JPH0325236B2 - - Google Patents

Info

Publication number
JPH0325236B2
JPH0325236B2 JP63045469A JP4546988A JPH0325236B2 JP H0325236 B2 JPH0325236 B2 JP H0325236B2 JP 63045469 A JP63045469 A JP 63045469A JP 4546988 A JP4546988 A JP 4546988A JP H0325236 B2 JPH0325236 B2 JP H0325236B2
Authority
JP
Japan
Prior art keywords
iron
wastewater
contact material
metal
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63045469A
Other languages
Japanese (ja)
Other versions
JPH01218683A (en
Inventor
Takeshi Nishiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIHARA KANKYO EISEI KENKYUSHO KK
Original Assignee
NISHIHARA KANKYO EISEI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIHARA KANKYO EISEI KENKYUSHO KK filed Critical NISHIHARA KANKYO EISEI KENKYUSHO KK
Priority to JP4546988A priority Critical patent/JPH01218683A/en
Publication of JPH01218683A publication Critical patent/JPH01218683A/en
Publication of JPH0325236B2 publication Critical patent/JPH0325236B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、無機性汚濁物質を主体とする燐含有
排水処理方法に関し、特に、脱燐即ち燐除去を行
う自動車工場、鉄鋼等金属製品製造工場、塗装工
場及びアルミニウム製品工場等における金属表面
処理工程や塗装工程などから排出される排水の処
理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for treating phosphorous-containing wastewater mainly containing inorganic pollutants, and is particularly applicable to automobile factories where dephosphorization, that is, phosphorus removal, is carried out, and the manufacture of metal products such as steel. This article relates to a method for treating wastewater discharged from metal surface treatment processes and painting processes in factories, painting factories, aluminum product factories, etc.

〔従来の技術〕[Conventional technology]

近時、湖沼等の富栄養化対策の一つとして、排
水中の、ポリ燐酸、オリト燐酸、メタ燐酸、ピロ
燐酸等の燐酸或いはこれらの塩類等の燐を除去す
ることが必要となつてきている。
Recently, as one of the measures against eutrophication of lakes and marshes, it has become necessary to remove phosphorus from wastewater, such as phosphoric acids such as polyphosphoric acid, orthophosphoric acid, metaphosphoric acid, and pyrophosphoric acid, or their salts. There is.

この場合、無機性汚濁物質を主体とする燐含有
排水の燐除去については、金属塩又は石灰等によ
る凝集沈殿法及び金属塩凝集浮上法等が行われて
いる。
In this case, to remove phosphorus from phosphorus-containing wastewater mainly consisting of inorganic pollutants, methods such as coagulation-sedimentation method using metal salts or lime, and metal salt coagulation flotation method are used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような燐除去方法において、凝集沈殿法
は、専ら、凝集剤の凝集作用によるために、凝集
剤の注入が不可欠であるが、排水の流入量が一定
しないために、凝集剤の適量注入が難しく、凝集
処理が不安定となり、燐の除去率も低くなるため
に、多量の凝集剤を必要とするので、ランニング
コストが上昇し、運転管理も面倒となる。さら
に、この場合、凝集沈殿により汚泥の発生量が多
くなり、その脱水性も悪いので問題とされてい
る。
Among the above phosphorus removal methods, the coagulation-sedimentation method relies exclusively on the flocculating action of the flocculant, so injection of the flocculant is essential. This makes the flocculation process unstable and the phosphorus removal rate low, requiring a large amount of flocculant, which increases running costs and makes operational management troublesome. Furthermore, in this case, a large amount of sludge is generated due to coagulation and sedimentation, and its dewatering properties are also poor, which is a problem.

本発明は、従来における金属塩又は石灰等によ
る凝集沈殿法及び金属塩凝集浮上法などによる排
水処理を行う場合の脱燐に係る問題点を解決する
ことを目的としている。
The object of the present invention is to solve the problems associated with dephosphorization when wastewater treatment is performed by conventional coagulation sedimentation methods and metal salt coagulation flotation methods using metal salts or lime.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、安定した効果的な脱燐が行える電気
化学的脱燐法による無機性汚濁物質を主体とする
燐含有排水処理方法を提供することを目的とす
る。
An object of the present invention is to provide a method for treating phosphorus-containing wastewater mainly containing inorganic pollutants using an electrochemical dephosphorization method that can perform stable and effective dephosphorization.

すなわち、本発明は、排水が流入する処理槽内
に金属鉄接触材を浸漬させ、金属鉄接触材表面の
撹拌流速を10乃至20センチメートル/秒の範囲の
流れとさせながら、処理槽内の溶存酸素濃度を1
乃至3.2ミリグラム/リツトル、酸化還元電位を
−200乃至−400ミリボルト及びPH7.3乃至7.5の範
囲内で、金属鉄接触材表面の酸素濃淡電池による
電気化学的鉄腐食を利用して、金属鉄接触材から
鉄イオンを溶出させ、この金属鉄接触材面より溶
出した鉄イオンと排水中の燐酸イオンを結合さ
せ、不溶性燐酸鉄塩として排水中の燐除去を行う
ことを特徴とする無機性汚濁物質を主体とする燐
含有排水処理方法にある。
That is, in the present invention, a metal iron contact material is immersed in a treatment tank into which wastewater flows, and while stirring the surface of the metal iron contact material at a flow rate in the range of 10 to 20 cm/sec, Dissolved oxygen concentration is 1
Metal-iron contact using electrochemical iron corrosion by an oxygen concentration battery on the surface of the metal-iron contact material at a redox potential of -200 to -400 millivolts and a pH of 7.3 to 7.5. An inorganic pollutant characterized by eluting iron ions from the metal, combining the iron ions eluted from the surface of the metal-iron contact material with phosphate ions in the wastewater, and removing phosphorus from the wastewater as an insoluble iron phosphate salt. A method for treating phosphorous-containing wastewater, mainly consisting of

本発明においては、処理槽内に浸漬される金属
鉄接触材としては、鉄製板状体、鉄製粒状体、鉄
製網状体、鉄製管状体、鉄製棒状体、鉄製円板等
の金属鉄接触材を使用することができる。鉄イオ
ンの溶出は、金属鉄接触材の表面積に比例するの
で、金属鉄接触材としては、接触表面積ができる
限り大きい形状の接触材を使用するのが好まし
い。
In the present invention, the metal iron contact material to be immersed in the treatment tank includes metal iron contact materials such as iron plates, iron granules, iron nets, iron tubes, iron rods, and iron disks. can be used. Since the elution of iron ions is proportional to the surface area of the metal iron contact material, it is preferable to use a metal iron contact material that has a shape with as large a contact surface area as possible.

さらに、この金属鉄接触材の処理槽内の浸漬位
置は、溶存酸素濃度が1乃至3.2mg/範囲内の
槽の前段の部位に浸漬するのが好ましい。
Further, the immersion position of the metallic iron contact material in the treatment tank is preferably at the front stage of the tank where the dissolved oxygen concentration is within the range of 1 to 3.2 mg/.

本発明においては、鉄の腐蝕条件の最適領域内
になるよう金属鉄接触材を浸漬することが必要で
あり、鉄の不動態域を避けて、溶存酸素濃度、酸
化還元電位が決定される。よつて、腐食による鉄
イオン溶出条件としては、溶存酸素濃度は1乃至
3.2mg/、酸化還元電位は−200乃至−400mV
とする。この範囲に入らない場合は、金属鉄は不
動態域に入り、表面に酸化鉄被膜が形成されて、
鉄イオンの溶出が激減するので好ましくない。
In the present invention, it is necessary to immerse the metallic iron contact material so that it is within the optimum range of corrosion conditions for iron, and the dissolved oxygen concentration and redox potential are determined while avoiding the passive region of iron. Therefore, the conditions for elution of iron ions due to corrosion are that the dissolved oxygen concentration is between 1 and 2.
3.2mg/, redox potential is -200 to -400mV
shall be. If it does not fall within this range, metallic iron enters the passive region and an iron oxide film is formed on the surface.
This is not preferable because the elution of iron ions is drastically reduced.

金属鉄接触材表面の撹拌流速が適切でない状態
では、金属鉄接触材面に燐酸鉄塩、燐酸カルシウ
ム等の化合物を晶析し、被覆膜ができて鉄イオン
の溶出反応を阻害するので、金属鉄接触材表面の
撹拌流速を10cm/sec乃至20cm/secに設定し、腐
食が進んで鉄イオンが溶出し易く、かつ、鉄イオ
ンと排水中の燐酸イオンが速やかに反応して不溶
性燐酸鉄塩となることを促進させる。
If the stirring flow rate on the surface of the metal iron contact material is not appropriate, compounds such as iron phosphate and calcium phosphate will crystallize on the surface of the metal iron contact material, forming a coating film that will inhibit the elution reaction of iron ions. The stirring flow rate on the surface of the metal iron contact material was set to 10 cm/sec to 20 cm/sec, and corrosion progressed and iron ions were easily eluted, and the iron ions and phosphate ions in the wastewater reacted quickly to form insoluble iron phosphate. Promotes the formation of salt.

本発明において、PHは7.3乃至7.5の範囲内に保
たれる。排水のPH値が高くて、鉄が溶解し難い場
合には、排水の電気伝導度を上昇して鉄の溶解を
促進させるように、排水中に塩化ナトリウムを添
加するのが好ましい。
In the present invention, the PH is kept within the range of 7.3 to 7.5. If the pH value of the wastewater is high and iron is difficult to dissolve, it is preferable to add sodium chloride to the wastewater so as to increase the electrical conductivity of the wastewater and promote dissolution of iron.

〔作用〕[Effect]

本発明は、処理槽内に金属鉄接触材を浸漬する
と共に、浸漬された金属鉄接触材表面の排水の撹
拌流の流速を10乃至20cm/secの範囲とさせて、
金属鉄接触材の最適腐食条件下での酸素濃淡電池
による腐食により、反応に適した量の鉄イオンの
溶出を行うので、溶出された鉄イオンと排水中の
燐酸イオンが反応して難溶性の燐酸鉄塩、例え
ば、アモルフアス燐酸鉄塩を形成し、汚泥と共に
沈殿させて排水中の燐除去を行う。
The present invention involves immersing a metal iron contact material in a treatment tank, and setting the flow rate of the stirring flow of wastewater on the surface of the immersed metal iron contact material in the range of 10 to 20 cm/sec,
Corrosion using an oxygen concentration battery under optimal corrosion conditions for metallic iron contact materials elutes iron ions in an amount suitable for the reaction, so the eluted iron ions react with phosphate ions in the wastewater, resulting in the formation of poorly soluble materials. An iron phosphate salt, for example an amorphous iron phosphate salt, is formed and precipitated with the sludge to remove phosphorus from the wastewater.

このような本発明の電気化学的脱燐法による
と、排水の流入条件の変動に対して緩衝力が強
く、安定した処理機能を保つことができる。
According to the electrochemical dephosphorization method of the present invention, the buffering force is strong against fluctuations in the inflow conditions of wastewater, and a stable treatment function can be maintained.

また、この場合、排水中に溶出した鉄イオン
が、アルカリ度の消費を抑え、PHを至適範囲内に
保つので、従来の排水の脱燐法に比して、燐除去
率を大巾に向上することができる。
In addition, in this case, the iron ions eluted into the wastewater suppress the consumption of alkalinity and keep the pH within the optimum range, greatly increasing the phosphorus removal rate compared to conventional wastewater dephosphorization methods. can be improved.

〔実施例〕〔Example〕

以下に、添付図面を参照して本発明の実施の態
様の一例を説明するが、本発明は、以下の説明及
び例示によつて何ら制限されるものではない。
An example of an embodiment of the present invention will be described below with reference to the accompanying drawings, but the present invention is not limited in any way by the following description and examples.

第1図は、本発明の一実施例に係る排水処理装
置の概略的な流れ図であり、第2図は、他の一実
施例についての流れ図であり、単一槽による回分
式の例を示す。
FIG. 1 is a schematic flowchart of a wastewater treatment device according to one embodiment of the present invention, and FIG. 2 is a flowchart of another embodiment, showing an example of a batch system using a single tank. .

第3図は、第1図に示す排水処理装置における
平板状鋼製接触材に対する燐負荷と燐除去率の関
係図である。
FIG. 3 is a diagram showing the relationship between the phosphorus load and the phosphorus removal rate for the flat steel contact material in the wastewater treatment apparatus shown in FIG. 1.

第1図において、1は排水処理槽、2は排水処
理槽1内底部に配置された曝気装置、3は処理槽
1内に適切な間隔で浸漬された複数の平板状鋼製
接触材を示す。4は排水処理槽1の混合液を固液
分離するための沈殿槽、5は排水処理槽1の混合
液を沈殿槽へ移送する移送管、6は沈殿槽の上澄
液を排出する排出管である。
In Fig. 1, 1 indicates a wastewater treatment tank, 2 indicates an aeration device placed at the bottom of the wastewater treatment tank 1, and 3 indicates a plurality of flat steel contact materials immersed in the treatment tank 1 at appropriate intervals. . 4 is a sedimentation tank for separating solid and liquid from the mixed liquid in the wastewater treatment tank 1, 5 is a transfer pipe for transferring the mixed liquid in the wastewater treatment tank 1 to the sedimentation tank, and 6 is a discharge pipe for discharging the supernatant liquid from the sedimentation tank. It is.

排水処理槽1に流入された排水は、排水処理槽
1と沈殿槽4と組合わされた装置で、燐、COD、
SS(浮遊物質)が除去され、沈殿槽4で、混合液
は上澄液と汚泥に沈殿分離され、上澄液は排出管
6より排出される。沈殿槽4で沈殿分離された汚
泥は系外に適宜引き抜かれる。
The wastewater flowing into the wastewater treatment tank 1 is treated with a device that combines the wastewater treatment tank 1 and the sedimentation tank 4, and is treated with phosphorus, COD,
SS (suspended solids) are removed, and the mixed liquid is separated by precipitation into supernatant liquid and sludge in settling tank 4, and supernatant liquid is discharged from discharge pipe 6. The sludge that has been precipitated and separated in the settling tank 4 is appropriately drawn out of the system.

本発明の一実施例の処理装置によつて、燐除去
についての比較実験を行つた。
A comparative experiment regarding phosphorus removal was conducted using a processing apparatus according to an embodiment of the present invention.

金属製品製造工場排水中の燐濃度が8乃至17
mg/の時、本例において、溶存酸素濃度を1.5
mg/、酸化還元電位を−200mV、PH値を7.3、
撹拌流速を13cm/秒、燐負荷が1.0g/m2・dで
実験を行つた。石炭凝集沈殿法の場合、流入変動
により、燐除去率が30乃至80%と不安定であり、
一方、平板状鋼製接触材を浸漬させた場合は、処
理水中の燐濃度は常に1mg/以下、燐除去率が
90%以上で汚泥の凝集性が良くなり、COD及び
SSの除去率もきわめて高くなるとともに、透視
度も50度以上となり良好な結果が得られた。
Phosphorus concentration in wastewater from metal products manufacturing factory is 8 to 17
mg/, in this example, the dissolved oxygen concentration is 1.5
mg/, redox potential -200mV, PH value 7.3,
The experiment was conducted at a stirring flow rate of 13 cm/sec and a phosphorus load of 1.0 g/m 2 ·d. In the case of the coal coagulation sedimentation method, the phosphorus removal rate is unstable at 30 to 80% due to inflow fluctuations.
On the other hand, when the flat steel contact material is immersed, the phosphorus concentration in the treated water is always less than 1 mg/, and the phosphorus removal rate is low.
At 90% or more, sludge flocculation improves, reducing COD and
Good results were obtained, with an extremely high SS removal rate and a transparency of over 50 degrees.

さらに、本発明の方法を実施するためのもう一
つの排水処理装置の例について述べる。
Furthermore, another example of a wastewater treatment apparatus for carrying out the method of the present invention will be described.

第2図において、8は排水処理槽で、バツフル
9は、排水が流入される流入ゾーン10と前記排
水の処理ゾーン11とを仕切つている。12は上
澄液排出装置であり、排水処理槽8の排出側端部
に支軸13を介して上下動可能に設けられてお
り、上澄液排出装置12は、排出工程時に上澄液
を排出しながら液面とともに下降する。14は排
水処理槽8内の底部に配置されて排水処理槽8内
に空気を噴出するための曝気装置である。本例に
おいては、気液混合液を噴射するジエツトエアレ
ーシヨン装置が、目詰りしにくく、排水処理槽混
合液のみを噴射することにより、撹拌も行えるの
で、曝気装置14として使用されている。7は、
排水処理槽8内の処理ゾーン11に適切な間隔で
浸漬されている平板状鋼製接触材である。排水処
理槽8は、溶存酸素の濃度に応じて、曝気工程、
撹拌工程、沈殿工程、排出工程を順次繰り返すよ
うに運転制御される。
In FIG. 2, reference numeral 8 denotes a wastewater treatment tank, and a buffer 9 separates an inlet zone 10 into which wastewater flows and a treatment zone 11 for the wastewater. Reference numeral 12 denotes a supernatant liquid discharge device, which is provided at the discharge side end of the wastewater treatment tank 8 so as to be movable up and down via a support shaft 13. The supernatant liquid discharge device 12 discharges the supernatant liquid during the discharge process. While draining, it descends with the liquid level. Reference numeral 14 denotes an aeration device disposed at the bottom of the wastewater treatment tank 8 for blowing air into the wastewater treatment tank 8. In this example, a jet aeration device that injects a gas-liquid mixture is used as the aeration device 14 because it is less likely to clog and can also perform agitation by injecting only the wastewater treatment tank mixture. 7 is
It is a flat steel contact material that is immersed in a treatment zone 11 in a wastewater treatment tank 8 at appropriate intervals. The wastewater treatment tank 8 performs an aeration process,
The operation is controlled so that the stirring process, precipitation process, and discharge process are repeated in sequence.

まず、排水処理槽8内の流入ゾーン10に排水
が流入される。この流入された排水は排水処理槽
8内で燐とともにCOD及びSSが除去される。曝
気工程では溶存酸素濃度が1.5mg/となつたと
ころで、曝気が停止されて、撹拌工程に移行す
る。
First, wastewater flows into the inflow zone 10 in the wastewater treatment tank 8 . From this inflowing wastewater, COD and SS are removed together with phosphorus in the wastewater treatment tank 8. In the aeration process, when the dissolved oxygen concentration reaches 1.5mg/, aeration is stopped and the stirring process begins.

そして、沈殿工程では懸濁物質が排水処理槽8
内に沈殿し、次の排出工程では、上澄液が上澄液
排出装置12から排出される。そして、余剰汚泥
が適宜引き抜かれる。
In the sedimentation process, the suspended solids are removed from the wastewater treatment tank 8.
In the next discharge process, the supernatant liquid is discharged from the supernatant liquid discharge device 12. Excess sludge is then appropriately extracted.

また、排水処理槽内へ浸漬する平板状鋼製接触
材の枚数を変化させ、平板状鋼製接触材表面積に
対する燐負荷と燐除去率の関係を調べた結果を第
3図に示す。これより、安定した燐除去を行うに
は、平板状鋼製接触材表面積に対する燐負荷を
0.3乃至1.0g/m2日の範囲内にする必要があるこ
とがわかる。
Furthermore, the number of flat steel contact materials immersed in the wastewater treatment tank was varied, and the relationship between phosphorus load and phosphorus removal rate with respect to the surface area of the flat steel contact materials was investigated. The results are shown in FIG. From this, in order to perform stable phosphorus removal, the phosphorus load relative to the surface area of the flat steel contact material must be reduced.
It can be seen that it is necessary to keep the amount within the range of 0.3 to 1.0 g/m 2 days.

〔発明の効果〕〔Effect of the invention〕

本発明においては、排水処理槽内に金属鉄接触
材を浸漬し、金属鉄接触材表面に、10乃至20cm/
secの範囲の撹拌流速の流れを与えながら、溶存
酸素濃度及び酸化還元電位を制御して、金属鉄の
至適腐食条件を保ち、酸素濃淡電池による電気化
学的腐食を行つているので、金属鉄接触材面の腐
食を進行させ、鉄イオンの溶出が促進され、鉄イ
オンと排水中の燐酸イオンと結合する機会が多く
なつて、溶出した鉄イオンと排水中の燐酸イオン
とが効率的に反応して、不溶性燐酸鉄塩例えば、
アモルフアス燐酸鉄を形成して再溶出し難くなる
ことにより、燐除去率が高くなり、かつ安定する
ことになる。このため、本発明による排水処理方
法では、従来の金属塩又は石灰凝集沈殿法、酸化
池法等の燐除去率が、20内至80%と不安定である
のに対し、コンスタントに80乃至90%と大巾に燐
除去率が向上するとともに維持管理が容易で、発
生汚泥量も少ないといつた顕著な効果がみられ
る。
In the present invention, the metal iron contact material is immersed in a wastewater treatment tank, and the surface of the metal iron contact material is coated 10 to 20 cm/
By controlling the dissolved oxygen concentration and oxidation-reduction potential while providing a flow with a stirring flow rate in the sec range, the optimal corrosion conditions for metallic iron are maintained, and electrochemical corrosion is performed using an oxygen concentration battery. Corrosion of the contact material surface progresses, elution of iron ions is promoted, and opportunities for iron ions to combine with phosphate ions in the wastewater increase, allowing the eluted iron ions to react efficiently with the phosphate ions in the wastewater. Insoluble iron phosphate salts, e.g.
By forming amorphous iron phosphate and making it difficult to re-elute, the phosphorus removal rate becomes high and stable. Therefore, in the wastewater treatment method according to the present invention, the phosphorus removal rate is constantly between 80% and 90%, whereas the phosphorus removal rate of conventional metal salt or lime coagulation precipitation methods, oxidation pond methods, etc. is unstable, ranging from 20% to 80%. %, the phosphorus removal rate is improved by a large margin, maintenance is easy, and the amount of sludge generated is small.

また、本発明においては、さらに、一般的な凝
集沈殿法で鉄塩により排水中の燐除去を行うに
は、理論的な必要量の3乃至5倍程度の添加が必
要であるが、本発明では制御された最適な条件下
で、腐食によつて鉄イオンを溶出させ、直ちに排
水中の燐酸イオンと効果的に反応させるので、鉄
イオンの必要量が略理論量で足り、経済的でかつ
運転が容易である。
Furthermore, in the present invention, in order to remove phosphorus from wastewater using iron salt using a general coagulation-sedimentation method, it is necessary to add about 3 to 5 times the theoretically necessary amount; Under optimal controlled conditions, iron ions are eluted through corrosion and immediately react effectively with phosphate ions in the wastewater, so the required amount of iron ions is approximately the theoretical amount, making it economical and effective. Easy to drive.

また、従来の凝集沈殿法による排水処理装置で
は、流入条件の変化に対応した運転管理の手法が
難しいので燐除去率が変動し、安定した燐除去率
を期待することが難しいが、本発明では、至適範
囲内の運転で確実に脱燐処理ができる。
In addition, with conventional wastewater treatment equipment using the coagulation-sedimentation method, the phosphorus removal rate fluctuates because it is difficult to manage the operation in response to changes in inflow conditions, making it difficult to expect a stable phosphorus removal rate. , Dephosphorization can be reliably carried out by operating within the optimum range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る排水処理装
置の概略的な流れ図であり、第2図は、他の一実
施例についての流れ図であり、単一槽による回分
式の例を示す。第3図は、第1図に示す排水処理
装置における平板状鋼製接触材に対する燐負荷と
燐除去率の関係図である。 図中の符号については、1は排水処理槽、2は
曝気装置、3は平板状鋼製接触材、4は沈殿槽、
5は移送管、6は排出管、7は平板状鋼製接触
材、8は排水処理槽、9はバツフル、10は流入
ゾーン、11は処理ゾーン、12は上澄液排出装
置、13は支軸、14は曝気装置である。
FIG. 1 is a schematic flowchart of a wastewater treatment device according to one embodiment of the present invention, and FIG. 2 is a flowchart of another embodiment, showing an example of a batch system using a single tank. . FIG. 3 is a diagram showing the relationship between the phosphorus load and the phosphorus removal rate for the flat steel contact material in the wastewater treatment apparatus shown in FIG. 1. Regarding the symbols in the figure, 1 is a wastewater treatment tank, 2 is an aeration device, 3 is a flat steel contact material, 4 is a settling tank,
5 is a transfer pipe, 6 is a discharge pipe, 7 is a flat steel contact material, 8 is a wastewater treatment tank, 9 is a buttful, 10 is an inflow zone, 11 is a treatment zone, 12 is a supernatant liquid discharge device, 13 is a support The shaft 14 is an aeration device.

Claims (1)

【特許請求の範囲】[Claims] 1 排水が流入する処理槽内に金属鉄接触材を浸
漬させ、金属鉄接触材表面の撹拌流速を10乃至20
センチメートル/秒の範囲の流れとさせながら、
処理槽内の溶存酸素濃度を1乃至3.2ミリグラ
ム/リツトル、酸化還元電位を−200乃至−400ミ
リボルト及びPH7.3乃至7.5の範囲内で、金属鉄接
触材表面の酸素濃淡電池による電気化学的鉄腐食
を利用して、金属鉄接触材から鉄イオンを溶出さ
せ、この金属鉄接触材面より溶出した鉄イオンと
排水中の燐酸イオンを結合させ、不溶性燐酸鉄塩
として排水中の燐除去を行うことを特徴とする無
機性汚濁物質を主体とする燐含有排水処理方法。
1. Immerse the metal iron contact material in the treatment tank into which wastewater flows, and set the agitation flow rate on the surface of the metal iron contact material to 10 to 20
While the flow is in the centimeter/second range,
Electrochemical iron treatment using an oxygen concentration battery on the surface of the metallic iron contact material is carried out within the range of dissolved oxygen concentration in the treatment tank of 1 to 3.2 milligrams/liter, redox potential of -200 to -400 millivolts, and pH of 7.3 to 7.5. Using corrosion, iron ions are eluted from the metal iron contact material, and the iron ions eluted from the surface of the metal iron contact material are combined with phosphate ions in the wastewater to remove phosphorus from the wastewater as insoluble iron phosphate salts. A method for treating phosphorus-containing wastewater mainly containing inorganic pollutants.
JP4546988A 1988-02-27 1988-02-27 Waste water treatment method Granted JPH01218683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4546988A JPH01218683A (en) 1988-02-27 1988-02-27 Waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4546988A JPH01218683A (en) 1988-02-27 1988-02-27 Waste water treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP24642590A Division JPH03114587A (en) 1990-09-17 1990-09-17 Treatment of phosphorus-containing waste water based on inorganic pollutant

Publications (2)

Publication Number Publication Date
JPH01218683A JPH01218683A (en) 1989-08-31
JPH0325236B2 true JPH0325236B2 (en) 1991-04-05

Family

ID=12720243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4546988A Granted JPH01218683A (en) 1988-02-27 1988-02-27 Waste water treatment method

Country Status (1)

Country Link
JP (1) JPH01218683A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057397U (en) * 1991-02-05 1993-02-02 株式会社西原環境衛生研究所 Contact aeration sewage treatment equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268397A (en) * 1985-05-23 1986-11-27 Nishihara Environ Sanit Res Corp Treatment of sewage
JPS62250994A (en) * 1986-04-22 1987-10-31 Unitika Ltd Treatment of sewage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268397A (en) * 1985-05-23 1986-11-27 Nishihara Environ Sanit Res Corp Treatment of sewage
JPS62250994A (en) * 1986-04-22 1987-10-31 Unitika Ltd Treatment of sewage

Also Published As

Publication number Publication date
JPH01218683A (en) 1989-08-31

Similar Documents

Publication Publication Date Title
US5098567A (en) Waste water treating process
US4029575A (en) Phosphorus removal from waste water
US20070151932A1 (en) Removal of phosphorous from wastewater
CA2084327A1 (en) Lime neutralization process for treating acidic waters
CN106396247A (en) A gelatin waste water treating method
JP2000140884A (en) Waste water treatment and waste water treatment device
JP2005246249A (en) Method for recovering phosphorus and its apparatus
JPH0376198B2 (en)
JP4685224B2 (en) Waste water treatment method and waste water treatment equipment
CN111153557A (en) Integrated treatment device and treatment process for pickling and phosphating production wastewater
JPH0325236B2 (en)
US3562015A (en) Treatment of phosphate type carry-over on metal workpieces
JPH0476753B2 (en)
JP3933230B2 (en) Nitrogen-containing organic wastewater treatment method
JP3919651B2 (en) Method for removing anions by formation of chemical precipitates under electric field and method for continuous anion removal
CN206680307U (en) A kind of filtering neutralizing tower of stainless steel production waste water
JPS593679B2 (en) Water treatment equipment in circulating cooling water system
JP4190679B2 (en) Method and apparatus for treating phosphorus-containing water
JP2003039081A (en) Phosphorus recovery apparatus
JPH0515517B2 (en)
CN209367995U (en) Integrated decleaning tank
JPH0318959B2 (en)
JP3634403B2 (en) Denitrification and dephosphorization methods in oxidation ditch
JPS6274496A (en) Method for treating waste water
JPS5910395A (en) Biological treatment device using 6-shaped water channel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees