JPH03249502A - Optical sensor - Google Patents

Optical sensor

Info

Publication number
JPH03249502A
JPH03249502A JP4741590A JP4741590A JPH03249502A JP H03249502 A JPH03249502 A JP H03249502A JP 4741590 A JP4741590 A JP 4741590A JP 4741590 A JP4741590 A JP 4741590A JP H03249502 A JPH03249502 A JP H03249502A
Authority
JP
Japan
Prior art keywords
optical
photodetector
light
signal
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4741590A
Other languages
Japanese (ja)
Inventor
Satoshi Fukuhara
聡 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP4741590A priority Critical patent/JPH03249502A/en
Publication of JPH03249502A publication Critical patent/JPH03249502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the signal of the optical sensor and increase the sensitivity and to realize the optical sensor with high accuracy by connecting a coherent light source which is provided in a signal processing part and an optical resonator which is provided in a detection part by a two-unit optical fiber. CONSTITUTION:Variation in optical resonance frequency is detected through an optoelastic material LM which varies in internal refractive index with an external force RF to measure variation in the fine physical quantity, i.e. process variable of an object to be measured. Light from an LD 22 which is the coherent light source in the signal processing part 20 is guided to the optical resonator 43 of the detection part 40 through the two-unit optical fiber F0. Transmitted light from the optical resonator 43 is guided to a 2nd photodetector 24 of the signal processing part 20 and reflected light from the optical resonator 43, on the other hand, is guided from a Y-branch coupler 31 to a 1st photodetector 23. A divider 21 finds the ratio of an electric signal obtained by the 1st photodetector 23 and an electric signal obtained by the 2nd photodetector 24 and outputs a signal indicating the process variable.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、レーザ光及びファブリベロー共振器を用いて
被測定対象の微小な変位を測定する光センサに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to an optical sensor that measures minute displacements of an object to be measured using a laser beam and a Fabry-Bello resonator.

〈従来の技術〉 従来、この種の光センサとしては第3図のような構成が
知られている(例えば、特開昭62−144033号公
報参照)。
<Prior Art> Conventionally, a configuration as shown in FIG. 3 has been known as this type of optical sensor (see, for example, Japanese Patent Application Laid-Open No. 144033/1983).

第3図は従来の光センサの構成図である。尚、第4図は
第3図に用いられるファブリペロ−型干渉装置の構造を
示す図である。
FIG. 3 is a block diagram of a conventional optical sensor. Incidentally, FIG. 4 is a diagram showing the structure of the Fabry-Perot type interference device used in FIG. 3.

第3図及び第4図において、発光ダイオード1から出力
された光は、被測定対象の物理量によって特性の変化す
る第4図に示すような構造の第1のファブリベロー型干
渉装置2を経由した後に回折格子4によって互いに傾き
を持った複数の光束に分割される。このときに、第1の
ファブリベロー型干渉装置F2は、ガラス板11.12
の夫々内側片面に増反射膜13を蒸着し、これ等を夫々
内側としてスペーサ14を介して対抗させた上で貼り合
せ、一方のガラス板11に力Fが加えられることによる
ガラス11の湾曲に基づく内部光路長変化による干渉特
性を他方のガラス板12から、該ガラス板12に取付け
られた光ファイバ16が配置るマイクロレンズ15を介
して光の入射及び出射により行なわれる。
3 and 4, the light output from the light emitting diode 1 passes through a first Fabry-Bello interference device 2 having a structure as shown in FIG. 4, whose characteristics change depending on the physical quantity of the object to be measured. Later, the light beam is divided by a diffraction grating 4 into a plurality of light beams having mutually inclined angles. At this time, the first Fabry-Bello type interference device F2
A reflection increasing film 13 is deposited on one side of the inner side of each of the glass plates 11 and 13, and these are bonded to each other with spacers 14 interposed therebetween, so that the curvature of the glass 11 caused by the force F being applied to one of the glass plates 11 is prevented. The interference characteristic based on the internal optical path length change is performed by the incidence and emission of light from the other glass plate 12 via the microlens 15 disposed by the optical fiber 16 attached to the glass plate 12.

この複数の光束の内、0次光を第2のファブリベロー型
干渉装置3 (構造は第4図と同じで透過型構成とした
ものが用いられている)に垂直に入射させた後、その透
過光をフォトダイオード5で受光させ、1次光を第2の
ファブリベロー型干渉装置3に斜めに入射させた後、そ
の透過光をフォトダイオード6で受光させる。フォトダ
イオード5゜6から出力信号は図示しない信号処理回路
で比較処理がなされ、被測定対象の物理量が求められる
Among these plurality of light beams, the zero-order light is made perpendicularly incident on the second Fabry-Beroux type interference device 3 (the structure is the same as that in Fig. 4, and a transmissive type configuration is used). The transmitted light is received by a photodiode 5, the primary light is made obliquely incident on the second Fabry-Bello interference device 3, and then the transmitted light is received by a photodiode 6. The output signal from the photodiode 5.6 is compared in a signal processing circuit (not shown), and the physical quantity of the object to be measured is determined.

〈発明が解決しようとする課題〉 従来の技術にあっては以下のような問題点があった。<Problem that the invention seeks to solve> The conventional technology has the following problems.

上述の光センサは、外部からの物理量の変化による共振
周波数の変化を検出するというもので、光の多重干渉を
利用しているため、非常に高感度な計測が可能となる。
The above-mentioned optical sensor detects a change in resonance frequency due to a change in a physical quantity from the outside, and because it utilizes multiple interference of light, extremely sensitive measurement is possible.

しかしながら、光ファイバ等の光伝送路を用いることか
ら、光伝送路の距離の違いや温度変動等の光ファイバに
対する外乱等で光伝送路の損失が変化し、センサの出力
光が変化してしまうという問題が発生することとなる。
However, since an optical transmission line such as an optical fiber is used, the loss of the optical transmission line changes due to differences in the distance of the optical transmission line or disturbances to the optical fiber such as temperature fluctuations, and the output light of the sensor changes. This problem will occur.

そのため、センサ信号が誤差を含み、精度の高い計測は
できない。
Therefore, the sensor signal contains errors, making it impossible to perform highly accurate measurements.

本発明は、従来の技術の有するこのような問題点に鑑み
てなされたものであり、その目的とするところは、光セ
ンサの信号の改善及び高感度化を図り、且つ精度の高い
光センサを掛供するものである。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to improve the signal of an optical sensor and increase its sensitivity, and to provide a highly accurate optical sensor. It is an offering.

く課題を解決するための手段〉 上記目的を達成するために、本発明は、被測定対象のプ
ロセス量の変化を測定する光センサにおいて、内部の光
路長が前記プロセス変量に応じて変化して光共振周波数
が変化する構成の光共振器を少なくとも1つ有する検出
部と、少なくとも1つの可干渉光源、該可干渉光源の光
が光ファイバを介して前記光共振器の入力部に導かれた
後に該光共振器の反射光を光ファイバを介して受光して
電気信号に変換する第1の光検出器及び前記光共振器の
透過光を光ファイバを介して受光して電気信号に変換す
るための第2の光検出器、及び前記第1の光検出器と前
記第2の光検出器との信号比を取り前記プロセス量を信
号として出力する信号処理回路を有する信号処理部と、
を具備したことを特徴とするものである。
Means for Solving the Problems> In order to achieve the above object, the present invention provides an optical sensor that measures changes in a process variable of an object to be measured, in which an internal optical path length changes in accordance with the process variable. a detection unit having at least one optical resonator configured to change the optical resonance frequency; at least one coherent light source; light from the coherent light source is guided to the input part of the optical resonator via an optical fiber; A first photodetector that later receives the reflected light of the optical resonator via an optical fiber and converts it into an electrical signal; and a first photodetector that receives the transmitted light of the optical resonator via the optical fiber and converts it into an electrical signal. a second photodetector for the process, and a signal processing unit having a signal processing circuit that calculates a signal ratio between the first photodetector and the second photodetector and outputs the process amount as a signal;
It is characterized by having the following.

く作用〉 本発明は、被測定対象の微妙な物理量即ちプロセス変量
の変化を測定する光センサを構成するにあたり、信号処
理部に少なくとも1つの可干渉光源を設け、又検出部に
少なくとも1つの光共振器を設けて、可干渉光源と光共
振器を2芯の光ファイバを介して接続する。その上で、
可干渉光源からの光を光ファイバの1芯を通して光共振
器の入力部に導く、光共振器はその内部の光路長が外部
からのプロセス変量に応じて変化し、その結果、光共振
周波数が前記プロセス変量によって変化するものとし、
このような光共振器からの反射光を前記光ファイバの1
芯を再び通して信号処理部に設けられた第1の光検出器
において受信して電気信号に変換し、−力先共振器から
の透過光を前記光ファイバの他の1芯を通して信号処理
部に設けられた第2の光検出器において受信して電気信
号に変換する。そして、プロセス信号(プロセス変量の
信号)を得るために、第1の光検出器より得られた電気
信号と第2の光検出器より得られた電気信号との比を信
号処理回路で取る。
Effects> In configuring an optical sensor that measures changes in subtle physical quantities, ie, process variables, of an object to be measured, the present invention provides at least one coherent light source in the signal processing section, and at least one coherent light source in the detection section. A resonator is provided, and the coherent light source and the optical resonator are connected via a two-core optical fiber. Moreover,
Light from a coherent light source is guided to the input part of an optical resonator through one core of an optical fiber.The optical resonator changes its internal optical path length in response to external process variables, and as a result, the optical resonant frequency changes. shall vary depending on the process variable;
The reflected light from such an optical resonator is transmitted to one of the optical fibers.
The core is passed through the optical fiber again to be received by a first photodetector provided in the signal processing unit and converted into an electrical signal, and the transmitted light from the power end resonator is passed through the other core of the optical fiber to the signal processing unit. is received by a second photodetector provided in the 2nd photodetector and converted into an electrical signal. Then, in order to obtain a process signal (a signal of a process variable), a signal processing circuit calculates the ratio between the electrical signal obtained from the first photodetector and the electrical signal obtained from the second photodetector.

く実施例〉 実施例について図面を参照して説明する。Example Examples will be described with reference to the drawings.

尚、以下の図面において、第3図乃至第4図と重複する
部分は同一番号を付してその説明は省略する。
In the following drawings, parts that overlap with those in FIGS. 3 and 4 are given the same numbers, and their explanations will be omitted.

第1図は本発明の光センサの具体的実施例の構成図であ
る。
FIG. 1 is a block diagram of a specific embodiment of the optical sensor of the present invention.

第1図において、20は信号処理部、30は光ファイバ
ーゲーブル部(以下rcAJと略称する)、40は検出
部である。この時に各部は以下のようになる。信号処理
部20は、割算器21、例えば半導体レーザから成る可
干渉光源(以下rLDJと略称する)22、及び例えば
フォトダイオード等からなる第1.第2の受光素子(又
は光検出素子といい、以下これについてはrPDJと略
称する> 23.24から成る。検出部40は、レンズ
41.42、及び前後に部分透過ミラー8N、 、 8
82が配置されてその中央に光弾性材料Mが挿入された
構成の光共振器(ファブリ・ベロー共振器、以下rFP
E、と略称する)43から成る。CA30はL D 2
2とFPE43とを接続するために、1心の光ファイバ
F、 、 F+ a + F + b + F 2 r
 Y分岐カブラ31.2心の光ファイバFor及び2心
の光ファイバFOの前後に設けられて1心の光ファイバ
をこれに接続する光コネクタ32.33から成る。
In FIG. 1, 20 is a signal processing section, 30 is an optical fiber cable section (hereinafter abbreviated as rcAJ), and 40 is a detection section. At this point, each part will be as follows. The signal processing section 20 includes a divider 21, a coherent light source (rLDJ hereinafter) 22 made of, for example, a semiconductor laser, and a first... The second light-receiving element (or photo-detecting element, hereinafter abbreviated as rPDJ) consists of a second light-receiving element (or photo-detecting element, hereinafter referred to as rPDJ).
82 and a photoelastic material M is inserted in the center of the optical resonator (Fabry-Bello resonator, hereinafter referred to as rFP).
(abbreviated as E) consists of 43. CA30 is LD2
2 and FPE43, one optical fiber F, , F+ a + F + b + F 2 r
It consists of a Y-branch coupler 31.2 optical fibers For and optical connectors 32.33 provided before and after the two optical fibers FO to connect one optical fiber thereto.

以下このような被測定対象の微妙な物理量の変化を測定
する光センサの構成において、その動作は以下のように
なる。
In the configuration of an optical sensor that measures subtle changes in physical quantities of an object to be measured, its operation is as follows.

LD22は周波数の安定化を行なうために用いられる。LD22 is used for frequency stabilization.

LD22のコヒーレント光は光ファイバF。The coherent light of LD22 is transmitted through optical fiber F.

bを介してY分岐カプラー31へと導かれ、Y分岐カプ
ラー31を通過して光コネクタ32に至り、2心の光フ
ァイバF0を介して光コネクタ33から光ファイバF、
を介して検出部40内に導かれる。検出部40内におい
てLD22の光はFPE43の入力部、即ち、レンズ4
1に導かれ、このレンズ41によってコリメートされて
FPE43の部分透過ミラーBH+を介して外部からの
力Fによって内部の屈折率が変化する光学的に透明な光
弾性材料LHに導かれる。
b, to the Y-branch coupler 31, pass through the Y-branch coupler 31, reach the optical connector 32, and connect the optical connector 33 to the optical fiber F, via the two-core optical fiber F0.
is guided into the detection section 40 via the. In the detection section 40, the light from the LD 22 is transmitted to the input section of the FPE 43, that is, the lens 4.
1, collimated by this lens 41, and guided through a partially transmitting mirror BH+ of the FPE 43 to an optically transparent photoelastic material LH whose internal refractive index is changed by an external force F.

光弾性材料tSにおいてはその内部の光路長が外部から
のプロセス変量である力Fに応じて変化し、その結果、
光共振周波数が変化することとなる。
In the photoelastic material tS, the internal optical path length changes according to the external process variable force F, and as a result,
The optical resonance frequency will change.

この光共振周波数変化に伴う光弾性材料通過光が部分透
過ミラーBH2からFPE出射光としてリンズ42に出
射され、レンズ42によって光ファイバF2に集光され
る。そして検出部40の出力光として光コネクタ33に
至る。更に、光コネクタ33を通過した光は2心の光フ
ァイバF0を介して光コネクタ32から光ファイバF2
によりプロセス信号を得るための信号処理部20内へと
導かれる。信号処理部20内においては、光ファイバF
2により伝送されてきた光(FPE43からの透過光)
を電気信号に変換するため第2のPD24で受光する。
The light passing through the photoelastic material due to this change in the optical resonance frequency is emitted from the partially transmitting mirror BH2 to the lens 42 as FPE emitted light, and is focused by the lens 42 onto the optical fiber F2. The light then reaches the optical connector 33 as output light from the detection unit 40 . Furthermore, the light that has passed through the optical connector 33 is transferred from the optical connector 32 to the optical fiber F2 via the two-core optical fiber F0.
The signal is guided into the signal processing section 20 for obtaining a process signal. In the signal processing section 20, the optical fiber F
Light transmitted by 2 (transmitted light from FPE43)
The second PD 24 receives the light to convert it into an electrical signal.

一方、FPE43の部分透過ミラーIE、で反射された
光は、再び逆の経路で41→F、→33→30−32−
31→信号処理部20内へと導かれる。信号処理部20
内においては、光ファイバF’+aにより伝送されてき
た光(FPE43からの反射光)を電気信号に変換する
ため第1のPD23で受光する。
On the other hand, the light reflected by the partially transmitting mirror IE of FPE 43 goes through the reverse path again from 41→F, →33→30-32-
31 → guided into the signal processing unit 20. Signal processing section 20
Inside, the light transmitted by the optical fiber F'+a (reflected light from the FPE 43) is received by the first PD 23 to be converted into an electrical signal.

この結果、第1のPD23の電気信号と第2のPD24
の電気信号は、割算器21において、その比、即ち、“
第1のPDの電気信号/第2のPDの電気信号”の演算
が行なわれ、所望の信号が出力として得られる。
As a result, the electrical signal of the first PD 23 and the electrical signal of the second PD 24 are
The electric signal of is divided into the ratio by the divider 21, that is, "
A calculation of "electrical signal of the first PD/electrical signal of the second PD" is performed, and a desired signal is obtained as an output.

以上のことを式で表わすと次のようになる。The above can be expressed as the following formula.

FPE43に入射する光は、多重反射を起こして共振周
波数に相当する周波数の光のみを透過する。
The light incident on the FPE 43 causes multiple reflections, and only the light having a frequency corresponding to the resonance frequency is transmitted.

ここで、FPE43への入射光強度をIO+外部からの
力によって起因されたFPE内部の光弾性材料LHに生
じる位相変化をδ、部分透過ミラー8N。
Here, the intensity of light incident on the FPE 43 is IO+the phase change occurring in the photoelastic material LH inside the FPE caused by an external force is δ, and the partially transmitting mirror 8N.

の反射率をRとすると、FPE入射光強度■。に対する
FPE43の透過強度、つまり光ファイバF2へ入射す
る光強度の比は、 I t / I o−(I  R) 2/ ((I  
R) 2−ト 4Rs  i  n  2  (δ /
  2  )   1−1)となり(但し、Itは透過
光強度)、FPE入射光強度■。に対するFPE43の
反射光強度の比は、It/Io=4Rsin’  (δ
/2)/+(1−R)2 +4Rs i n2 (δ/ 2 ) ) =−(2)
で夫々与えられる(但し、Irは反射光強度)。
If the reflectance of is R, then the FPE incident light intensity is ■. The transmission intensity of the FPE 43, that is, the ratio of the light intensity incident on the optical fiber F2 to
R) 2-t 4Rs in 2 (δ /
2) 1-1) (where It is the transmitted light intensity), which is the FPE incident light intensity ■. The ratio of the reflected light intensity of the FPE 43 to the intensity is It/Io=4Rsin' (δ
/2)/+(1-R)2 +4Rs in2 (δ/2)) =-(2)
(However, Ir is the reflected light intensity).

一方、信号処理部20と検出部40は光ファイバで接続
されているので、光フアイバ内部の損失は距離や温度に
よって変化する。この2本の光ファイバF+、F2での
光の損失を夫々L、、L2とすれば、光ファイバF、 
 F2の長さは等しく1本のゲープル内に治められてい
るため、Ll =L2Lどなるから、最終的には、第1
のPD23及び第2のPD24で検出される光強度は、
夫々It−/Io=L[(I  R)’/ +(1−4>’ +4Rs i n’  (δ/ 2 ) ) ]−(3
)I r  −/ I o  = L  [4Rs  
i  n 2(δ/2)/I(1−R)2 +4Rstn’(δ/ 2 ) l ] ・(4)とな
る。割算器21でこの2つの光強度の比をとると、 IT  −/It  −=4Rsin2 (δ/2))
/(1−R)2 ) = I r / I t            ・・
・(5)となり、光弾性材料LHに生じる位相変化δに
対してsin’の関数になるから、本構成とすることに
より、光ファイバの損失りの変化によらない信号が検出
できることとなる。
On the other hand, since the signal processing section 20 and the detection section 40 are connected by an optical fiber, the loss inside the optical fiber changes depending on the distance and temperature. If the optical losses in these two optical fibers F+ and F2 are respectively L, L2, then the optical fiber F,
Since the length of F2 is equal within one gaple, Ll = L2L, so in the end, the first
The light intensity detected by the second PD 23 and the second PD 24 is
It-/Io=L[(IR)'/+(1-4>'+4Rsin'(δ/2))]-(3
)I r −/I o = L [4Rs
i n 2(δ/2)/I(1-R)2 +4Rstn'(δ/2) l ] · (4). Taking the ratio of these two light intensities with the divider 21, IT −/It −=4Rsin2 (δ/2))
/(1-R)2) = Ir/It...
-(5), which is a function of sin' with respect to the phase change δ occurring in the photoelastic material LH, so by adopting this configuration, it is possible to detect a signal that does not depend on changes in the loss of the optical fiber.

くその他の実施例〉 本発明は以上説明した内容に限定されない、即ち、以下
のように変型することができる。
Other Examples> The present invention is not limited to the content described above, that is, it can be modified as follows.

■:光光拡振器構造は制限しない。つまり、第1図のよ
うに前後にレンズ41.42を配置し、その内側に光弾
性材料Mを挟んだ形で部分透過ミラー88、882が配
置された構成とするのではなく、第2図の他の実施例の
説明に供する図に示すように、導波路形の光共振器50
としてもよい、第2図においては、光導波路基板51に
光導波F#152が設けられて光ファイバF+、F2に
部分透過ミラーコーティング53を介して接続され、裏
面にタイアフラム54か加工されて設けられた構造とな
っている場合を図示する。
■: There are no restrictions on the optical expander structure. In other words, instead of arranging lenses 41 and 42 at the front and rear as shown in FIG. 1 and partially transmitting mirrors 88 and 882 with the photoelastic material M sandwiched between them, as shown in FIG. As shown in the diagram for explaining another embodiment, a waveguide-shaped optical resonator 50
In FIG. 2, an optical waveguide F#152 is provided on the optical waveguide substrate 51 and connected to the optical fibers F+ and F2 via a partially transmitting mirror coating 53, and a tire phragm 54 is processed and provided on the back surface. The figure shows a case where the structure is as follows.

つまり、光共振器内部構造に特別な制限は無く、力の伝
達機構及び検出する物量はこのほかにもいろいろなもの
が考えられ、これ等は設計的な事項として広く応用をき
かせることができる。
In other words, there is no particular restriction on the internal structure of the optical resonator, and various other force transmission mechanisms and amounts of objects to be detected can be considered, and these can be widely applied as design matters.

そしてこの光共振器は、参照用のセンサ等として複数設
けるようにしてもよいものである。
A plurality of optical resonators may be provided as a reference sensor or the like.

■二カプラ類は第1図のようにY分岐型のみでなく、X
分岐型や方向性結合器等なんでもよい。
■Two couplers are not only Y-branched as shown in Figure 1, but also X-branched.
Any branch type, directional coupler, etc. may be used.

■:光源は半導体レーザでなく他のレーザでもよく、要
は可干渉性のある光源であれは良い。
(2): The light source may be any other laser other than a semiconductor laser, and in short, any coherent light source is fine.

〈発明の効果〉 本発明は、以上説明したように少なくとも1つの可干渉
性のある光源と少なくとも1つの光共振器を有して構成
されているので、次に記載するような効果を奏する。
<Effects of the Invention> As described above, the present invention is configured to include at least one coherent light source and at least one optical resonator, and therefore has the following effects.

■::ファイバを用いるため遠隔計測が可能で、2つの
出力信号の比をとるために、光ファイバ等のロスを含ま
ない信号検出ができ、高精度な検出ができる。
■: Remote measurement is possible because a fiber is used, and since the ratio of two output signals is taken, signal detection that does not include loss due to optical fibers, etc. is possible, and highly accurate detection is possible.

■::干渉性のある光源の出力のモニタ構成部か不要と
なる。
■: There is no need for a monitor component for the output of a coherent light source.

■::学系か単純で特殊な光学部品を用いないで、ロー
コストで信頼性の高い光センサが実現できる。
■::A low-cost and highly reliable optical sensor can be realized without using simple and special optical parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光センサの具体的実施例の構成図、第
2図は他の実施例の説明に供する図、第3図は従来の光
センサの構成図、第4図は第3図に用いられるファブリ
ベロー型干渉装置の構造を示す図である。 20・・・信号処理部、21・・・割算器、22・・・
可干渉光源(LD)、23.24・・・第1.第2の受
光素子(又は光検出素子、PD)、30・・・光フアイ
バーケーブル部(CA、 ) 、32.33・・・光コ
ネクタ、40・・・検出部、43、50・・・光共振器
(FPE)。
FIG. 1 is a block diagram of a specific embodiment of the optical sensor of the present invention, FIG. 2 is a diagram for explaining another embodiment, FIG. 3 is a block diagram of a conventional optical sensor, and FIG. 4 is a block diagram of a conventional optical sensor. FIG. 2 is a diagram showing the structure of a Fabry-Bello interference device used in the figure. 20... Signal processing unit, 21... Divider, 22...
Coherent light source (LD), 23.24...1st. 2nd light receiving element (or photodetecting element, PD), 30... optical fiber cable part (CA, ), 32.33... optical connector, 40... detection unit, 43, 50... light Resonator (FPE).

Claims (1)

【特許請求の範囲】[Claims] 被測定対象のプロセス量の変化を測定する光センサにお
いて、内部の光路長が前記プロセス変量に応じて変化し
て光共振周波数が変化する構成の光共振器を少なくとも
1つ有する検出部と、少なくとも1つの可干渉光源、該
可干渉光源の光が光ファイバを介して前記光共振器の入
力部に導かれた後に該光共振器の反射光を光ファイバを
介して受光して電気信号に変換する第1の光検出器及び
前記光共振器の透過光を光ファイバを介して受光して電
気信号に変換するための第2の光検出器、及び前記第1
の光検出器と前記第2の光検出器との信号比を取り前記
プロセス量を信号として出力する信号処理回路を有する
信号処理部と、を具備したことを特徴とする光センサ。
An optical sensor that measures a change in a process variable of an object to be measured includes: a detection section having at least one optical resonator configured to change an optical resonant frequency by changing an internal optical path length in accordance with the process variable; one coherent light source; after the light from the coherent light source is guided to the input part of the optical resonator via an optical fiber, the reflected light from the optical resonator is received via the optical fiber and converted into an electrical signal; a first photodetector for receiving the transmitted light of the optical resonator via an optical fiber and converting it into an electrical signal;
and a signal processing section having a signal processing circuit that calculates a signal ratio between the photodetector and the second photodetector and outputs the process amount as a signal.
JP4741590A 1990-02-28 1990-02-28 Optical sensor Pending JPH03249502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4741590A JPH03249502A (en) 1990-02-28 1990-02-28 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4741590A JPH03249502A (en) 1990-02-28 1990-02-28 Optical sensor

Publications (1)

Publication Number Publication Date
JPH03249502A true JPH03249502A (en) 1991-11-07

Family

ID=12774515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4741590A Pending JPH03249502A (en) 1990-02-28 1990-02-28 Optical sensor

Country Status (1)

Country Link
JP (1) JPH03249502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503710A (en) * 1993-10-01 1997-04-15 アイディーシー、ミキサーズ、リミテッド Raw material mixer
KR100305381B1 (en) * 1999-06-18 2001-09-24 김진찬 Optical sensor for measuring deformation of institution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503710A (en) * 1993-10-01 1997-04-15 アイディーシー、ミキサーズ、リミテッド Raw material mixer
KR100305381B1 (en) * 1999-06-18 2001-09-24 김진찬 Optical sensor for measuring deformation of institution

Similar Documents

Publication Publication Date Title
US4627728A (en) Compensated Fabry Perot sensor
US4775214A (en) Wavelength coded resonant optical sensor
US4356396A (en) Fiber optical measuring device with compensating properties
US6137565A (en) Bragg grating temperature/strain fiber sensor having combination interferometer/spectrometer output arrangement
JP4108040B2 (en) Current measuring device
US4584470A (en) Single-polarization fiber optics magnetic sensor
US10211596B2 (en) Optical sensor having external cavity laser outputting sensing and reference light
JPH0251133A (en) Apparatus for hetrodyne detection or homodyne detection of light signal beam optically
US20080129985A1 (en) Slanted Bragg Grating Refractometer, Using the Optical Power Diffracted to the Radiation-Mode Continuum
GB2353858A (en) Optical wavelength measuring device using integrated optics and photodiodes
US6340448B1 (en) Surface plasmon sensor
JPH03249502A (en) Optical sensor
US4607162A (en) Sensing apparatus for measuring a physical quantity
JPH0447214A (en) Optical fiber gyroscope
JP2669359B2 (en) Distortion measuring method and device
JPH0464030B2 (en)
JPH095021A (en) Optical fiber sensor
JP2918761B2 (en) Optical position detector
JPH03100422A (en) Minimal displacement sensor
JP2507790B2 (en) Semiconductor laser FM modulation characteristic measuring device
US6038926A (en) TDM array of optical non-acoustic pressure sensors
JPH03261802A (en) Photosensor
JPS6148748A (en) Optical measuring device
JPS59160725A (en) Optical thermometer
JPS61118633A (en) Optical fiber sensor