JPH03252304A - Production of porous ceramic grain - Google Patents

Production of porous ceramic grain

Info

Publication number
JPH03252304A
JPH03252304A JP5006790A JP5006790A JPH03252304A JP H03252304 A JPH03252304 A JP H03252304A JP 5006790 A JP5006790 A JP 5006790A JP 5006790 A JP5006790 A JP 5006790A JP H03252304 A JPH03252304 A JP H03252304A
Authority
JP
Japan
Prior art keywords
porous ceramic
slurry
ceramic granules
raw material
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5006790A
Other languages
Japanese (ja)
Other versions
JP2958037B2 (en
Inventor
Shinichi Senda
千田 伸一
Michiko Kawakami
川上 道子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12848650&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03252304(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP5006790A priority Critical patent/JP2958037B2/en
Publication of JPH03252304A publication Critical patent/JPH03252304A/en
Application granted granted Critical
Publication of JP2958037B2 publication Critical patent/JP2958037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To simply obtain ceramic grains having high porosity while controlling pore size by gelling a fluid gel, etc., containing ceramic raw material powder, high molecular substance such as cellulose derivative and foam to retain the foam and then treating the gel. CONSTITUTION:A high molecular substance of a cellulose derivative such as methylcellulose and polysaccharides such as curd egg are prepared. 0.1-10wt.% of the high molecular substance, ceramic raw material powder and foam are incorporated into slurry or fluid gel. Then the slurry or gel is thickened or gelled to retain the foam and gel, etc., is dried. Then the resultant dried article is as necessary calcined and then treated in pulverization and burning processes.

Description

【発明の詳細な説明】 「利用分野」 本発明は、多孔質セラミックス顆粒の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to a method for producing porous ceramic granules.

「従来技術及びその問題点」 従来、多孔質セラミックス顆粒を製造する方法としては
、セラミ・ノクス原料粉体のスラリーに過酸化水素等の
発泡剤又は熱消失性物質を添加し、これを噴霧乾燥など
により二次粒子に造粒し、焼成するか、あるいはこの二
次粒子からブロック体を製造し、焼成後に、粉砕し、分
級によって必要な粒径の顆粒を得る方法が知られている
。しかしながら、発泡剤を用いる方法では、気孔径及び
気孔率の制御が困難であり、また、熱消失性物質を添加
する方法では、セラミックス粉体と熱消失性物質との比
重の相違から均一な混合が困難であり、気孔が均一に分
布した顆粒が得られないという問題点があった。
"Prior art and its problems" Conventionally, the method for producing porous ceramic granules is to add a foaming agent such as hydrogen peroxide or a heat-dissipating substance to a slurry of ceramic-nox raw material powder, and then spray-dry the slurry. A known method is to granulate secondary particles using a method such as granulation and sintering, or to produce blocks from the secondary particles, pulverize after sintering, and classify to obtain granules of a desired particle size. However, with the method of using a foaming agent, it is difficult to control the pore size and porosity, and with the method of adding a heat-dissipating substance, uniform mixing is impossible due to the difference in specific gravity between the ceramic powder and the heat-dissipating substance. There was a problem in that it was difficult to obtain granules with evenly distributed pores.

また、過酸化水素等の発泡剤を用いる方法では高気孔率
の顆粒を製造する目的で発泡剤量を増加しても気孔率は
ある程度までしか上がらず、高気孔率化は困難であった
。一方、熱消失性物質を添加する方法では、熱消失性物
質を多量に添加すると、脱脂が困難となるという問題点
があった。このように、従来法では、高気孔率の顆粒を
製造することはできなかった。
Furthermore, in a method using a blowing agent such as hydrogen peroxide, even if the amount of blowing agent is increased for the purpose of producing granules with high porosity, the porosity increases only to a certain extent, and it is difficult to increase the porosity. On the other hand, the method of adding a heat-dissipating substance has a problem in that adding a large amount of the heat-dissipating substance makes degreasing difficult. As described above, it has not been possible to produce granules with high porosity using conventional methods.

「発明の目的」 本発明は、脱脂工程を必要とせず、気孔径及び気孔率を
制御でき、高気孔率のセラミックス顆粒を簡単な方法で
製造しうる方法を提供することを目的とする。
"Objective of the Invention" An object of the present invention is to provide a method that does not require a degreasing step, can control the pore size and porosity, and can produce ceramic granules with high porosity in a simple manner.

