JPH03249207A - Production of ultrafine olefin fiber - Google Patents

Production of ultrafine olefin fiber

Info

Publication number
JPH03249207A
JPH03249207A JP2048782A JP4878290A JPH03249207A JP H03249207 A JPH03249207 A JP H03249207A JP 2048782 A JP2048782 A JP 2048782A JP 4878290 A JP4878290 A JP 4878290A JP H03249207 A JPH03249207 A JP H03249207A
Authority
JP
Japan
Prior art keywords
spinning
polymer
poise
orifice
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2048782A
Other languages
Japanese (ja)
Inventor
Shigeki Tanaka
茂樹 田中
Hideo Isoda
英夫 磯田
Takashi Arimoto
有本 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2048782A priority Critical patent/JPH03249207A/en
Publication of JPH03249207A publication Critical patent/JPH03249207A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject ultrafine fiber suitable for high performance filter and liquid filter by spinning an olefinic polymer at a specific shearing rate under a specific apparent viscosity condition. CONSTITUTION:The objective ultrafine fiber can be produced e.g. by a melt-blow spinning or jet spinning process of an olefinic polymer having a viscosity of 0.6-1.3 under spinning condition to keep the shearing rate (gamma sec<-1>) of 1000<=gamma<=5X10<4> and an apparent viscosity (eta) of 5300gamma<-8.57=eta<=51300gamma<-8.57> (poise) and preferably using a spinning orifice having an L/D ratio of >=5 (L is length and D is diameter of the orifice) without using a decomposition assistant.

Description

【発明の詳細な説明】 (M業上の利用分野) 本発明は、オレフィン系極細llA111の製造方法に
間するものであり、ざらに詳しくは、繊維強力とフィル
ター性能、保温特性など極細繊維の特徴を活かした機能
に優れ、かつ主としてポリマー系切れなどの紡糸不安定
現象に起因すると考えられるポリマー玉がほとんど発生
しないオレフィン系極!l縁雄の製造方法に関する。
Detailed Description of the Invention (Field of Application in the M Industry) The present invention relates to a method for producing olefin-based ultrafine llA111. An olefin-based pole that has excellent functions that take advantage of its characteristics, and almost never produces polymer balls, which are thought to be caused mainly by unstable spinning phenomena such as polymer breakage! This invention relates to a method for producing l-rim male.

本発明の不m布はフィルター用途、保温材用途以外にも
医療・衛生用途、アグリカルチャー用途などの用途に最
適である。
The non-woven fabric of the present invention is most suitable for medical/sanitary uses, agricultural uses, etc. in addition to filter uses and heat insulating material uses.

(従来の技術) 近年、インダストリアル・アンド・エンジニアリング・
ケミストリ−48巻第8号(1956)にその基本方法
の開示されたメルトブロー法を中心として極細繊維の製
造が行われてきた。オレフィン系のポリマーのメルトブ
ロー法においては特開昭54−134177に、少なく
とも初期固有粘度が1.4以上である樹脂を化学分解、
熱分解により該固有粘度を0.6〜1.4まで低下させ
、せん断速度が700〜3500(秒−1)で溶融粘度
が60から300ポイズで紡糸する方法が示されており
平均繊維径が5μm以下の極細繊維の製造が可能となっ
ている。また特開昭63−6107に示されるようにメ
ルトインデックスが70〜500g/分の間で50ポイ
ズ以下の溶融粘度で紡糸する方法も知られており、ポリ
マー玉の少ない不m布を得る事が可能である。紡糸にお
ける最も重要な要緊であるポリマーの粘度を調整する方
法としては特開平1−156561などのように分解補
助剤を添加する方法も知られておりメルトブロー法紡糸
時のポリマー玉の発生を抑えるために努力がなされてき
た。
(Conventional technology) In recent years, industrial and engineering
Ultrafine fibers have been produced mainly by the melt-blowing method, the basic method of which is disclosed in Chemistry, Vol. 48, No. 8 (1956). In the melt-blowing method of olefin polymers, Japanese Patent Application Laid-Open No. 134177/1983 discloses that a resin having an initial intrinsic viscosity of at least 1.4 is chemically decomposed,
A method is disclosed in which the intrinsic viscosity is lowered to 0.6 to 1.4 by thermal decomposition, and the average fiber diameter is It is now possible to produce ultrafine fibers of 5 μm or less. Furthermore, as shown in JP-A No. 63-6107, a method of spinning with a melt index of 70 to 500 g/min and a melt viscosity of 50 poise or less is also known, and it is possible to obtain a non-woven fabric with fewer polymer beads. It is possible. As a method of adjusting the viscosity of the polymer, which is the most important factor in spinning, a method of adding a decomposition aid as in JP-A-1-156561 is also known, and this method is used to suppress the formation of polymer beads during melt-blowing spinning. efforts have been made.

(発明が解決しようとする課題) オレフィン系のポリマーのメルトブロー法における特開
昭54−134177のように、少なくとも初期固有粘
度が1.4以上である樹脂を化学分解、熱分解により該
固有粘度を0.6〜1.4まで低下させ、せん断速度が
700〜3500(秒−1)で溶融粘度が50から30
0ポイズで紡糸する方法は、紡糸は不安定な場合が多く
、従ってできてくる繊維の糸径の分布がかなり広く、か
つポリマー玉の発生も充分抑えることができなかフた。
(Problems to be Solved by the Invention) As in JP-A-54-134177 in the melt blowing method of olefin polymers, a resin having an initial intrinsic viscosity of at least 1.4 is chemically decomposed or thermally decomposed to reduce the intrinsic viscosity. The melt viscosity is reduced from 50 to 30 at a shear rate of 700 to 3500 (sec-1).
In the method of spinning at 0 poise, the spinning is often unstable, and therefore the yarn diameter distribution of the resulting fibers is quite wide, and the generation of polymer balls cannot be sufficiently suppressed.

また特開昭83−6107に示されるようにメルトイン
デックスが70〜500g/分の間で50ポイズ以下の
溶融粘度で紡糸する方法も知られているが、該条件下で
はポリマーの劣化が大きかったリボリマー分子量が低下
して、得られるlI維の強度が弱く利用用途が大幅に制
限されてきた。また、この劣化によりノズルフィルタ一
部の背圧上昇が大きいために、フィルターの交換頻度や
ノズルの洗浄頻度が高くなったり、フィルターの交換頻
度を減らすためボアーサイズを大きくする必要がある。
Furthermore, as shown in JP-A No. 83-6107, a method of spinning with a melt index of 70 to 500 g/min and a melt viscosity of 50 poise or less is also known, but under these conditions the polymer deteriorated significantly. As the molecular weight of the ribolimer has decreased, the strength of the resulting lI fibers has been low, and its uses have been severely limited. Furthermore, this deterioration causes a large increase in back pressure in a part of the nozzle filter, which increases the frequency of filter replacement and nozzle cleaning, and it is necessary to increase the bore size to reduce the frequency of filter replacement.

交換頻度。Replacement frequency.

洗浄の増加は生産性の低下を招き、フィルターを甘くす
ることは紡糸の安定性を損なう結果に至った0分解補助
剤によりポリマーの粘度を調整する方法は、異物を添加
することになり、その存在はフィルタ一部のつまりによ
る背圧上昇を助長する恐れがあり、また、分子量分布が
広くなりやすく(Mw/Mnが大)紡糸安定性も低下す
るという問題があった。従来までの様々な努力にもかか
わらず、充分な強力を有し、ポリマー玉の発生のきわめ
て少ない製造技術は確立できていなかフた・本発明の目
的は、充分な強力を有した繊維を製造し・ ポリマー玉
の発生のきわめて少ないうえに、操業性の優れたオレフ
ィン系極細繊維の製造技術を確立し、フィルター性能、
保温材性能など極細ii*特性に優れたオレフィン系極
細繊維の製造方法を提供することにある。
Increased washing led to a decrease in productivity, and making the filter too sweet led to a loss of spinning stability.The method of adjusting the viscosity of the polymer with a decomposition aid added foreign matter, and its There is a possibility that the presence of such a substance may promote an increase in back pressure due to clogging of a part of the filter, and there is also a problem that the molecular weight distribution tends to be wide (Mw/Mn is large) and spinning stability is also reduced. Despite various efforts to date, it has not been possible to establish a manufacturing technology that has sufficient strength and minimizes the occurrence of polymer beads.The purpose of the present invention is to manufacture fibers that have sufficient strength. - We have established a manufacturing technology for olefin-based ultrafine fibers that have extremely low polymer beads and excellent operability, and have improved filter performance and
It is an object of the present invention to provide a method for producing olefin-based ultrafine fibers having excellent ultrafine II* properties such as heat insulating properties.

(NBを解決するための手段) 本発明は懸かる課題を解決するために、下記の要件をと
るものである。即ち、本発明は、オレフィン系ポリマー
をメルトブロー法をはじめとするジェット紡糸法により
紡糸する際に、ダイオリフイス部におけるせん断速度(
γ)秒−1が1000≦γ≦5x30’であってそのと
きの見かけ粘度(η)が下記の式を満たすような条件で
紡糸して平均m維径が0. 1〜5μmの極細繊維をi
!造することを特徴とするオしフィン系極細繊維の製造
方法である。
(Means for solving NB) In order to solve the problem, the present invention takes the following requirements. That is, the present invention provides a method for reducing the shear rate (
γ) seconds-1 is 1000≦γ≦5x30' and the apparent viscosity (η) at that time satisfies the following formula, and the average m fiber diameter is 0. Ultrafine fibers of 1 to 5 μm are
! This is a method for producing ultrafine fibers.

5300r−1丁(ポイズ)≦ η≦51300γ1・67(ポイズ) ここで言う極細繊維とは平均lI維径が0.1〜5μm
のIlnをさすものとする。
5300r-1 (poise) ≦ η≦51300γ1.67 (poise) The ultrafine fibers referred to here have an average lI fiber diameter of 0.1 to 5 μm.
It refers to Iln.

以下、必要な要件と作用について順次説明する。Necessary requirements and effects will be sequentially explained below.

本発明に用いるポリマーはポリプロピレン、&i密度ポ
リエチレン、ポリブテン−1等のオレフィンであれば良
く、特に限定するものではない、望ましくは該ポリマー
の固有粘度が0.6〜1.3の間にあることが紡糸安定
性、繊維強力の点で好ましい、固有粘度が1.3より大
きくなると紡糸途中における不安定現象が起こり安く玉
状物の発生が生じ易くなる。この原因については明確で
ないがポリマーの粘弾性効果に起因すると考えられる。
The polymer used in the present invention may be any olefin such as polypropylene, &i density polyethylene, polybutene-1, etc., and is not particularly limited. Desirably, the intrinsic viscosity of the polymer is between 0.6 and 1.3. is preferable from the viewpoint of spinning stability and fiber strength. If the intrinsic viscosity is greater than 1.3, instability phenomenon occurs easily during spinning and beads are likely to occur. Although the cause of this is not clear, it is thought to be due to the viscoelastic effect of the polymer.

一方0. 6未満では必要なlll11強力が得られに
くい、また、ポリマーの分子量分布については、紡糸の
安定性から、より狭いことが好ましい、ポリマーの中に
含まれる残留触媒や添加剤粒子の存在は少ないほど良く
、予め選別して粒径の大きいものを除去しておくことが
輩ましい1分解補助剤なども余り添加しない法がよい、
ポリマー中における粒子の存在は紡糸の不安定現象を誘
起し、糸切れやポリマー玉を発生するとともに、ノズル
フィルタ一部の背圧上昇を起こしてしまう。
On the other hand, 0. If it is less than 6, it is difficult to obtain the necessary lll11 strength.In addition, from the viewpoint of spinning stability, it is preferable that the molecular weight distribution of the polymer be narrower. It is best to use a method that does not add too many decomposition aids, which require pre-selection to remove large particles.
The presence of particles in the polymer induces spinning instability, resulting in thread breakage and polymer balls, as well as an increase in back pressure in a part of the nozzle filter.

次に、該ポリマーを紡糸する際に最も重要な要素のひと
つとして粘度が挙げられるがポリマーの粘度はせん断速
度により変化するためにせん断速度を併せて考えること
が必要である0通常のオレフィン系のジェット紡糸では
ダイオリフイス内のせん断速度は比較的低い速度で紡糸
されるが、その原因はノズルオリフィス径が大きいこと
に起因すると思われる。従来のように溶融粘度が50ポ
イズ以下程度ではオリフィス径を変えても製造されるm
atの平均M*径が余り変化しないために、ノズルの加
工や保守の観点から大きなオリフィス径が適用されてき
た。しかし、これらの条件ではポリマー玉の発生が生じ
たり、紡糸が不安定なために、得られる繊維の繊維径の
ばらつきが大きく、フィルターや保温材等の性能が低下
していた。紡糸を安定化させ繊維径のばらつきを抑える
ためには、粘度は高めの方が好ましいが、平均繊維径が
大きくなりたり、ポリマーの粘弾性挙動が激しくなり別
の原因で紡糸が不安定化する0本発明にあっては40ポ
イズ以上が好ましく、さらに60ポイズを越えるものが
さらに好ましく、6oポイズ以上が特に好ましい、高粘
度のポリマーを細くするためには、オリフィス径を小さ
くする必要がありそれにより従来技術とは異なったせん
断速度域で紡糸を行う必要が生じてくる。そのときに発
生する粘弾性効果を抑えるためにはオリフィス長さとオ
リフィス径の比(L/D)をできるだけ大きくとる必要
が生じてくる9発明者らは何度となくテストを繰り返す
ことにより、L/Dが最低5以上であることが好ましい
ことを明らかにした。また、ポリマー玉の発生を抑え安
定な紡糸を行うために必要なせん断速度(γ)は100
0から50000秒−1の間にある。せん断速度が50
000を越えるとオリフィス部でのポリマーの流動や細
化伸張が不安定になり糸切れが多数発生する。上記せん
断速度域に於ける見かけ粘度(η)は次式を満たせば良
い。
Next, viscosity is one of the most important factors when spinning the polymer, and since the viscosity of the polymer changes depending on the shear rate, it is necessary to consider the shear rate as well. In jet spinning, the shear rate within the die orifice is relatively low, which is thought to be due to the large diameter of the nozzle orifice. Conventionally, if the melt viscosity is about 50 poise or less, it can be manufactured even if the orifice diameter is changed.
Since the average M* diameter of at does not change much, a large orifice diameter has been applied from the viewpoint of nozzle processing and maintenance. However, under these conditions, polymer balls were generated and spinning was unstable, resulting in large variations in the fiber diameter of the resulting fibers and deteriorating the performance of filters, heat insulators, etc. In order to stabilize spinning and suppress variations in fiber diameter, it is preferable to have a higher viscosity, but this may result in an increase in the average fiber diameter or severe viscoelastic behavior of the polymer, making spinning unstable for other reasons. 0 In the present invention, the orifice diameter is preferably 40 poise or more, more preferably more than 60 poise, and particularly preferably 6 o poise or more. Therefore, it becomes necessary to perform spinning at a shear rate range different from that of the conventional technology. In order to suppress the viscoelastic effect that occurs at that time, it is necessary to make the ratio of orifice length to orifice diameter (L/D) as large as possible9. It has been clarified that /D is preferably at least 5 or more. In addition, the shear rate (γ) required to suppress the generation of polymer beads and perform stable spinning is 100
It is between 0 and 50000 seconds-1. Shear rate is 50
If it exceeds 000, the flow and thinning extension of the polymer at the orifice become unstable and many thread breakages occur. The apparent viscosity (η) in the above shear rate range should satisfy the following formula.

5300 T−”・” (ポイズ)≦ η≦51300γ−1・5フ(ポイズ)これら粘度の上
限は、細化に対する抵抗に間係し、これ以上だと平均繊
維径が0. 1〜δμmの極細繊維を得ることができな
い、また、特に平均繊維径が3μm以下の!1lIji
iii雄を得るための粘度の上限値の好ましい条件とし
ては、 3000≦γ≦5χ104で η≦31400γ−57(ポイズ) が必要である。また、ポリマー粘弾性の影響で紡糸が不
安定になる。また、下限値の存在は、細化伸張時の毛管
破断を生じさせないための必要条件であり、条件からは
ずれると糸切れが多数発生する。
5300 T-"・" (Poise) ≦ η≦51300γ-1.5F (Poise) The upper limit of these viscosity depends on the resistance to thinning, and if it exceeds this, the average fiber diameter will be 0. It is not possible to obtain ultrafine fibers with a diameter of 1 to δμm, and especially when the average fiber diameter is 3μm or less! 1lIji
The preferred conditions for the upper limit of viscosity to obtain iii males are as follows: 3000≦γ≦5χ104 and η≦31400γ-57 (poise). Furthermore, spinning becomes unstable due to the influence of polymer viscoelasticity. Furthermore, the existence of a lower limit value is a necessary condition for preventing capillary breakage during thinning and elongation, and if the condition is deviated from the condition, many yarn breaks will occur.

懸かる要件を満足することにより、充分な強力を有した
繊維を製造し、ポリマー玉の発生のきわめて少ないうえ
に、操業性の優れたオレフィン系極細繊維の製造が可能
となり、フィルター性能。
By satisfying these requirements, it is possible to produce fibers with sufficient strength, extremely low polymer ball formation, and olefin-based ultrafine fibers with excellent operability, which improves filter performance.

保温材性能など極細繊維特性に優れた素材を提供する事
が明らかとなった。
It has become clear that the material can be provided with excellent ultrafine fiber properties such as insulation properties.

(測定法) (平均繊維径、繊維径変動率) 走査型電子顕*aで極W11雄を作成し、その写真より
mat径1tfM定し、200本の平均をとった。
(Measurement method) (Average fiber diameter, fiber diameter variation rate) A pole W11 male was prepared using a scanning electron microscope *a, and the mat diameter was determined to be 1 tfM from the photograph, and the average of 200 fibers was taken.

またその標準偏差を平均値で削った割合を巌維径の変動
率Cv%として連用した。
In addition, the ratio obtained by reducing the standard deviation by the average value was continuously used as the fluctuation rate Cv% of the rock fiber diameter.

(ウェア引張り強力) 輻2cm、駅長10cm、  把持長2cmの条件でテ
ンシロンにより伸張切断し、そのときの最大応力を求め
る。測定に失当たり、なんら接着等の加工を実施しない
、そのため、メルトブロー法などにより直接不織布を作
成する際にはその条件により絶対値は大きく変わるが、
ここではポリマー温度とノズルオリフィス形状を変える
以外はすべて同じ条件で行った結果を比較する。
(Wear tensile strength) Cut by stretching with Tensilon under the conditions of radius 2 cm, station length 10 cm, and grip length 2 cm, and find the maximum stress at that time. The measurement was incorrect, and no processing such as adhesion was performed. Therefore, when creating a nonwoven fabric directly using a melt blow method, etc., the absolute value varies greatly depending on the conditions.
Here, we will compare the results obtained under the same conditions except for changing the polymer temperature and nozzle orifice shape.

(補集効率) JIS Z−8901試験用ダスト13種B法の0.3
μm平均のステアリン酸エアロゾルのダスト補集効率測
定により測定した。
(Collection efficiency) JIS Z-8901 test dust 13 type B method 0.3
It was determined by measuring the dust collection efficiency of stearic acid aerosol in μm average.

(実施例) 以下実施例を用い、本発明を更に説明するが本発明がこ
れら実施例によって限定されるものではない。
(Examples) The present invention will be further described below using Examples, but the present invention is not limited to these Examples.

実施例1 メルトブロー法によりメルトインデックス30Q g 
/ 10分のポリプロピレン樹脂をポリマー温度260
度、置引流体温度350度、牽引流体噴射圧力2.0K
g/cm”で紡糸した。ノズルオリフィス径は0.20
mmでオリフィス長とオリフィス径の比は10とし、ポ
リマー吐出量は単孔の吐出量でQ、15g/分・孔とし
た。このときのせん断速度は4500秒″1であり、見
かけの粘度は56ポイズであった。
Example 1 Melt index 30Q g by melt blowing method
/ Polypropylene resin for 10 minutes at a polymer temperature of 260℃
degree, pulling fluid temperature 350 degrees, pulling fluid injection pressure 2.0K
g/cm".Nozzle orifice diameter is 0.20
The ratio of the orifice length to the orifice diameter in mm was 10, and the polymer discharge rate was Q in terms of the discharge rate of a single hole, and was 15 g/min/hole. The shear rate at this time was 4500 seconds''1, and the apparent viscosity was 56 poise.

得られた繊維の平均繊維径は−1,5μmで変動率C■
%は25%と低かった。該繊維よりなる40g/m2目
付けのウェアのマシン方向強力は550g/cmと比較
的高い値を示した。tた、このウェアを用いてフィルタ
ー性能を測定したところ92%と高い補集効率を示した
The average fiber diameter of the obtained fibers was -1.5 μm and the fluctuation rate C■
% was as low as 25%. The machine direction strength of the garment made of the fibers with a basis weight of 40 g/m2 was 550 g/cm, which was a relatively high value. Furthermore, when the filter performance was measured using this wear, it showed a high collection efficiency of 92%.

実施例2 メルトブロー法によりメルトインデックス200g/1
0分のポリプロピレン樹脂をポリマー温度270度、牽
引流体温度360度、牽引流体噴射圧力2.0Kg/c
m2で紡糸した。ノズルオリフィス径は0.15mmで
オリフィス長とオリフィス径の比は10とし、ポリマー
吐出量は単孔の吐出量で0.20g1分・孔とした。こ
のときのせん断速度は14000秒弓であ9、見かけ粘
度は50ポイズであフた。
Example 2 Melt index 200g/1 by melt blowing method
0 minute polypropylene resin, polymer temperature 270 degrees, traction fluid temperature 360 degrees, traction fluid injection pressure 2.0Kg/c
Spun at m2. The nozzle orifice diameter was 0.15 mm, the ratio of the orifice length to the orifice diameter was 10, and the polymer discharge amount was 0.20 g per minute per hole in a single hole. The shear rate at this time was 14,000 seconds, and the apparent viscosity was 50 poise.

得られた繊維の平均m維径は1.8μmで変動率C■%
は34%と低かった。該繊維よりなる40g/m2目付
けのウェアのマシン方向強力は580g/amと比較的
高い値を示した。また、このウェブを用いてフィルター
性能を測定したところ87%と高い補集効率を示した。
The average fiber diameter of the obtained fibers was 1.8 μm, and the fluctuation rate was C%.
was as low as 34%. The machine direction strength of the garment made of the fibers with a basis weight of 40 g/m2 was 580 g/am, which was a relatively high value. Furthermore, when the filter performance was measured using this web, it showed a high collection efficiency of 87%.

実施例3 メルトブロー法によりメルトインデックス100g/i
o分のポリプロピレン樹脂をポリマー温度270度、牽
引流体温度350度、牽引流体噴射圧力2.0Kg/a
m’で紡糸した。ノズルオリフィス径は0.15mmで
オリフィス長とオリフィス径の比は】0とし、ポリマー
吐出量は単孔の吐出量で0.20g/分・孔とした。こ
のときのせん断速度は3600秒−1であり、見かけの
粘度Li] 00ポイズであつた。
Example 3 Melt index 100g/i by melt blowing method
o of polypropylene resin, polymer temperature 270 degrees, traction fluid temperature 350 degrees, traction fluid injection pressure 2.0Kg/a
Spun with m'. The nozzle orifice diameter was 0.15 mm, the ratio of the orifice length to the orifice diameter was 0, and the polymer discharge rate was 0.20 g/min/hole through a single hole. The shear rate at this time was 3600 seconds-1, and the apparent viscosity was Li]00 poise.

得られた繊維の平均am径は2.9μmで変動率Cv%
は21%と低かった。該繊維よりなる40g/m2目付
けのウェアのマシン方向強力は61Qg/cmと比較的
高い値を示した。また、このウェアを用いてフィルター
性能を測定したところ78%と高い補集効率を示した。
The average am diameter of the obtained fibers was 2.9 μm, and the fluctuation rate Cv%
was as low as 21%. The machine direction strength of the garment made of the fibers with a basis weight of 40 g/m2 was 61 Qg/cm, which was a relatively high value. Furthermore, when the filter performance was measured using this wear, it showed a high collection efficiency of 78%.

比較fM1 メルトブロー法によりメルトインデックス600g/1
0分のポリプロピレン樹りをポリマー温度270度、牽
引流体温度350度、牽引流体噴射圧力2.0Kg/c
m2で紡糸した。ノズルオリフィス径は0.10mmで
オリフィス長とオリフィス径の比は10とし、ポリマー
吐出量は単孔の吐出量で0.22g/分・孔とした。こ
のときのせん断速度は51000秒−1であり、見かけ
の粘度は20ポイズであ)た。
Comparison fM1 Melt index 600g/1 by melt blowing method
0 minute polypropylene tree, polymer temperature 270 degrees, traction fluid temperature 350 degrees, traction fluid injection pressure 2.0Kg/c
Spun at m2. The nozzle orifice diameter was 0.10 mm, the ratio of orifice length to orifice diameter was 10, and the polymer discharge rate was 0.22 g/min/hole in terms of single hole discharge rate. The shear rate at this time was 51,000 seconds-1, and the apparent viscosity was 20 poise.

得られた繊維の平均繊維径は2.7μmで変動率C■%
は43%と高かった。また、ウェアの中にはポリマー玉
が認められた。中には該繊維よりなる40g/m2目付
けのウェアのマシン方向強力は490g/cmと低い値
を示した。また、このウェブを用いてフィルター性能を
測定したところ82%という補集効率を示した。
The average fiber diameter of the obtained fibers was 2.7 μm, and the fluctuation rate was C%.
was as high as 43%. Polymer beads were also found inside the clothing. Among them, the machine direction strength of garments made of the fibers with a basis weight of 40 g/m2 was as low as 490 g/cm. Furthermore, when filter performance was measured using this web, it showed a collection efficiency of 82%.

比較例2 メルトブロー法によりメルトインデックス300g/1
0分のポリプロピレン4!iNをポリマー温度310度
、牽引流体温度350度、!−引流体噴射圧力2.0K
g/cm2で紡糸した。ノズルオリフィス径は0.30
mmでオリフィス長とオリフィス径の比は5とし、ポリ
マー吐出量は単孔の吐出量で0.10g/分・孔とした
。このときのせん断速度は800秒−1であり、見かけ
の粘度は60ポイズでありた。
Comparative Example 2 Melt index 300g/1 by melt blowing method
0 minute polypropylene 4! iN, polymer temperature 310 degrees, traction fluid temperature 350 degrees,! - Draw fluid injection pressure 2.0K
The yarn was spun at g/cm2. Nozzle orifice diameter is 0.30
The ratio of the orifice length to the orifice diameter in mm was 5, and the polymer discharge rate was 0.10 g/min/hole in terms of the discharge rate for a single hole. The shear rate at this time was 800 seconds-1, and the apparent viscosity was 60 poise.

得られた繊維の平均繊維径は2.4μmで変動率CV%
は44%と高がりた。また、ウェブの中にはポリマー玉
が認められた。中には該繊維よりなる40g/m’目付
けのウェブのマシン方向強力は410g/cmと平均系
径の割には比較的低い値を示した。また、このウェアを
用いてフィルター性能を測定したところ47%というか
なり低い補集効率を示した。
The average fiber diameter of the obtained fibers was 2.4 μm, and the fluctuation rate CV% was
The number rose to 44%. Moreover, polymer beads were observed in the web. Among them, the machine direction strength of a web made of the fibers with a basis weight of 40 g/m' was 410 g/cm, which is a relatively low value considering the average system diameter. Furthermore, when the filter performance was measured using this wear, it showed a rather low collection efficiency of 47%.

比較例3 メルトブロー法によりメルトインデックス100g/1
0分のポリプロピレン樹脂をポリマー温度260度、牽
引流体温度350度、!引流体噴射圧力2.0Kg/c
m’で紡、糸した。ノズルオリフィス径は0115mm
でオリフィス長とオリフィス径の比はδとし、ポリマー
吐出量は単孔の吐出量で0.30g/分・孔とした。こ
のときのせん断速度は21000秒−1であり、見かけ
の粘度は300ポイズであった。
Comparative Example 3 Melt index 100g/1 by melt blowing method
0 minute polypropylene resin, polymer temperature 260 degrees, traction fluid temperature 350 degrees,! Pull fluid injection pressure 2.0Kg/c
Spun and threaded with m'. Nozzle orifice diameter is 0115mm
The ratio of the orifice length to the orifice diameter was set to δ, and the polymer discharge rate was set to 0.30 g/min/hole in terms of the discharge rate for a single hole. The shear rate at this time was 21,000 seconds-1, and the apparent viscosity was 300 poise.

得られた繊維の平均繊維径は5.1μmで変動率C■%
は42%と高かフた。また、ウェブの中にはポリマー玉
が認められた。中には該繊維よりなる40g/m2目付
けのウェアのマシン方向強力は520g/Cmと平均糸
径の割には比較的低い値を示した。また、このウェアを
用いてフィルター性能を測定したところ42%というか
なり低い補集効率を示した。
The average fiber diameter of the obtained fibers was 5.1 μm, and the fluctuation rate was C%.
was as high as 42%. Moreover, polymer beads were observed in the web. Among them, the machine direction strength of a garment made of the fibers with a basis weight of 40 g/m2 was 520 g/Cm, which is a relatively low value considering the average yarn diameter. Furthermore, when the filter performance was measured using this wear, it showed a rather low collection efficiency of 42%.

(発明の効果) 本発明の要件を満たした製造条件でオレフィン系の極*
mmを製造すれば、極線特性をいかし高付加価値用途へ
の連用可能な構成の繊維構造体を効率よ<W造可能であ
る。特に高性能エアーフィルターや液体フィルターとし
ての利用が可能である。
(Effects of the invention) Olefin-based electrodes* under production conditions that meet the requirements of the present invention
By manufacturing 2 mm, it is possible to efficiently produce a fiber structure with a structure that can be used for high value-added applications by taking advantage of the polar ray characteristics. In particular, it can be used as a high-performance air filter or liquid filter.

Claims (1)

【特許請求の範囲】 (1)オレフィン系ポリマーをメルトブロー法をはじめ
とするジェット紡糸法により紡糸する際に、ダイオリフ
ィス部におけるせん断速度(γ)秒^−^1が 1000≦γ≦5x10^4であってそのときの見かけ
の粘度(η)が下記の式を満たす条件で紡糸して平均繊
維径が0.1〜5μmの極細繊維を製造することを特徴
とするオレフィン系極細繊維の製造方法。 η≦51300γ^−^0^.^5^7(ポイズ)かつ η≧5300γ^−^0^.^5^7(ポイズ)(2)
オレフィン系ポリマーをメルトブロー法をはじめとする
ジェット紡糸法により紡糸する際に、該ポリマーの固有
粘度が0.6〜1.3の間にあり、かつ特別な分解補助
剤を加えない請求項1に記載のオレフィン系極細繊維の
製造方法。 (3)オレフィン系ポリマーをメルトブロー法をはじめ
とするジェット紡糸法により紡糸して極細繊維を製造す
る際に、ダイオリフィス部における見かけの粘度(η)
が 3000≦γ≦5x10^4で η≦31400γ^0^.^5^7(ポイズ)かつ η≧5300γ^−^0^.^5^7(ポイズ)の条件
を満たし、該紡糸ノズルオリフィスのオリフィス長さ(
L)とオリフィス径(D)の比を5以上にして平均繊維
径が0.1〜5μmの極細繊維とすることを特徴とする
オレフィン系極細繊維の製造方法。
[Scope of Claims] (1) When spinning an olefin polymer by a jet spinning method such as a melt blow method, the shear rate (γ) seconds^-^1 at the die orifice part is 1000≦γ≦5x10^4 A method for producing olefin-based ultrafine fibers, characterized by producing ultrafine fibers with an average fiber diameter of 0.1 to 5 μm by spinning under conditions where the apparent viscosity (η) at that time satisfies the following formula: . η≦51300γ^-^0^. ^5^7 (poise) and η≧5300γ^-^0^. ^5^7 (Poise) (2)
Claim 1: When an olefinic polymer is spun by a jet spinning method such as a melt blowing method, the intrinsic viscosity of the polymer is between 0.6 and 1.3, and no special decomposition aid is added. The method for producing the olefin ultrafine fiber described above. (3) Apparent viscosity (η) at the die orifice when producing ultrafine fibers by spinning olefin polymers using jet spinning methods such as melt blowing methods.
is 3000≦γ≦5x10^4 and η≦31400γ^0^. ^5^7 (poise) and η≧5300γ^-^0^. ^5^7 (poise) is satisfied, and the orifice length of the spinning nozzle orifice (
A method for producing olefin-based ultrafine fibers, characterized in that the ratio of L) to orifice diameter (D) is 5 or more to obtain ultrafine fibers with an average fiber diameter of 0.1 to 5 μm.
JP2048782A 1990-02-27 1990-02-27 Production of ultrafine olefin fiber Pending JPH03249207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2048782A JPH03249207A (en) 1990-02-27 1990-02-27 Production of ultrafine olefin fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2048782A JPH03249207A (en) 1990-02-27 1990-02-27 Production of ultrafine olefin fiber

Publications (1)

Publication Number Publication Date
JPH03249207A true JPH03249207A (en) 1991-11-07

Family

ID=12812820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048782A Pending JPH03249207A (en) 1990-02-27 1990-02-27 Production of ultrafine olefin fiber

Country Status (1)

Country Link
JP (1) JPH03249207A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267789B2 (en) 2003-06-30 2007-09-11 The Procter & Gamble Company Particulates in nanofiber webs
US7291300B2 (en) 2003-06-30 2007-11-06 The Procter & Gamble Company Coated nanofiber webs
US7576019B2 (en) 2004-04-19 2009-08-18 The Procter & Gamble Company Fibers, nonwovens and articles containing nanofibers produced from high glass transition temperature polymers
US7989369B2 (en) 2004-04-19 2011-08-02 The Procter & Gamble Company Fibers, nonwovens and articles containing nanofibers produced from broad molecular weight distribution polymers
US8395016B2 (en) 2003-06-30 2013-03-12 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
US8487156B2 (en) 2003-06-30 2013-07-16 The Procter & Gamble Company Hygiene articles containing nanofibers
JP2017115289A (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Fiber assembly
WO2017110057A1 (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Fiber assembly

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267789B2 (en) 2003-06-30 2007-09-11 The Procter & Gamble Company Particulates in nanofiber webs
US7291300B2 (en) 2003-06-30 2007-11-06 The Procter & Gamble Company Coated nanofiber webs
US8395016B2 (en) 2003-06-30 2013-03-12 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
US8487156B2 (en) 2003-06-30 2013-07-16 The Procter & Gamble Company Hygiene articles containing nanofibers
US8835709B2 (en) 2003-06-30 2014-09-16 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
US10206827B2 (en) 2003-06-30 2019-02-19 The Procter & Gamble Company Hygiene articles containing nanofibers
US7576019B2 (en) 2004-04-19 2009-08-18 The Procter & Gamble Company Fibers, nonwovens and articles containing nanofibers produced from high glass transition temperature polymers
US7989369B2 (en) 2004-04-19 2011-08-02 The Procter & Gamble Company Fibers, nonwovens and articles containing nanofibers produced from broad molecular weight distribution polymers
US9663883B2 (en) 2004-04-19 2017-05-30 The Procter & Gamble Company Methods of producing fibers, nonwovens and articles containing nanofibers from broad molecular weight distribution polymers
JP2017115289A (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Fiber assembly
WO2017110057A1 (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Fiber assembly
CN107614773A (en) * 2015-12-21 2018-01-19 松下知识产权经营株式会社 Fiber assembly

Similar Documents

Publication Publication Date Title
EP2065500B1 (en) Heat-resistant non-woven fabric
US4950529A (en) Polyallylene sulfide nonwoven fabric
US20140187115A1 (en) Polyphenylene sulfide fiber and nonwoven fabric
JPH03249207A (en) Production of ultrafine olefin fiber
US5401458A (en) Meltblowing of ethylene and fluorinated ethylene copolymers
JP2543548B2 (en) Polypropylene extra fine fiber non-woven fabric
JP5812786B2 (en) High strength nonwoven fabric
JPS636107A (en) Production of polypropylene ultrafine fiber
US20060025032A1 (en) Process for producing continuous filament nonwoven fabric
JP2859193B2 (en) Polyphenylene sulfide nonwoven fabric, method for producing the same, and filter using the same
JP3918965B2 (en) Composite nonwoven fabric
KR100192656B1 (en) The preparing method of superfine conjugated yarn
US7070884B2 (en) Separator with improved barrier performance
JP3578229B2 (en) Fine particle filter media
JP2004348984A (en) Melt blow unwoven fabric made of polyphenylene sulfide, its manufacturing method and separator made of the same
JP2002317372A (en) Method and apparatus for producing nonwoven fabric
JP3491044B2 (en) Method for producing polyolefin-based ultrafine fiber nonwoven fabric
JP2711169B2 (en) Production method of ultrafine fiber
JPH04327258A (en) Polymethylpentene ultrafine fiber web and its production
JPH0892856A (en) Production of nonwoven fabric excellent in flexibility
JP2010106388A (en) Heat-resistant nonwoven fabric
JP2023144365A (en) spunbond nonwoven fabric
JPH0491267A (en) Nonwoven fabric made of ultrafine fiber
JPS54156814A (en) Manufacture of ultra-fine fibers
JPH0380905B2 (en)