deep drawing motor shell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442331A (en) * 1987-08-10 1989-02-14 Hisankabutsu Glass Kenkyu Production of chalcogenide glass containing aluminum
JPH0196330A (en) * 1987-10-05 1989-04-14 Kobe Steel Ltd Manufacture of cold rolled steel sheet combining high gamma-value with high tensile strength

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442331A (en) * 1987-08-10 1989-02-14 Hisankabutsu Glass Kenkyu Production of chalcogenide glass containing aluminum
JPH0196330A (en) * 1987-10-05 1989-04-14 Kobe Steel Ltd Manufacture of cold rolled steel sheet combining high gamma-value with high tensile strength

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466647A (en) * 1990-07-07 1992-03-03 Kobe Steel Ltd Hot-dip galvanized cold rolled steel sheet for deep drawing having galvanized film excellent in adhesion and its manufacture
JPH05195148A (en) * 1992-01-20 1993-08-03 Nippon Steel Corp Cold-rolled steel sheet excellent in curing performance for baking paint and secondary workability, galvanized cold-rolled steel sheet and production thereof
JPH05302125A (en) * 1992-04-06 1993-11-16 Kobe Steel Ltd Production of baking hardened high strength steel sheet for hot dip galvannealing excellent in plating adhesion and production of the plated steel sheet
JPH05331612A (en) * 1992-06-01 1993-12-14 Kobe Steel Ltd Production of galvannealed steel sheet excellent in deep drawability and plating adhesion
US5372654A (en) * 1992-09-21 1994-12-13 Kawasaki Steel Corporation Steel sheet for press working that exhibits excellent stiffness and satisfactory press workability
EP1347070A1 (en) * 2000-12-21 2003-09-24 Toyo Kohan Co., Ltd. Steel sheet for porcelain enameling and method for production thereof, and enameled product and method for production thereof
EP1347070A4 (en) * 2000-12-21 2004-08-04 Toyo Kohan Co Ltd Steel sheet for porcelain enameling and method for production thereof, and enameled product and method for production thereof
CN116164616A (en) * 2022-12-13 2023-05-26 揭阳市汇宝昌电器有限公司 Product quality key index system detection method for mirror surface deep drawing motor shell
CN116164616B (en) * 2022-12-13 2024-05-14 揭阳市汇宝昌电器有限公司 Product quality key index system detection method for mirror surface deep drawing motor shell

Also Published As

Publication number Publication date
JPH0530900B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
JPH032224B2 (en)
KR930001519B1 (en) Method of manufacturing a steel sheet
EP0620288B1 (en) Cold-rolled sheet and hot-galvanized cold-rolled sheet, both excellent in bake hardening, cold nonaging and forming properties, and process for producing the same
US5133815A (en) Cold-rolled steel sheets or hot-dip galvanized cold-rolled steel sheets for deep drawing
KR20060042036A (en) High strength cold rolled steel sheet and method for manufacturing the same
EP1932932B1 (en) Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same
EP0406619A1 (en) Process for producing galvanized, non-aging cold rolled steel sheets having good formability in a continuous galvanizing line
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JPH03253543A (en) Cold rolled steel sheet or galvanized steel sheet for deep drawing having excellent secondary processing brittleness resistance or baking hardenability
JP3596398B2 (en) Manufacturing method of cold rolled steel sheet with excellent bake hardenability and normal temperature aging resistance
JP2003268491A (en) High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance
JPH05195060A (en) Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JPH07116521B2 (en) Thin steel sheet manufacturing method
JP3204101B2 (en) Deep drawing steel sheet and method for producing the same
KR930009981B1 (en) Cold-roll steel sheet or hot dip galvanized cold-rolled steel sheets for deep drawing
JPH05112858A (en) Manufacture of high (r) value galvanized cold rolled steel sheet excellent in secondary working brittleness or baking hardenability
JPH03211228A (en) Production of steel sheet with baking hardenability
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JPH0466620A (en) Production of hot-dip galvanized cold rolled steel sheet for deep drawing excellent in baking hardenability
JP2975774B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JPH0784620B2 (en) Method for producing hot-dip galvanized cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance
JPH0784618B2 (en) Method for producing cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance
JPH07242948A (en) Production of cold rolled steel sheet for deep drawing excellent in baking hardenability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees