JPH0769634A - Production of composition - Google Patents

Production of composition

Info

Publication number
JPH0769634A
JPH0769634A JP5212879A JP21287993A JPH0769634A JP H0769634 A JPH0769634 A JP H0769634A JP 5212879 A JP5212879 A JP 5212879A JP 21287993 A JP21287993 A JP 21287993A JP H0769634 A JPH0769634 A JP H0769634A
Authority
JP
Japan
Prior art keywords
aqueous solution
hydrothermal
powder
group element
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5212879A
Other languages
Japanese (ja)
Other versions
JP3838523B2 (en
Inventor
Mitsutoshi Kawamoto
光俊 川本
Yukio Hamachi
幸生 浜地
Kunisaburo Tomono
国三郎 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP21287993A priority Critical patent/JP3838523B2/en
Publication of JPH0769634A publication Critical patent/JPH0769634A/en
Application granted granted Critical
Publication of JP3838523B2 publication Critical patent/JP3838523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a producing method capable of obtaining a ABO3 type compound composed of uniform and spherical particles of <1mum, preferably <0.5mum particle diameter, having 1.000+ or -0.002mol ratio of A group element to B group element, excellent in crystallinity and extremely little in impurities such as alkali metals. CONSTITUTION:This producing method is composed of (a) a 1st process for obtaining a slurry mixture of at least one kind of salts of A group element composed of Mg, Ca, Sr, Ba and Pb and at least one kind of salts of B group element composed of Ti, Zr, Hf and Sn with water or an alkaline aq. solution, (b) a 2nd process for obtaining a hydrothermal synthetic powder by the hydrothermal reaction of the slurry mixture and after repeating cleaning several times, filtering and drying, (c) a 3rd process for allowing a mixture of the hydrothermal synthetic powder obtained in the 2nd process with the alkaline aq. solution to hydrothermally react. For instance, the obtained powdery barium titanate is 0.2-0.3mum in particle diameter, 0.999 in Ba/Ti ratio, 100ppm in Na content and 20ppm in Cl content.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はペロブスカイト型化合物
を含有する組成物の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a composition containing a perovskite type compound.

【0002】[0002]

【従来の技術】近年電子デバイスは著しく小型高性能化
している。これに対応して、電子デバイスを構成するセ
ラミック電子部品も同様であり、小型高性能を目的とし
て、セラミックの製造工程の改良が種々検討されてきた
が、ほとんどその限界に達してきている。したがって、
現状よりさらに優れたセラミックスを得るためには、そ
の素材を改善する必要性がある。
2. Description of the Related Art In recent years, electronic devices have become significantly smaller and have higher performance. Correspondingly, the same applies to the ceramic electronic parts constituting the electronic device, and various improvements in the manufacturing process of the ceramic have been studied for the purpose of miniaturization and high performance, but the limit has almost been reached. Therefore,
In order to obtain ceramics that are even better than the current situation, it is necessary to improve the material.

【0003】例えば、誘電体セラミックスとしては、1
μm以下好ましくは0.5μm以下の均一で球形状のペ
ロブスカイト型化合物(以下、ABO3型化合物とい
う)が研究されている。このような粒径のABO3型化
合物は、粒径が小さければ表面エネルギ−が高くなり、
粒径分布が均一で球状であれば、成形時のパッキングが
よくなるため、焼結性は著しく改善され、より低い温度
で緻密強固なセラミックスが得られる。さらに、積層セ
ラミックコンデンサの薄層化・多積層化を実現させるた
めに、厚み10μm以下のセラミックグリ−ンシ−トが
要求されているが、その場合も、1μm以下好ましくは
0.5μm以下の均一で球形状のABO3型化合物が必
要になる。
For example, as the dielectric ceramics, 1
A uniform and spherical perovskite-type compound (hereinafter referred to as ABO 3 type compound) having a size of μm or less, preferably 0.5 μm or less has been studied. The ABO 3 type compound having such a particle size has a high surface energy when the particle size is small,
If the particle size distribution is uniform and spherical, packing at the time of molding is improved, so the sinterability is remarkably improved, and dense and strong ceramics can be obtained at a lower temperature. Further, a ceramic green sheet having a thickness of 10 μm or less is required in order to realize thinning and multi-layering of a monolithic ceramic capacitor, and in that case as well, 1 μm or less, preferably 0.5 μm or less of uniform thickness. Therefore, a spherical ABO 3 type compound is required.

【0004】従来より、ABO3型化合物、例えばチタ
ン酸バリウムの製造方法としては、炭酸バリウムと酸化
チタンを1000℃以上の高温で反応(仮焼)させてチ
タン酸バリウムを合成し、機械的に粉砕、分級する方法
(固相合成法)が知られている。また、これに対して、
湿式合成法として、金属アルコキシド法、水酸化物法、
水熱合成法等が知られている。
Conventionally, as a method for producing an ABO 3 type compound such as barium titanate, barium carbonate and titanium oxide are reacted (calcined) at a high temperature of 1000 ° C. or more to synthesize barium titanate and mechanically A method of pulverizing and classifying (solid phase synthesis method) is known. Against this,
As a wet synthesis method, a metal alkoxide method, a hydroxide method,
Hydrothermal synthesis method and the like are known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、固相合
成法の場合、仮焼後のチタン酸バリウムが固結している
ため、機械的粉砕、分級を行っても1μm以下の微細な
状態にするのは困難である。またその粒子形状は破砕物
状になっているため、これを任意の形状に成形して焼結
した場合、焼結性に欠けていた。さらに、前述したよう
に、積層セラミックコンデンサの薄層化・多積層化を実
現させるためには、厚み10μm以下のセラミックグリ
−ンシ−トを問題なく成形することが必要であるが、固
相合成法で得られたチタン酸バリウム粉末を用いた場
合、グリ−ンシ−トの生密度が低下したり、あるいは、
グリ−ンシ−トの厚みばらつきが大きくなったりという
不具合が生じていた。
However, in the case of the solid phase synthesis method, since barium titanate after calcination is solidified, even if it is mechanically pulverized and classified, it becomes a fine state of 1 μm or less. Is difficult. Further, since the particle shape thereof is a crushed product, when this was molded into an arbitrary shape and sintered, it lacked in sinterability. Further, as described above, in order to realize the thinning and multi-layering of the monolithic ceramic capacitor, it is necessary to form a ceramic green sheet having a thickness of 10 μm or less without any problem. When using barium titanate powder obtained by the method, the green density of the green sheet is reduced, or,
There was a problem that the thickness variation of the green sheet became large.

【0006】また、湿式合成法に関して言えば、金属ア
ルコキシド法の場合、原料が高価で工業化には問題があ
る。一方、水酸化物法については、原料も比較的安価で
あり、得られる粉末も焼結性が高いという点で注目され
ている。
Further, regarding the wet synthesis method, in the case of the metal alkoxide method, the raw materials are expensive and there is a problem in industrialization. On the other hand, the hydroxide method has been attracting attention because the raw material is relatively inexpensive and the obtained powder has high sinterability.

【0007】たとえば、特開昭60−90825号公報
において、チタン酸と水酸化バリウムを多量の水の存在
化で、沸点以下の温度で加熱する方法がとられている
が、この場合、チタン酸をあらかじめ調整しなければな
らない。例えば、チタン酸をチタン化合物の水溶液の中
和によって沈澱させた場合には、コロイドであるため、
洗浄および濾過が工業的に困難であるという問題があ
る。
For example, in JP-A-60-90825, a method of heating titanic acid and barium hydroxide at a temperature below the boiling point in the presence of a large amount of water is used. In this case, titanic acid is used. Must be adjusted in advance. For example, when titanic acid is precipitated by neutralizing an aqueous solution of a titanium compound, it is a colloid,
There is a problem that washing and filtration are industrially difficult.

【0008】また、特開昭59−39726号公報にお
いて、チタン塩の水溶液に塩化バリウム、硝酸バリウム
等水溶性バリウム塩を溶解させ、アルカリを加えてpH
を13以上に調整して、沸点以下で加熱する方法が提案
されている。しかしながら、この方法で得られるチタン
酸バリウム粉末は、粒子径が0.02〜0.03μmと
微細すぎるため、成形加工した場合の密度が低く、焼結
時の収縮が大きいという問題があり、用途によっては好
ましくない場合がある。
Further, in JP-A-59-39726, a water-soluble barium salt such as barium chloride or barium nitrate is dissolved in an aqueous solution of titanium salt, and alkali is added to adjust the pH.
Is adjusted to 13 or more and heating at a boiling point or lower is proposed. However, since the barium titanate powder obtained by this method has a particle size of 0.02 to 0.03 μm, which is too fine, it has a problem that the density when molded is low and the shrinkage during sintering is large. Depending on the case, it may not be preferable.

【0009】水熱合成法に関しては、積層セラミックコ
ンデンサの薄層化・多積層化に耐え得るのに最適なチタ
ン酸バリウム粉末を得ることができるとして、近年特に
注目されている。
With respect to the hydrothermal synthesis method, attention has recently been paid particularly to the fact that it is possible to obtain the barium titanate powder most suitable for withstanding the thinning and multi-layering of a monolithic ceramic capacitor.

【0010】たとえば、特開昭61−31345号公報
では、Ba、Sr等のA群元素及びTi、Zr等のB群
元素の水酸化物の所望のA/B比の混合物を水性媒体中
で水熱反応させた後、水性媒体中に溶存するA群元素を
水不溶性の形にして濾過、水洗、乾燥させる方法が提案
されている。ところが、この場合、A群元素を水不溶性
の形にするいわゆる不溶化剤の添加量を、製造ロット毎
に決めなければならない煩雑さが生じてくる。つまり、
水熱反応において、製造ロット毎に反応率にばらつきが
あるため、そのたびごとに、濾液に溶存しているA群元
素イオン濃度を分析し、その値に応じて不溶化剤の添加
量を決定する必要がある。
For example, in JP-A-61-31345, a mixture of a group A element such as Ba and Sr and a group B element hydroxide such as Ti and Zr in a desired A / B ratio is prepared in an aqueous medium. A method has been proposed in which, after hydrothermal reaction, a group A element dissolved in an aqueous medium is made into a water-insoluble form, followed by filtration, washing with water and drying. However, in this case, the amount of the so-called insolubilizing agent that makes the group A element insoluble in water has to be determined for each production lot, which is complicated. That is,
In the hydrothermal reaction, the reaction rate varies depending on the production lot. Therefore, the concentration of group A element ions dissolved in the filtrate is analyzed each time, and the amount of the insolubilizer added is determined according to the value. There is a need.

【0011】また、特開昭62−72525号公報で
は、四塩化チタンの水溶液に、バリウム等の炭酸塩、塩
化物、硝酸塩のうち、いずれか1種類の化合物を溶解さ
せ、水酸化ナトリウムまたは水酸化カリウムを加えて、
オ−トクレ−ブ中で加熱する方法が提案されている。し
かしながら、詳細に検討した結果、NaやK等のアルカ
リ金属不純物をどうしても除去することができず、例え
ば、合成されたチタン酸バリウム粉末中に800〜10
00ppm程度残存することが明らかとなった。
Further, in JP-A-62-72525, any one of carbonate, chloride and nitrate compounds such as barium is dissolved in an aqueous solution of titanium tetrachloride to prepare sodium hydroxide or water. Add potassium oxide,
A method of heating in an autoclave has been proposed. However, as a result of detailed examination, alkali metal impurities such as Na and K could not be removed by any means. For example, in the synthesized barium titanate powder, 800-10
It became clear that about 00 ppm remained.

【0012】本発明の目的は、1μm以下好ましくは
0.5μm以下の均一で球形状の粒子であり、かつ、A
サイト元素とBサイト元素のモル比が1.000±0.
002の範囲にあり、さらに、結晶性が良く、アルカリ
金属等の不純物が極めて少ないABO3型化合物が得ら
れる製造方法を提供することである。
The object of the present invention is to provide uniform spherical particles of 1 μm or less, preferably 0.5 μm or less, and A
The molar ratio of the site element and the B site element is 1.000 ± 0.
It is an object of the present invention to provide a method for producing an ABO 3 type compound having a crystallinity of 002, good crystallinity, and very few impurities such as alkali metals.

【0013】[0013]

【課題を解決するための手段】すなわち、本発明にかか
る組成物の製造方法の要旨とするところは、(a)M
g、Ca、Sr、Ba、及びPbよりなるA群元素から
選ばれる少なくとも1種の塩と、Ti、Zr、Hf及び
SnよりなるB群元素から選ばれる少なくとも1種の塩
と、水またはアルカリ性水溶液との混合物スラリ−を得
る第1工程、(b)前記混合物スラリ−を水熱反応させ
て水熱合成粉末を得る第2工程、(c)第2工程で得ら
れた水熱合成粉末とアルカリ性水溶液との混合物を水熱
反応させる第3工程、とからなることを特徴とする。
That is, the gist of the method for producing a composition according to the present invention is (a) M
g, Ca, Sr, Ba, and Pb, at least one salt selected from the group A elements, at least one salt selected from group B elements consisting of Ti, Zr, Hf, and Sn, water or alkaline A first step of obtaining a mixture slurry with an aqueous solution, (b) a second step of hydrothermally reacting the mixture slurry to obtain a hydrothermal synthetic powder, (c) a hydrothermal synthetic powder obtained in the second step, And a third step of hydrothermally reacting the mixture with the alkaline aqueous solution.

【0014】また、第3工程において、アルカリ性水溶
液としては、例えば、pHが7〜10の間に調整された
水酸化バリウム水溶液を用いる。
In the third step, as the alkaline aqueous solution, for example, a barium hydroxide aqueous solution having a pH adjusted to 7 to 10 is used.

【0015】第1工程で混合物スラリーを調整したの
ち、次の第2工程で混合物スラリーを水熱処理すること
により合成粉末が得られることになる。この合成粉末に
Li、Naなどのアルカリ金属が含まれている場合に
は、洗浄することが好ましい。洗浄回数はアルカリ金属
量が一定量まで低減できるまで任意繰り返せばよい。こ
ののち濾過、乾燥して乾燥粉末とする。この乾燥粉末は
次の第3工程にもちこまれ、アルカリ性水溶液と混合
し、この混合物を水熱反応させる。ここで、ABO3
化合物が含まれるアルカリ金属不純物をさらに低減させ
ることができる。
After the mixture slurry is prepared in the first step, the mixture slurry is hydrothermally treated in the next second step to obtain a synthetic powder. If the synthetic powder contains an alkali metal such as Li or Na, it is preferably washed. The number of times of washing may be arbitrarily repeated until the amount of alkali metal can be reduced to a certain amount. Then, it is filtered and dried to obtain a dry powder. This dry powder is brought to the next third step, mixed with an alkaline aqueous solution and the mixture hydrothermally reacted. Here, the alkali metal impurities including the ABO 3 type compound can be further reduced.

【0016】[0016]

【作用】本発明によれば、水熱合成して得られた粉末を
さらにアルカリ性水溶液と混合し、この混合物を水熱反
応させる工程を有しており、ここでABO3型化合物に
含まれるアルカリ金属不純物量を低減することができ
る。このようにして得られたABO3型化合物は粒子径
が小さく、粒度が均一で、球形状であるため、反応性が
よく、焼結温度を低下させることができる。また、粉砕
工程が省けるため、粉砕による不純物の混入を防げる。
According to the present invention, there is a step of further mixing the powder obtained by hydrothermal synthesis with an alkaline aqueous solution, and subjecting this mixture to a hydrothermal reaction, in which the alkali contained in the ABO 3 type compound is used. The amount of metal impurities can be reduced. The ABO 3 type compound thus obtained has a small particle size, a uniform particle size, and a spherical shape, so that it has good reactivity and can lower the sintering temperature. Further, since the crushing step can be omitted, it is possible to prevent impurities from being mixed by crushing.

【0017】[0017]

【実施例】 (実施例1)0.1molのTi(O−iC374と、イ
ソプロピルアルコ−ル(以下、IPAという)30ml
を、ポリフッ化エチレン系樹脂製ビ−カ−に入れる。次
に、この溶液をウルトラディスパ−サ−にて攪拌しなが
ら、0.6molのNaOH水溶液を含有する135mlで
加水分解を行う。そして、0.1molのBaCl2・2H
2Oを投入する(第1工程)。
EXAMPLES Example 1 0.1 mol of Ti (O—iC 3 H 7 ) 4 and 30 ml of isopropyl alcohol (hereinafter referred to as IPA)
Is placed in a beaker made of polyfluorinated ethylene resin. Next, this solution is hydrolyzed with 135 ml containing 0.6 mol of an aqueous NaOH solution while being stirred with an ultra disperser. And 0.1 mol of BaCl 2 · 2H
2 O is charged (first step).

【0018】この混合物スラリ−をポリフッ化エチレン
系樹脂製ビ−カ−に入れて、オ−トクレ−ブ装置に装着
し、温度:170℃、圧力:16kg/cm2の条件で4時
間、ポリフッ化エチレン系樹脂製の攪拌棒を用いて、1
50rpmで攪拌させながら水熱合成を行った。得られた
沈殿物を取り出し、水洗及び濾過を数回繰り返した後、
乾燥及び解砕をへて原料粉末を得た(第2工程)。この
粉末の粒子径は0.2〜0.3μmであり、Ba/Ti
比:1.001、Na量:1000ppm、Cl量:20p
pmであった。
This mixture slurry was placed in a beaker made of polyfluoroethylene resin and mounted in an autoclave apparatus, and the polyfluoride was kept for 4 hours under the conditions of temperature: 170 ° C. and pressure: 16 kg / cm 2. Using a stir bar made of ethylene oxide resin, 1
Hydrothermal synthesis was performed while stirring at 50 rpm. The precipitate obtained is taken out, washed with water and filtered several times,
A raw material powder was obtained by drying and crushing (second step). The particle diameter of this powder is 0.2 to 0.3 μm, and Ba / Ti
Ratio: 1.001, Na amount: 1000 ppm, Cl amount: 20 p
It was pm.

【0019】次に、その粉末20gとpH=10に調整
された水酸化バリウム水溶液200mlとを、上記同様ポ
リフッ化エチレン系樹脂製ビ−カ−に入れ、そのビ−カ
−をオ−トクレ−ブ装置に装着し、温度:200℃、圧
力:15kg/cm2の条件で4時間、ポリフッ化エチレン系
樹脂製の攪拌棒を用いて、150rpmで攪拌させながら
水熱処理を行った。処理終了後、濾過、乾燥及び解砕を
へて原料粉末を得た(第3工程)。この粉末の粒子径は
0.2〜0.3μmであり、Ba/Ti比:0.99
9、Na量:100ppm、Cl量:20ppmであった。図
1はこの方法で得られた組成物のX線回折パタ−ンであ
り、(110)の鋭いピークから立方晶のペロブスカイ
ト構造を有していることを示している。
Next, 20 g of the powder and 200 ml of an aqueous barium hydroxide solution adjusted to pH = 10 were placed in a polyfluorinated ethylene resin beaker as above, and the beaker was autoclaved. It was attached to a heating device and subjected to hydrothermal treatment under the conditions of temperature: 200 ° C. and pressure: 15 kg / cm 2 for 4 hours while stirring at 150 rpm using a stirring rod made of polyfluoroethylene resin. After completion of the treatment, filtration, drying and crushing were performed to obtain a raw material powder (third step). The powder has a particle size of 0.2 to 0.3 μm and a Ba / Ti ratio of 0.99.
9, Na amount: 100 ppm, Cl amount: 20 ppm. FIG. 1 is an X-ray diffraction pattern of the composition obtained by this method and shows that it has a cubic perovskite structure from the sharp peak of (110).

【0020】各工程について若干説明を付け加えると、
第1工程においてBaとTiを等モルの割合で仕込んで
いるが、第2工程水熱合成後モル比ずれが起きる。これ
を防ぐにはBaおよびTiの仕込み濃度の少なくとも4
倍、好ましくは6倍以上のOH濃度が必要である。
A brief description of each step is as follows:
Although Ba and Ti are charged in an equimolar ratio in the first step, a molar ratio shift occurs after the second step hydrothermal synthesis. To prevent this, at least 4 of the concentrations of Ba and Ti should be added.
The OH concentration is required to be twice, preferably 6 times or more.

【0021】次に、第2工程後、洗浄を行うが、Ba抜
けを防ぐためアルカリ性の水溶液で数回洗浄する。アル
カリ性のpHとしては少なくとも9以上である。なお、
洗浄回数は、Na、K、Cl等の不純物低減に影響して
いる。Clに関しては2〜3回の洗浄でほぼ完全に除去
できるが、NaやK等のアルカリ金属不純物は、ある濃
度に達すると、その後何回洗浄しても低減せず一定であ
る。本実施例においては残存Na量は3回目以降の洗浄
で1000ppmのままであった。これは、Na等のアル
カリ金属不純物がチタン酸バリウムの結晶格子の中に取
り込まれているものと推察される。
Next, after the second step, washing is carried out, but washing is carried out several times with an alkaline aqueous solution in order to prevent Ba escape. The alkaline pH is at least 9 or higher. In addition,
The number of times of cleaning affects the reduction of impurities such as Na, K and Cl. Although Cl can be almost completely removed by washing 2-3 times, when an alkali metal impurity such as Na or K reaches a certain concentration, it does not decrease and is constant no matter how many times it is washed thereafter. In this example, the amount of residual Na remained at 1000 ppm after the third and subsequent washings. It is presumed that this is because alkali metal impurities such as Na are incorporated in the crystal lattice of barium titanate.

【0022】この残存Naの低減は第3工程の再水熱処
理を行うことで解決することがわかった。このことは、
今までの公知例からは、全く予想し得なかった極めて新
しい事実である。再水熱処理条件としては温度は高いほ
どよいが、ポリフッ化エチレン系樹脂製ビ−カ−を使用
する場合は、200℃以下が望ましい。また反応時間は
4時間で充分である。
It was found that this reduction of residual Na can be solved by performing the re-hydrothermal treatment in the third step. This is
This is a very new fact that could not have been predicted from the known examples up to now. As the re-hydrothermal treatment condition, the higher the temperature, the better. However, when a polyfluorinated ethylene resin beaker is used, it is preferably 200 ° C or lower. A reaction time of 4 hours is sufficient.

【0023】加えて、再水熱処理時の溶液については、
Ba抜けを防ぐためにアルカリ性にしておく必要があ
る。アルカリ性を付与するものとして、アンモニア水、
水酸化ナトリウム溶液や水酸化カリウム溶液などのアル
カリ金属を含む水溶液、水酸化バリウム溶液などのアル
カリ土類金属を含む水溶液が考えられる。
In addition, regarding the solution at the time of rehydrothermal treatment,
It is necessary to make it alkaline so as to prevent Ba escape. Ammonia water, which gives alkalinity,
An aqueous solution containing an alkali metal such as a sodium hydroxide solution or a potassium hydroxide solution and an aqueous solution containing an alkaline earth metal such as a barium hydroxide solution are considered.

【0024】この中で、アンモニア水は水熱処理条件下
ではアンモニアが揮発し、pHの低下によるBa抜けが
生じることと、揮発したアンモニアがポリフッ化エチレ
ン系樹脂製ビーカーなどと反応するなど好ましくない。
また、水酸化ナトリウム溶液などアルカリ金属を含む水
溶液は、この発明で得られる組成物からアルカリ金属を
除去することも目的の一つであるから使用できない。
Among these, ammonia water is not preferable because under the condition of hydrothermal treatment, the ammonia volatilizes to cause Ba loss due to a decrease in pH, and the volatilized ammonia reacts with a beaker made of a polyfluoroethylene resin.
Further, an aqueous solution containing an alkali metal such as a sodium hydroxide solution cannot be used because it is one of the purposes to remove the alkali metal from the composition obtained by the present invention.

【0025】従って、水酸化バリウム溶液などのアルカ
リ土類金属を含む水溶液がよい。特に、水酸化バリウム
溶液がよく、その際のpHは7〜10好ましくは9〜1
0の間に設定するのがよい。pHが10を越えると、最
終的に得られる粉末のBa/Tiの比がBaが多い側に
ずれるし、pHが9以下であれば水熱処理条件化におい
て、Ba抜けを起こすことになる。
Therefore, an aqueous solution containing an alkaline earth metal such as a barium hydroxide solution is preferable. Particularly, a barium hydroxide solution is preferable, and the pH at that time is 7 to 10 and preferably 9 to 1
It is better to set it between 0. If the pH exceeds 10, the Ba / Ti ratio of the finally obtained powder will shift to the side with a large amount of Ba, and if the pH is 9 or less, Ba will be lost under hydrothermal treatment conditions.

【0026】(実施例2)0.1molのTi(O−iC3
74と、IPA30mlとを、ポリフッ化エチレン系樹
脂製ビ−カ−に入れて、ウルトラディスパ−サ−にて攪
拌しながら、0.6molのNaOHを含有する水溶液1
35mlにて加水分解を行う。そして、0.1molのSr
Cl2を入れる(第1工程)。
[0026] (Example 2) 0.1 mol of Ti (O-iC 3
H 7 ) 4 and 30 ml of IPA were put into a polyfluorinated ethylene resin beaker and stirred with an ultra disperser, and an aqueous solution containing 0.6 mol of NaOH 1
The hydrolysis is carried out with 35 ml. And 0.1 mol of Sr
Add Cl 2 (first step).

【0027】この混合物スラリ−を中に含むポリフッ化
エチレン系樹脂製ビ−カ−をオ−トクレ−ブ装置に装着
し、温度:170℃、圧力16kg/cm2の条件で4時間、
ポリフッ化エチレン系樹脂製の攪拌棒を用いて、150
rpmで攪拌させながら水熱処理を行った。得られた沈殿
物を取り出し、水洗及び濾過を数回繰り返した後、乾燥
及び解砕をへて原料粉末を得た(第2工程)。この粉末
の粒子径は0.1〜0.2μmであり、Sr/Ti比:
1.002、Na量:900ppm、Cl量:10ppmであ
った。
A beaker made of a polyfluoroethylene resin containing the mixture slurry was mounted in an autoclave apparatus, and the temperature was 170 ° C. and the pressure was 16 kg / cm 2 for 4 hours.
Use a stirring rod made of polyfluorinated ethylene resin to
Hydrothermal treatment was performed while stirring at rpm. The resulting precipitate was taken out, washed with water and filtered several times, then dried and crushed to obtain a raw material powder (second step). The particle diameter of this powder is 0.1 to 0.2 μm, and the Sr / Ti ratio is:
The amount was 1.002, the amount of Na was 900 ppm, and the amount of Cl was 10 ppm.

【0028】次に、上記粉末20gとpH=10に調整
された水酸化バリウム水溶液200mlとをポリフッ化エ
チレン系樹脂製ビ−カ−に入れ、このビ−カ−をオ−ト
クレ−ブ装置に装着し、温度:200℃、圧力:15kg
/cm2の条件で4時間、ポリフッ化エチレン系樹脂製の攪
拌棒を用いて、150rpmで攪拌させながら水熱処理を
行った。処理終了後、濾過、乾燥及び解砕をへて原料粉
末を得た(第3工程)。
Next, 20 g of the above powder and 200 ml of a barium hydroxide aqueous solution adjusted to pH = 10 were placed in a polyfluorinated ethylene resin beaker, and this beaker was placed in an autoclave apparatus. Attached, temperature: 200 ℃, pressure: 15kg
The hydrothermal treatment was performed for 4 hours under the condition of / cm 2 using a stirring rod made of polyfluoroethylene resin while stirring at 150 rpm. After completion of the treatment, filtration, drying and crushing were performed to obtain a raw material powder (third step).

【0029】この粉末の粒子径及び粒子形状は、電子顕
微鏡による観察の結果、0.1〜0.2μmで球形状で
あり、Sr/Ti比:0.998、Na量:80ppm、
Cl量:10ppmであった。またX線回折の結果より、
立方晶のペロブスカイト構造を有するチタン酸ストロン
チウムが生成していた。
As a result of observation with an electron microscope, the particle diameter and particle shape of this powder were 0.1 to 0.2 μm and spherical, Sr / Ti ratio: 0.998, Na amount: 80 ppm,
Cl amount: 10 ppm. Moreover, from the result of X-ray diffraction,
Strontium titanate having a cubic perovskite structure was formed.

【0030】上述のように実施例に関しては、チタン酸
バリウム(BaTiO3)粉末及びチタン酸ストロンチ
ウム(SrTiO3)粉末に関して述べたが、例えば、
CaTiO3、(Ba,Ca)TiO3、Ba(Ti,Z
r)O3、(Ba,Ca)(Ti,Zr)O3等の粉末に
ついても、もちろん同様な方法で製造できる。
As described above, the examples have been described with reference to barium titanate (BaTiO 3 ) powder and strontium titanate (SrTiO 3 ) powder.
CaTiO 3 , (Ba, Ca) TiO 3 , Ba (Ti, Z
Powders such as r) O 3 and (Ba, Ca) (Ti, Zr) O 3 can of course be manufactured by the same method.

【0031】[0031]

【発明の効果】本発明により製造されたABO3型粉末
は、粒子径が0.1〜0.3μmで球形状であり、か
つ、A/B比が1.000±0.002の範囲にある。
また、結晶性が良く、アルカリ金属の不純物が極めて少
ない。これらの特徴を有するABO3型粉末は、積層セ
ラミックコンデンサの薄層化・多積層化に加え、高機能
化・高信頼性化に対応できる。
The ABO 3 type powder produced according to the present invention has a spherical shape with a particle size of 0.1 to 0.3 μm and an A / B ratio within the range of 1.000 ± 0.002. is there.
Also, the crystallinity is good, and the impurities of alkali metal are extremely small. The ABO 3 type powder having these characteristics can support not only thinning and multi-layering of a monolithic ceramic capacitor, but also high functionality and high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1により生成されたチタン酸バリウムの
X線回折パタ−ンである。
FIG. 1 is an X-ray diffraction pattern of barium titanate produced in Example 1.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 3/00 H 9059−5G Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01B 3/00 H 9059-5G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a)Mg、Ca、Sr、Ba、及びP
bよりなるA群元素から選ばれる少なくとも1種の塩
と、Ti、Zr、Hf及びSnよりなるB群元素から選
ばれる少なくとも1種の塩と、水またはアルカリ性水溶
液との混合物スラリ−を得る第1工程、(b)前記混合
物スラリ−を水熱反応させて水熱合成粉末を得る第2工
程、(c)第2工程で得られた水熱合成粉末とアルカリ
性水溶液との混合物を水熱反応させる第3工程、とから
なることを特徴とするペロブスカイト型化合物を含有す
る組成物の製造方法。
1. (a) Mg, Ca, Sr, Ba, and P
to obtain a mixture slurry of at least one salt selected from the group A element consisting of b, at least one salt selected from the group B element consisting of Ti, Zr, Hf and Sn, and water or an alkaline aqueous solution. 1 step, (b) a second step of hydrothermally reacting the mixture slurry to obtain a hydrothermal synthetic powder, (c) a hydrothermal reaction of a mixture of the hydrothermal synthetic powder obtained in the second step and an alkaline aqueous solution And a third step of allowing the perovskite-type compound to be contained in the composition.
【請求項2】 前記第3工程において、アルカリ性水溶
液として、pHが7〜10の間に調整された水酸化バリ
ウム水溶液を用いることを特徴とする請求項1記載の組
成物の製造方法。
2. The method for producing a composition according to claim 1, wherein in the third step, a barium hydroxide aqueous solution having a pH adjusted to 7 to 10 is used as the alkaline aqueous solution.
JP21287993A 1993-08-27 1993-08-27 Method for producing the composition Expired - Lifetime JP3838523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21287993A JP3838523B2 (en) 1993-08-27 1993-08-27 Method for producing the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21287993A JP3838523B2 (en) 1993-08-27 1993-08-27 Method for producing the composition

Publications (2)

Publication Number Publication Date
JPH0769634A true JPH0769634A (en) 1995-03-14
JP3838523B2 JP3838523B2 (en) 2006-10-25

Family

ID=16629779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21287993A Expired - Lifetime JP3838523B2 (en) 1993-08-27 1993-08-27 Method for producing the composition

Country Status (1)

Country Link
JP (1) JP3838523B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234771A (en) * 2001-02-05 2002-08-23 Murata Mfg Co Ltd Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor
KR100451827B1 (en) * 2001-10-15 2004-10-08 (주)디오 Method for preparing barium titanates
KR100489403B1 (en) * 2002-05-30 2005-05-12 주식회사 나노 METHOD OF PREPARING BaTiO3 POWDER
JP2006298677A (en) * 2005-04-18 2006-11-02 National Institute Of Advanced Industrial & Technology Method for synthesizing ceramic powder
JP2008105870A (en) * 2006-10-23 2008-05-08 Tdk Corp Barium titanate powder, dielectric porcelain composition and electronic component
KR20120013981A (en) * 2009-04-10 2012-02-15 에스톨, 인코포레이티드 Hydrothermal processing in the wet-chemical preparation of mixed metal oxide ceramic powders
JP2020034654A (en) * 2018-08-28 2020-03-05 キヤノン株式会社 Image forming device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234771A (en) * 2001-02-05 2002-08-23 Murata Mfg Co Ltd Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor
JP4660935B2 (en) * 2001-02-05 2011-03-30 株式会社村田製作所 Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure
KR100451827B1 (en) * 2001-10-15 2004-10-08 (주)디오 Method for preparing barium titanates
KR100489403B1 (en) * 2002-05-30 2005-05-12 주식회사 나노 METHOD OF PREPARING BaTiO3 POWDER
JP2006298677A (en) * 2005-04-18 2006-11-02 National Institute Of Advanced Industrial & Technology Method for synthesizing ceramic powder
JP2008105870A (en) * 2006-10-23 2008-05-08 Tdk Corp Barium titanate powder, dielectric porcelain composition and electronic component
KR20120013981A (en) * 2009-04-10 2012-02-15 에스톨, 인코포레이티드 Hydrothermal processing in the wet-chemical preparation of mixed metal oxide ceramic powders
JP2012523369A (en) * 2009-04-10 2012-10-04 イーストー,インコーポレイティド Hydrothermal process for wet chemical preparation of mixed metal oxide ceramic powders
JP2020034654A (en) * 2018-08-28 2020-03-05 キヤノン株式会社 Image forming device

Also Published As

Publication number Publication date
JP3838523B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
EP0641740B1 (en) Process for the synthesis of crystalline ceramic powders of perovskite compounds
US5445806A (en) Process for preparing fine powder of perovskite-type compound
US4520004A (en) Method of manufacturing metal titanate fine powder
JPH0459261B2 (en)
KR100497938B1 (en) Method for producing complex oxide powder and complex oxide powder
US4670243A (en) Method of precipitating metal titanate powders
JP2726439B2 (en) Method for producing ceramic powder having perovskite structure
US7001585B2 (en) Method of making barium titanate
EP1860069B1 (en) Method for producing composition
JP4556398B2 (en) Method for producing the composition
JPH0339018B2 (en)
EP0439620B1 (en) Method of producing pulverized perovskite compound
JP3838523B2 (en) Method for producing the composition
JP3319807B2 (en) Perovskite-type compound fine particle powder and method for producing the same
JP2010120850A (en) Method for producing composition
JP3772354B2 (en) Manufacturing method of ceramic powder
JP3668985B2 (en) Manufacturing method of ceramic powder
JPH0339014B2 (en)
JPH0246531B2 (en)
JPS61111957A (en) Composition for ceramic dielectric
KR100596519B1 (en) Method for manufacturing ceramic composition
JPH07277710A (en) Production of perovskite-type multiple oxide powder
JPH0769645A (en) Production of lead-containing multiple oxide
CN113307305B (en) Preparation method and application of barium titanate powder
KR100647247B1 (en) Method for Synthesizing Barium Titanate Powder by solvothermal technique

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

EXPY Cancellation because of completion of term