「発明の構成」 本発明は、セラミックス原料粉体と高分子物質と気泡と
を含むスラリー又は流動性ゲルを増粘又はゲル化させて
気泡を保持させ、乾燥させ、得られた乾燥体を、必要に
応じて仮焼後に、任意の順序で粉砕及び焼成工程に付す
ことを特徴とする多孔質セラミックス顆粒の製造方法(
以下、第一の方法と記す)を提供するとともに、さらに
、セラミックス原料粉体、高分子物質及び発泡剤を含む
スラリー又は流動性ゲルを増粘又はゲル化させ、加熱し
て発泡及び乾燥させ、得られた乾燥体を、場合により仮
焼後、任意の順序で粉砕及び焼成工程に付すことを特徴
とする多孔質セラミックス顆粒の製造方法(以下、第二
の方法と記す)を提供するものである。
"Structure of the Invention" The present invention thickens or gels a slurry or fluid gel containing ceramic raw material powder, a polymeric substance, and air bubbles to retain air bubbles, and then dries the resulting dried product. A method for producing porous ceramic granules, characterized by subjecting them to crushing and firing steps in any order after calcining if necessary (
Hereinafter referred to as the first method), the slurry or fluid gel containing ceramic raw material powder, a polymer substance, and a foaming agent is thickened or gelled, foamed and dried by heating, The present invention provides a method for producing porous ceramic granules (hereinafter referred to as the second method), which comprises subjecting the obtained dried product to a crushing and firing process in an arbitrary order after calcination if necessary. be.

本発明に使用するセラミックス原料粉体は、公知の方法
で得られた平均粒径1〜50μmの粉体であり、湿式法
で合成したセラミックス化合物を任意の方法で乾燥し、
粉末化するか或いは乾式法で合成したセラミックス化合
物を粉砕することによって得られる。
The ceramic raw material powder used in the present invention is a powder with an average particle size of 1 to 50 μm obtained by a known method, and is obtained by drying a ceramic compound synthesized by a wet method using an arbitrary method.
It can be obtained by pulverizing a ceramic compound that has been powdered or synthesized by a dry method.

本発明の第一の方法においては、まず、前記のようなセ
ラミックス原料粉体と高分子物質とを含むスラリー又は
流動性ゲルを製造する。
In the first method of the present invention, first, a slurry or fluid gel containing the ceramic raw material powder and a polymeric substance as described above is produced.

なお、本明細書ムこおいて、高分子物質の[分散液jと
は、高分子物質の真の溶液、コロイド溶液及び懸濁液を
包括して意味するものとする。
In this specification, the term "dispersion of a polymeric substance" includes a true solution, a colloidal solution, and a suspension of a polymeric substance.

メチルセルロースのようなある種の高分子物質の分散液
を加熱すると、温度上昇に伴って増粘し、ある温度で可
逆的にゲル化する。また、ポリビニルアルコールのよう
に、硼酸あるいは硼砂を添加するなど、何らかの添加物
を加えたときに、可逆的にゲル化するものもある。いず
れにしても、本発明の方法においては、ゲル化する前の
分散液又は完全番こゲル化して固化する前の流動性を保
有する流動性ゲルの状態でセラミックス原料粉体との混
合を行う。セラミックス原料粉体は、スラリーあるいは
流動性ゲル中に7〜65重量%となるように混合する。
When a dispersion of a certain type of polymeric substance, such as methylcellulose, is heated, its viscosity increases as the temperature rises, and it reversibly gels at a certain temperature. Furthermore, some materials, such as polyvinyl alcohol, reversibly gel when some additive is added, such as boric acid or borax. In any case, in the method of the present invention, the ceramic raw powder is mixed with the ceramic raw material powder in the state of a dispersion liquid before gelling or a fluid gel having fluidity before completely gelling and solidifying. . The ceramic raw material powder is mixed in a slurry or fluid gel at a concentration of 7 to 65% by weight.

このように高分子物質の分散液又は流動性ゲルにセラミ
ックス原料粉体を混合し、攪拌して空気を抱き込ませる
と、球形の気泡を含んだスラリーとなる。これを場合に
より型に流し込み、ゲル化して気泡を保持させ、乾燥さ
せると、はぼ等方的に収縮するため、割れ等を生ずるこ
となく、球形のマクロポアを有する強度の高い乾燥体と
なる。
When a ceramic raw material powder is mixed with a dispersion liquid or a fluid gel of a polymeric substance in this way and stirred to incorporate air, a slurry containing spherical air bubbles is obtained. Optionally, this is poured into a mold, gelled to retain air bubbles, and when dried, it contracts almost isotropically, resulting in a highly strong dried product with spherical macropores without cracking.

また、ゲルを生じない高分子物質の場合は、その分散液
とセラミックス原料粉体とを混合し、撹拌によってその
分散液内に気泡を抱き込ませ、これを場合により型に流
し込み、増粘させた後、乾燥すると、上記と同様の乾燥
体を得ることができる。
In addition, in the case of polymeric substances that do not form gels, the dispersion liquid and the ceramic raw material powder are mixed, air bubbles are incorporated into the dispersion liquid by stirring, and this is poured into a mold if necessary to thicken it. After drying, a dried product similar to the above can be obtained.

さらに、本発明の第一の方法においては、高分子物質の
分散液又は流動性ゲルを予め攪拌して、空気を抱き込ま
せた後に、セラミックス原料粉体と混合してもよく、ま
た、粉状の高分子物質とセラミックス原料粉体とを混合
した後に分散媒を加えてスラリーとし、攪拌して空気を
抱き込ませてもよい。
Furthermore, in the first method of the present invention, the dispersion liquid or fluid gel of the polymer substance may be stirred in advance to incorporate air, and then mixed with the ceramic raw material powder. After mixing the polymer material and the ceramic raw material powder, a dispersion medium may be added to form a slurry, and the slurry may be stirred to incorporate air.

本発明の方法に使用する高分子物質は、一般には、セラ
ミックス原料粉体の分散媒として水が使用されるので、
水溶性であることが好ましいが、他の分散媒を用いる場
合には、その分散媒に溶解するものであってもよい。使
用しうる高分子物質としては、例えばメチルセルロース
、カルボキシメチルセルロース等のセルロース誘導体、
カードラン等の多糖類、ポリビニルアルコール、ポリア
クリル酸、ポリアクリルアミド、ポリビニルピロリドン
等の合成重合体などが挙げられる。
In the polymeric substance used in the method of the present invention, water is generally used as a dispersion medium for the ceramic raw material powder.
It is preferably water-soluble, but if another dispersion medium is used, it may be soluble in that dispersion medium. Examples of polymeric substances that can be used include cellulose derivatives such as methylcellulose and carboxymethylcellulose;
Examples include polysaccharides such as curdlan, and synthetic polymers such as polyvinyl alcohol, polyacrylic acid, polyacrylamide, and polyvinylpyrrolidone.

高分子物質の配合量は、使用する高分子物質の種類によ
って変動するが、通常、スラリー又は流動性ゲル中に0
.1〜10重量%含むように配合するのが好ましい。さ
らに具体的には、メチルセルロースの場合には、0.2
〜2重量%、好ましくは0.5〜1重量%とじ、ポリビ
ニルアルコールの場合には、5〜10重量%が好ましい
、高分子物質が多すぎると、混練が困難になるばかりで
なく、焼成の前に脱脂工程が必要となり、焼結性も低下
する。また、少なすぎると、スラリー中の気泡が保持さ
れない。
The amount of the polymeric substance blended varies depending on the type of polymeric substance used, but usually 0% is added to the slurry or fluid gel.
.. It is preferable to mix it so that it contains 1 to 10% by weight. More specifically, in the case of methylcellulose, 0.2
-2% by weight, preferably 0.5-1% by weight, preferably 5-10% by weight in the case of polyvinyl alcohol. Too much polymeric material not only makes kneading difficult, but also makes baking difficult. A degreasing step is required beforehand, and sinterability is also reduced. Moreover, if it is too small, air bubbles in the slurry will not be retained.

本発明の第一の方法においては、攪拌によって抱き込ま
れた気泡がマクロポアを形成する。
In the first method of the present invention, air bubbles trapped by stirring form macropores.

また、流動性ゲル又はスラリー中に包含される気泡の大
きさ及び量は、撹拌によってコントロールすることがで
きる。
Additionally, the size and amount of air bubbles included in the fluid gel or slurry can be controlled by stirring.

上記のいずれかの方法で得られた乾燥体を、自体公知の
方法で必要に応じて仮焼後、任意の順序で粉砕及び焼成
工程に付すことによって顆粒とする。すなわち、乾燥体
を粉砕してから焼成するか又は焼成後に粉砕することに
よって多孔質顆粒を得ることができる。
The dried product obtained by any of the above methods is calcined as required by a method known per se, and then subjected to pulverization and firing steps in an arbitrary order to form granules. That is, porous granules can be obtained by pulverizing the dried material and then firing it, or by pulverizing it after firing.

本発明の第二の方法を実施するには、まず、セラミック
ス原料粉体のスラリーに発泡剤と高分子物質を加えて混
練する。このとき、高分子物質はスラリーへの分散を容
易にするため、水性分散液として用いるのが好ましい。
To carry out the second method of the present invention, first, a foaming agent and a polymeric substance are added to a slurry of ceramic raw material powder and kneaded. At this time, the polymeric substance is preferably used as an aqueous dispersion in order to facilitate dispersion into the slurry.

また、第二の方法においてもセラミックス原料粉体は、
発泡剤及び高分子物質と混練した後のスラリー又は流動
性ゲル中に7〜65重量%含まれるように配合する。
Also, in the second method, the ceramic raw material powder is
It is blended in a slurry or fluid gel after kneading with a blowing agent and a polymeric substance so that it is contained in an amount of 7 to 65% by weight.

発泡剤としては、過酸化水素、卵白アルブミンなどを使
用する。発泡剤の添加量は、所望の気孔率によって変動
するが、過酸化水素を単独で用いる場合、H2O2が0
.01〜0.5重量%の量で存在するように過酸化水素
水を加えれば充分である。
As the foaming agent, hydrogen peroxide, egg albumin, etc. are used. The amount of blowing agent added varies depending on the desired porosity, but when hydrogen peroxide is used alone, H2O2 is 0.
.. It is sufficient to add hydrogen peroxide in an amount of 0.01 to 0.5% by weight.

本発明の第二の方法においても、第一の方法におけるの
と同様の高分子物質を使用することができ、その添加量
は、第一の方法に関連して説明したように使用した高分
子物質の種類によって変動するが、第一の方法における
より著しく少なくてすみ、通常、0.0001〜2.0
重量%で充分である。高分子物質の添加量が少ないと、
気孔率が増加せず、多すぎると、粘度が上昇しすぎて混
線が困難となり、気孔の形態が不均一となったり、気孔
率が逆に低下してしまう等の不都合を生じる。
In the second method of the present invention, the same polymeric substances as in the first method can be used, and the amount added is the same as that of the polymer used in the first method. Although it varies depending on the type of substance, it requires significantly less than the first method, usually 0.0001 to 2.0
% by weight is sufficient. If the amount of polymeric substances added is small,
If the porosity does not increase and is too large, the viscosity increases too much, making crosstalk difficult, causing problems such as the pores becoming non-uniform and the porosity decreasing.

したがって、用いる高分子物質の種類によって添加量を
適宜決定することが必要であり、例えば、メチルセルロ
ースの場合0.001〜1.5重量%、ポリビニルアル
コール(分子量2000)の場合0、 OO01〜0.
3重量%、ポリアクリル酸の場合0、0001〜0.0
01重量%、ペクチンの場合0.005〜081重置九
08するのが好ましい。高分子物質の添加量が多いと、
脱脂に多大のエネルギーが必要となるので、第二の方法
によれば、高分子物質の使用量を少なく抑えて、コスト
の低減を図ることができる。
Therefore, it is necessary to appropriately determine the amount added depending on the type of polymer substance used. For example, in the case of methyl cellulose, it is 0.001 to 1.5% by weight, in the case of polyvinyl alcohol (molecular weight 2000), it is 0.001 to 0.00% by weight.
3% by weight, 0,0001-0.0 for polyacrylic acid
0.01% by weight, and in the case of pectin, it is preferably 0.005 to 0.81% by weight. If the amount of polymeric substances added is large,
Since a large amount of energy is required for degreasing, according to the second method, it is possible to reduce the amount of polymeric substances used and reduce costs.

このように高分子物質を加えて増粘したスラリー又は流
動性ゲルを次に70〜120℃に加熱して発泡と乾燥を
行う。加熱の初期には発泡が起こり、気泡が増粘したス
ラリーにそのまま抱き込まれ、複数の気泡が合わさった
り、逃出したりしないため、微細な気泡を均一に分散し
て含む粘稠スラリーが得られる。この粘稠スラリーをさ
らに加熱して乾燥する。
The slurry or fluid gel thus thickened by adding a polymeric substance is then heated to 70 to 120°C to foam and dry. Foaming occurs in the early stages of heating, and the air bubbles are trapped in the thickened slurry, preventing multiple air bubbles from combining or escaping, resulting in a viscous slurry that contains fine air bubbles evenly distributed. It will be done. This viscous slurry is further heated and dried.

本発明の第−及び第二の方法で得られる乾燥体は、セラ
ミックスの粒子同士を高分子物質が糊付けした状態であ
るため、高い機械的強度を有し、壊れにくく、この乾燥
体を直接所望の粒径に粉砕することができるが、乾燥体
を仮焼成した後に粉砕することもできる。
The dried body obtained by the first and second methods of the present invention has high mechanical strength and is hard to break because it is in a state where ceramic particles are glued together with a polymer substance, and this dried body can be directly used for the desired purpose. It can be pulverized to a particle size of , but it is also possible to pulverize the dried product after pre-calcining it.

また、乾燥体あるいは仮焼体を粉砕後に焼成しても、焼
成後に粉砕してもよい。焼成温度は、使用したセラミッ
クスの種類に応じて適宜選定すればよい。また、気孔径
及び気孔率は、焼成温度によって影響を受けるので、所
望の気孔径、気孔率などを考慮して適宜選定することが
できる。例えば、リン酸カルシウム系セラミックスの場
合には、焼成温度を900〜1400°Cの範囲で選択
することができる。
Further, the dried body or the calcined body may be crushed and then fired, or fired and then crushed. The firing temperature may be appropriately selected depending on the type of ceramic used. Further, since the pore diameter and porosity are affected by the firing temperature, they can be appropriately selected in consideration of the desired pore diameter, porosity, and the like. For example, in the case of calcium phosphate ceramics, the firing temperature can be selected within the range of 900 to 1400°C.

本発明によって得られる顆粒は、上記の気泡による球形
のマクロポアの他に、原料粒子の粒子間隙による3次元
に連通したマイクロポアを含むものとなる。
The granules obtained by the present invention contain, in addition to the spherical macropores formed by the air bubbles described above, three-dimensionally communicating micropores formed by the gaps between the raw material particles.

また、本発明による多孔質セラミックス顆粒は任意の粒
径に造粒することができるが、孔径20〜2000μm
のマクロポアを有するので、粒径100μm〜10閣の
顆粒とするのが好ましい。
Further, the porous ceramic granules according to the present invention can be granulated to any particle size, but the pore size is 20 to 2000 μm.
It is preferable to form granules with a particle size of 100 μm to 10 μm.

本発明の方法は、リン酸カルシウム系、アルミナ系、シ
リカ系、ジルコニア系など、各種のセラミックスに適用
することができ、人工生体材料、吸着剤、液体クロマト
グラフィー用充填剤、触媒担体など様々な製品の製造に
適用することができる。
The method of the present invention can be applied to various ceramics such as calcium phosphate, alumina, silica, and zirconia, and can be applied to various products such as artificial biomaterials, adsorbents, liquid chromatography packing materials, and catalyst carriers. Can be applied to manufacturing.

「発明の実施例」 次に、実施例により本発明をさらに詳しく説明するが、
本発明はこれらの実施例に限定されるものではない。
"Examples of the Invention" Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

実施例1 メチルセルロースの1%水溶液200gをミキサーで泡
立て、これに平均粒径10μmの球状粉と平均粒径1μ
mの微粉とからなるハイドロキシアパタイト粉体(以下
、単にハイドロキシアパタイト粉体と記す)140gを
加えて混合した。この混合物を500zfのビーカーに
移して80°Cの乾燥機に入れて36時間乾燥させた。
Example 1 200 g of a 1% aqueous solution of methylcellulose was whipped with a mixer, and spherical powder with an average particle size of 10 μm and 1 μm in average particle size were added to the foam.
140 g of hydroxyapatite powder (hereinafter simply referred to as hydroxyapatite powder) consisting of fine powder of m and 100 g was added and mixed. The mixture was transferred to a 500zf beaker and placed in a dryer at 80°C to dry for 36 hours.

得られた乾燥体を電気炉に入れ、800°Cで4時間仮
焼してから乳鉢で適当な大きさに粉砕してアルミナ製の
さやに移して1200°Cで4時間焼成し、多孔質顆粒
を得た。
The obtained dried product was placed in an electric furnace and calcined at 800°C for 4 hours, then crushed into an appropriate size in a mortar, transferred to an alumina sheath, and fired at 1200°C for 4 hours to form a porous material. Granules were obtained.

上記の乾燥体を仮焼した後、粉砕せずに同じ条件で焼成
したブロックの気孔率は49.5%であった。
After calcining the above dry body, the block was calcined under the same conditions without pulverization, and the porosity of the block was 49.5%.

実施例2 800″Cでの仮焼を行わずに粉砕した以外は、実施例
工と同様にして多孔質顆粒を製造した。
Example 2 Porous granules were produced in the same manner as in Example except that pulverization was performed without calcining at 800″C.

粉砕せずに焼成したブロックの気孔率は49.5%であ
った。
The porosity of the block fired without being crushed was 49.5%.

実施例3 メチルセルロースの1%水溶液200gにハイドロキシ
アパタイト粉体140gを加え、ミキサーで泡立てた。
Example 3 140 g of hydroxyapatite powder was added to 200 g of a 1% aqueous solution of methylcellulose, and the mixture was whipped with a mixer.

これを500dのビーカーに移して80℃の乾燥機に入
れて36時間乾燥させた。
This was transferred to a 500 d beaker, placed in a dryer at 80° C., and dried for 36 hours.

得られた乾燥体を電気炉に入れ、800°Cで4時間仮
焼してから乳鉢で適当な大きさに粉砕してアルミナ製の
さやに移して1200°Cで4時間焼成し、多孔質顆粒
を得た。
The obtained dried product was placed in an electric furnace and calcined at 800°C for 4 hours, then crushed into an appropriate size in a mortar, transferred to an alumina sheath, and fired at 1200°C for 4 hours to form a porous material. Granules were obtained.

粉砕せずに焼成したブロックの気孔率は53.5%であ
った。
The porosity of the block fired without being crushed was 53.5%.

実施例4 800°Cでの仮焼を行わずに粉砕した以外は、実施例
3と同様にして多孔質顆粒を製造した。
Example 4 Porous granules were produced in the same manner as in Example 3, except that pulverization was performed without calcining at 800°C.

粉砕せずに焼成したブロックの気孔率は53.5%であ
った。
The porosity of the block fired without being crushed was 53.5%.

実施例5 メチルセルロースの1%水溶液20gと過酸化水素の0
.5%水溶液180gの混合液中にハイドロキシアパタ
イト粉体140gを加え、混合した。
Example 5 20g of 1% aqueous solution of methylcellulose and 0g of hydrogen peroxide
.. 140 g of hydroxyapatite powder was added to a mixture of 180 g of a 5% aqueous solution and mixed.

これを500dのビーカーに移して80°Cの乾燥機に
入れて36時間置き、乾燥及び発泡させた。
This was transferred to a 500 d beaker and placed in a dryer at 80°C for 36 hours to dry and foam.

得られた乾燥体を電気炉に入れ、700°Cで4時間仮
焼してから乳鉢で適当な大きさに粉砕してアルミナ製の
さやに移して1200°Cで4時間焼成し、多孔質顆粒
を得た。
The obtained dried product was placed in an electric furnace and calcined at 700°C for 4 hours, then crushed into an appropriate size in a mortar, transferred to an alumina sheath, and fired at 1200°C for 4 hours to form a porous material. Granules were obtained.

粉砕せずに焼成したブロックの気孔率は57.6%であ
った。
The porosity of the block fired without crushing was 57.6%.

実施例6 メチルセルロース2g、水200g及びハイドロキシア
パタイト粉体140gをミキサーで混合して泡立てた。
Example 6 2 g of methylcellulose, 200 g of water, and 140 g of hydroxyapatite powder were mixed and foamed using a mixer.

これを500IIIlのビーカーに移して80°Cの乾
燥機に入れて36時間乾燥させた。
This was transferred to a 500III beaker, placed in a dryer at 80°C, and dried for 36 hours.

得られた乾燥体を乳鉢で適当な大きさに粉砕してアルミ
ナ製のさやに移して1200°Cで4時間焼成し、多孔
質顆粒を得た。
The obtained dried product was crushed into an appropriate size in a mortar, transferred to an alumina sheath, and calcined at 1200°C for 4 hours to obtain porous granules.

粉砕せずに焼成したブロックの気孔率は55.8%であ
った。
The porosity of the block fired without being crushed was 55.8%.

実施例7 平均重合i、1000のポリビニルアルコールの10重
量%水溶液100gに10%ホウ砂水溶液20gを加え
て混合し、均一になるように85°Cに加熱して攪拌し
、流動性ゲルを調製した。
Example 7 Average polymerization i: Add 20 g of a 10% borax aqueous solution to 100 g of a 10% aqueous solution of polyvinyl alcohol with an average polymerization i of 1000, mix the mixture, heat to 85°C and stir until uniform, and prepare a fluid gel. did.

湿式法で合成したリン酸三カルシウムを噴霧熱乾燥機で
造粒し、平均粒径15μmの粉体を乳鉢で粉砕して平均
粒径14.2μmの粉体とし、この粉体60gを上記の
ポリビニルアルコールの流動性ゲルに加え、攪拌して気
泡を含んだスラリーとした。得られたスラリーをTPX
製の300adのビーカーに流し込み、60°Cの乾燥
機に入れて、40時間乾燥させた。得られた多孔質乾燥
ブロックを粉砕し、1050°Cで焼成し、多孔質顆粒
を得た。
Tricalcium phosphate synthesized by the wet method was granulated using a spray heat dryer, and the powder with an average particle size of 15 μm was ground in a mortar to obtain a powder with an average particle size of 14.2 μm. 60 g of this powder was It was added to a fluid gel of polyvinyl alcohol and stirred to form a slurry containing air bubbles. The obtained slurry is TPX
The mixture was poured into a 300ad beaker made by Co., Ltd., and placed in a dryer at 60°C to dry for 40 hours. The obtained porous dry block was crushed and fired at 1050°C to obtain porous granules.

粉砕せずに焼成したブロックの気孔率は54,1%であ
った。
The porosity of the block fired without crushing was 54.1%.

実施例8 水150gに対してメチルセルロース(4000cps
)を0.5g加えて5分間ハンドミキサーで攪拌した。
Example 8 Methyl cellulose (4000 cps
) was added and stirred for 5 minutes with a hand mixer.

次に、ハイドロキシアパタイト60gを加えてさらに撹
拌し、200dのビーカーに移してサランラ・ノブをか
け、75゛Cの乾燥機に入れて3時間開いた後、サラン
ラップに穴を4ケ所開けて、菓気が抜けるようにしてか
ら乾燥機に戻す。48時間後に取り出して気孔率を測定
すると、気孔率は86,7%であった。これを1200
°Cで4時間焼成した後、粉砕して多孔質顆粒を得た。
Next, 60g of hydroxyapatite was added and further stirred, transferred to a 200d beaker, covered with a Saranra knob, placed in a dryer at 75°C and left open for 3 hours. Let it cool down and then put it back in the dryer. When taken out after 48 hours and measured for porosity, the porosity was 86.7%. This is 1200
After calcination at °C for 4 hours, it was ground to obtain porous granules.

「発明の効果」 本発明の方法によれば、脱脂工程を必要とせず、気孔径
及び気孔率を容易に制御でき、高気孔率のセラミックス
顆粒を簡単な方法で製造することができる。さらに、セ
ラミックス顆粒を湿式法で製造できるので、大量生産が
可能となり、添加物量が少ないので、安価な顆粒が得ら
れる。
"Effects of the Invention" According to the method of the present invention, the pore size and porosity can be easily controlled without the need for a degreasing step, and ceramic granules with high porosity can be manufactured by a simple method. Furthermore, since ceramic granules can be manufactured by a wet method, mass production is possible, and since the amount of additives is small, inexpensive granules can be obtained.

本発明によって得られる多孔質セラミックス顆粒は、生
体材料、吸着剤、液体クロマトグラフィー用充填剤、触
媒担体などに有用である。
The porous ceramic granules obtained by the present invention are useful as biomaterials, adsorbents, packing materials for liquid chromatography, catalyst supports, and the like.

Claims (1)

【特許請求の範囲】 1、セラミックス原料粉体と高分子物質と気泡とを含む
スラリー又は流動性ゲルを増粘又はゲル化させて気泡を
保持させ、乾燥させ、得られた乾燥体を、場合により仮
焼後、任意の順序で粉砕及び焼成工程に付すことを特徴
とする多孔質セラミックス顆粒の製造方法。2、高分子
物質がメチルセルロース等のセルロース誘導体、カード
ラン等の多糖類、ポリビニルアルコール、ポリアクリル
酸、ポリアクリルアミド、ポリビニルピロリドン等の合
成重合体などである請求項1記載の多孔質セラミックス
顆粒の製造方法。 3、高分子物質がスラリー又は流動性ゲル中に0.1〜
10重量%含まれるように配合する請求項1記載の多孔
質セラミックス顆粒の製造方法。 4、セラミックス原料粉体、高分子物質及び発泡剤を含
むスラリー又は流動性ゲルを増粘又はゲル化させ、加熱
して発泡及び乾燥させ、得られた乾燥体を、場合により
仮焼後、任意の順序で粉砕及び焼成工程に付すことを特
徴とする多孔質セラミックス顆粒の製造方法。 5、高分子物質がメチルセルロース等のセルロース誘導
体、カードラン等の多糖類、ポリビニルアルコール、ポ
リアクリル酸、ポリアクリルアミド、ポリビニルピロリ
ドン等の合成重合体などである請求項4記載の多孔質セ
ラミックス顆粒の製造方法。 6、高分子物質がスラリー又は流動性ゲル中に0.00
01〜2.0重量%含まれるように配合する請求項4記
載の多孔質セラミックス顆粒の製造方法。
[Claims] 1. A slurry or a fluid gel containing ceramic raw material powder, a polymeric substance, and air bubbles is thickened or gelled to retain air bubbles, and the resulting dry body is dried. 1. A method for producing porous ceramic granules, which comprises subjecting the porous ceramic granules to pulverization and firing steps in any order after calcination. 2. Production of porous ceramic granules according to claim 1, wherein the polymeric substance is a cellulose derivative such as methylcellulose, a polysaccharide such as curdlan, a synthetic polymer such as polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, etc. Method. 3. The polymer substance is present in the slurry or fluid gel from 0.1 to
The method for producing porous ceramic granules according to claim 1, wherein the porous ceramic granules are blended so that the content thereof is 10% by weight. 4. Thicken or gel a slurry or fluid gel containing ceramic raw material powder, a polymeric substance, and a foaming agent, foam and dry by heating, optionally after calcining the obtained dry body. A method for producing porous ceramic granules, which comprises subjecting them to crushing and firing steps in the following order. 5. Production of porous ceramic granules according to claim 4, wherein the polymeric substance is a cellulose derivative such as methylcellulose, a polysaccharide such as curdlan, a synthetic polymer such as polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, etc. Method. 6. The polymer substance is in the slurry or fluid gel at 0.00%
5. The method for producing porous ceramic granules according to claim 4, wherein the porous ceramic granules are blended in an amount of 0.01 to 2.0% by weight.
JP5006790A 1990-03-01 1990-03-01 Method for producing porous ceramic granules Expired - Fee Related JP2958037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5006790A JP2958037B2 (en) 1990-03-01 1990-03-01 Method for producing porous ceramic granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5006790A JP2958037B2 (en) 1990-03-01 1990-03-01 Method for producing porous ceramic granules

Publications (2)

Publication Number Publication Date
JPH03252304A true JPH03252304A (en) 1991-11-11
JP2958037B2 JP2958037B2 (en) 1999-10-06

Family

ID=12848650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5006790A Expired - Fee Related JP2958037B2 (en) 1990-03-01 1990-03-01 Method for producing porous ceramic granules

Country Status (1)

Country Link
JP (1) JP2958037B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296678A (en) * 1994-04-22 1994-10-25 Mitsubishi Materials Corp Production of packing material for defective part, gap part and absorptive part of bone
US5998523A (en) * 1997-07-18 1999-12-07 The Dow Chemical Company Composition comprising a metal salt and metal powder therefrom by the calcining thereof
US6010648A (en) * 1997-06-02 2000-01-04 Asahi Kogaku Kogyo Kabushiki Kaisha Process for the production of spherical ceramic granules
EP0936631A3 (en) * 1998-02-17 2000-11-22 Eurotope GmbH Carrier for radionuclides, method for fabricating the same and miniaturized radioactive source
US6211285B1 (en) 1996-07-22 2001-04-03 The Dow Chemical Company Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom
WO2002076611A1 (en) * 2001-03-27 2002-10-03 Mitsubishi Rayon Co., Ltd. Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, method of preparing the same, and method of synthesizing unsaturated aldehyde and unsaturated carboxylic acid with the catalyst
US9051220B2 (en) 2011-02-21 2015-06-09 Ngk Insulators, Ltd. Method for producing powder molded product and powder molded product
CN105583011A (en) * 2014-11-17 2016-05-18 北京安耐吉能源工程技术有限公司 Reforming catalyst and application thereof
CN105618156A (en) * 2014-11-17 2016-06-01 北京安耐吉能源工程技术有限公司 Alumina carrier and ball-rolling molding method and application thereof
CN105664986A (en) * 2014-11-17 2016-06-15 北京安耐吉能源工程技术有限公司 Coker gasoline hydrofining catalyst and application thereof
KR101975955B1 (en) * 2018-12-20 2019-05-08 맥섬석 지.엠. 주식회사 Manufacturing method of antimicrobial plastic masterbatch using macsumsuk granule

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179495B2 (en) 2002-06-12 2008-11-12 松崎 浩巳 Bone filling material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296678A (en) * 1994-04-22 1994-10-25 Mitsubishi Materials Corp Production of packing material for defective part, gap part and absorptive part of bone
JP2576404B2 (en) * 1994-04-22 1997-01-29 三菱マテリアル株式会社 Bone defect, bone void and bone resorbing part manufacturing method
US6211285B1 (en) 1996-07-22 2001-04-03 The Dow Chemical Company Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom
US6010648A (en) * 1997-06-02 2000-01-04 Asahi Kogaku Kogyo Kabushiki Kaisha Process for the production of spherical ceramic granules
US5998523A (en) * 1997-07-18 1999-12-07 The Dow Chemical Company Composition comprising a metal salt and metal powder therefrom by the calcining thereof
EP0936631A3 (en) * 1998-02-17 2000-11-22 Eurotope GmbH Carrier for radionuclides, method for fabricating the same and miniaturized radioactive source
WO2002076611A1 (en) * 2001-03-27 2002-10-03 Mitsubishi Rayon Co., Ltd. Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, method of preparing the same, and method of synthesizing unsaturated aldehyde and unsaturated carboxylic acid with the catalyst
CN1298424C (en) * 2001-03-27 2007-02-07 三菱丽阳株式会社 Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, method of preparing same, and method of synthesizing unsaturated aldehyde and unsaturated carboxylic acid with catalyst
US9051220B2 (en) 2011-02-21 2015-06-09 Ngk Insulators, Ltd. Method for producing powder molded product and powder molded product
CN105583011A (en) * 2014-11-17 2016-05-18 北京安耐吉能源工程技术有限公司 Reforming catalyst and application thereof
CN105618156A (en) * 2014-11-17 2016-06-01 北京安耐吉能源工程技术有限公司 Alumina carrier and ball-rolling molding method and application thereof
CN105664986A (en) * 2014-11-17 2016-06-15 北京安耐吉能源工程技术有限公司 Coker gasoline hydrofining catalyst and application thereof
KR101975955B1 (en) * 2018-12-20 2019-05-08 맥섬석 지.엠. 주식회사 Manufacturing method of antimicrobial plastic masterbatch using macsumsuk granule
WO2020130239A1 (en) * 2018-12-20 2020-06-25 맥섬석 지.엠. 주식회사 Method for manufacturing antimicrobial plastic masterbatch using macsumsuk granules
CN111601692A (en) * 2018-12-20 2020-08-28 麦闪石 G.M.株式会社 Preparation method of medical amphibole particle antibacterial plastic master batch

Also Published As

Publication number Publication date
JP2958037B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US5171720A (en) Porous ceramic sinter and process for producing same
JPH03252304A (en) Production of porous ceramic grain
JPH10314295A (en) Bone filling material and its manufacture
JPH0372035B2 (en)
JP3417943B2 (en) Porous body
JP3058174B2 (en) Porous ceramics, dried body for producing the same, and methods for producing them
JPH0264075A (en) Porous ceramics and production thereof
US2425151A (en) Method of preparing air-setting refractory mortars
JP3490864B2 (en) Method for producing ceramic spherical granules
JPWO2003093197A1 (en) Porous ceramics and method for producing the same
US4123284A (en) Porous ceramic bodies
JP2003073182A (en) Production method for calcium phosphate-based porous ceramic sintered compact and calcium phosphate-based porous ceramic sintered compact
JP5793045B2 (en) Method for producing ceramic porous body
JP2506826B2 (en) Granular inorganic molded body and method for producing the same
JPH0383805A (en) Production of spherical hydroxyapatite
JPH10202082A (en) Production of granulated body
JP2506502B2 (en) Method for manufacturing ceramic porous body
KR20160105591A (en) Method for manufacturing porous ceramics and porous ceramics manufactured by the same
KR100430477B1 (en) Manufacturing method of porous ceramic pellets by using double emulsion method
JPH1112056A (en) Production of foaming ceramic material, foaming ceramic material and production of formed ceramic material
JPH10167856A (en) Porous ceramic and its production
JP2000107585A (en) Production of spherical ceramic
JPH04160077A (en) Production of porous ceramic molded body
JPS62226874A (en) Porous ceramic burnt body and manufacture
JP2000211979A (en) Production of silica porous body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees