JPH03246932A - Manufacture equipment for semiconductor - Google Patents

Manufacture equipment for semiconductor

Info

Publication number
JPH03246932A
JPH03246932A JP4473390A JP4473390A JPH03246932A JP H03246932 A JPH03246932 A JP H03246932A JP 4473390 A JP4473390 A JP 4473390A JP 4473390 A JP4473390 A JP 4473390A JP H03246932 A JPH03246932 A JP H03246932A
Authority
JP
Japan
Prior art keywords
tube
process tube
wall surface
silicon
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4473390A
Other languages
Japanese (ja)
Inventor
Fumihiko Inoue
文彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4473390A priority Critical patent/JPH03246932A/en
Publication of JPH03246932A publication Critical patent/JPH03246932A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration of performance of a semiconductor device caused by metal contamination in high temperature heat treatment, and to lengthen the life of a process tube, by forming a diffusion restraining layer of metal impurities which is composed of material having a small coefficient of diffusion in the metal impurities. CONSTITUTION:On at least one of the outer wall surface 1a, the inner wall surface 1b, and the inside of a silicon process tube 1, a diffusion restraining layer 2 of metal impurities is formed along the wall of the tube 1. The layer 2 has diffusion coefficient of transition metal at a high temperature which is extremely small as compared with silicon. The time until the transition metal permeating into the tube 1 from a heater 4 of a heating furnace 3 via the surface 1a diffuses in the tube 1 and reaches the surface 1b is remarkably delayed by the layer 2. Thereby the contamination of transition metal caused by high temperature heat treatment of a semiconductor substrate 5 arranged in the tube 1 is prevented, the life of the tube 1 determined according to the degree of contamination of the surface 1b is lengthened, and the deformation of the tube 1 can be prevented.

Description

【発明の詳細な説明】 (概 要〕 半導体製造装置、特に半導体基板の高温熱処理に用いる
加熱炉のプロセスチューブの改良に関し、加熱炉による
高温加熱において変形がなく且つ遷移金属の拡散が防が
れるプロセスチューブを加熱炉内に具備した半導体製造
装置を提供し、高温加熱プロセス中の金属汚染による半
導体装置の性能劣化を防止すると共に、プロセスチュー
ブの寿命を延長せしめることを目的とし、加熱炉及び該
加熱炉に挿入されたシリコンからなるプロセスチューブ
を、有し、該プロセスチューブの外壁面、内壁面若しく
は内部の少なくとも何れかに、該プロセスチューブの管
壁に沿って管状に、該シリコン中よりも金属不純物の拡
散係数の小さい物質からなる金属不純物の拡散抑制層を
設けてなる構成を有する 〔産業上の利用分野〕 本発明は半導体製造装置、特に半導体基板の高温熱処理
に用いる加熱炉のプロセスチューブの改良に関する。
[Detailed Description of the Invention] (Summary) Regarding the improvement of a process tube of a heating furnace used for semiconductor manufacturing equipment, especially high-temperature heat treatment of semiconductor substrates, the process tube is not deformed during high-temperature heating in a heating furnace and diffusion of transition metals is prevented. The purpose of the present invention is to provide a semiconductor manufacturing equipment equipped with a process tube in a heating furnace, to prevent performance deterioration of the semiconductor device due to metal contamination during the high-temperature heating process, and to extend the life of the process tube. It has a process tube made of silicone inserted into a heating furnace, and on at least one of the outer wall surface, inner wall surface, or inside of the process tube, it is formed in a tubular shape along the wall of the process tube than in the silicon. [Industrial Application Field] The present invention relates to semiconductor manufacturing equipment, particularly a process tube of a heating furnace used for high-temperature heat treatment of semiconductor substrates. Regarding improvements.

近年、半導体装置の高集積化により、それを構成する半
導体素子は極度に微細化されてきており、それに伴って
素子に蓄えられる電荷量は大幅に減少してきている。そ
のため、プロセス中に侵入してくる遷移金属によって半
導体基板内に形成される欠陥を介して生ずる微小リーク
により、前記素子内に蓄積された電荷が消失してデータ
が反転するという問題が生ずる。そのため、高温熱処理
中に遷移金属が半導体基板内へ侵入するのを防止するこ
とが、是非とも必要になってくる。
In recent years, as semiconductor devices have become highly integrated, the semiconductor elements that constitute them have become extremely miniaturized, and the amount of charge stored in the elements has accordingly decreased significantly. Therefore, a problem arises in that micro-leakage caused by defects formed in the semiconductor substrate by transition metals entering during the process causes the charge accumulated in the device to disappear and data to be inverted. Therefore, it is absolutely necessary to prevent transition metals from entering the semiconductor substrate during high-temperature heat treatment.

〔従来の技術〕[Conventional technology]

従来、半導体装置を製造する際の加熱炉即ち電気炉のプ
ロセスチューブの材料には、一般に石英が用いられてい
た。しかし石英からなるプロセスチューブは、1100
℃以上の高温熱処理により変形を生ずるので、ソフトラ
ンディング法等の基板挿入手段を用いる際には、変形し
たプロセスチューブに半導体基板が接触するようになる
ために、高温熱処理には使用することができない。
Conventionally, quartz has generally been used as a material for process tubes in heating furnaces, that is, electric furnaces used to manufacture semiconductor devices. However, the process tube made of quartz is 1100
Since deformation occurs due to high-temperature heat treatment above ℃, when using a substrate insertion method such as the soft landing method, the semiconductor substrate comes into contact with the deformed process tube, so it cannot be used for high-temperature heat treatment. .

そのため、融点が高く高温熱処理での変形の少ない炭化
珪素(SiC)によるロセスチューブも従来用いられた
が、SiCからなるプロセスチューブにはその製造工程
から来る遷移金属が含まれるために、これを用いるとプ
ロセスチューブから侵入する遷移金属により半導体素子
のリークが増加してしまう。
For this reason, process tubes made of silicon carbide (SiC), which has a high melting point and is less deformed during high-temperature heat treatment, have traditionally been used, but process tubes made of SiC contain transition metals that come from the manufacturing process, so they are not used. The leakage of semiconductor devices increases due to transition metals entering from the process tube.

そこで更に、半導体基板と同程度の純度を有し遷移金属
を含有しない多結晶シリコンを用いて形成したプロセス
チューブも試みられたが、この場合、多結晶シリコン中
の遷移金属特に鉄(Fe)の拡散係数が石英に比べて5
桁程度大きいために、電気炉のヒータであるカンタル線
からの蒸発等によってプロセスチューブの外壁に付着し
た遷移金属のFe等が高温熱処理中にプロセスチューブ
の内壁面へ多量に拡散され、このFe等による半導体基
板の汚染によってやはり素子リークが増大する。
In addition, attempts were made to form process tubes using polycrystalline silicon, which has the same purity as the semiconductor substrate and does not contain transition metals, but in this case, the transition metals in polycrystalline silicon, particularly iron (Fe), were Diffusion coefficient is 5 compared to quartz
Due to the large size, a large amount of transition metals such as Fe attached to the outer wall of the process tube due to evaporation from the Kanthal wire, which is the heater of the electric furnace, is diffused to the inner wall of the process tube during high-temperature heat treatment, and this Fe, etc. The contamination of the semiconductor substrate by this also increases element leakage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように、半導体基板の高温熱処理に用いる従来の
半導体製造装置においては、高温熱処理によるプロセス
チューブの変形、プロセスチューブ内に存在或いは拡散
してくる遷移金属による半導体基板の金属汚染等の問題
があった。
As mentioned above, conventional semiconductor manufacturing equipment used for high-temperature heat treatment of semiconductor substrates has problems such as deformation of the process tube due to high-temperature heat treatment and metal contamination of the semiconductor substrate due to transition metals present or diffused in the process tube. there were.

そこで本発明は、加熱炉による高温加熱において変形が
なく、且つ遷移金属の拡散が防がれるプロセスチューブ
を加熱炉内に具備した半導体製造装置を提供し、高温プ
ロセス中における金属汚染による半導体装置の性能劣化
を防止すると共に、プロセスチューブの寿命を延長せし
めることを目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention provides a semiconductor manufacturing apparatus equipped with a process tube in a heating furnace that does not undergo deformation during high-temperature heating in a heating furnace and prevents diffusion of transition metals. The purpose is to prevent performance deterioration and extend the life of the process tube.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明図で、図中、1はシリコンプ
ロセスチューブ、1aはシリコンプロセスチューブの外
壁面、1bは同じく内壁面、ICは同じく内部、2は金
属不純物の拡散抑制層、3は加熱炉、4はヒータ、5は
半導体基板を示す。
FIG. 1 is a diagram explaining the principle of the present invention, in which 1 is a silicon process tube, 1a is the outer wall surface of the silicon process tube, 1b is the inner wall surface, IC is the same inside, 2 is a metal impurity diffusion suppressing layer, 3 is a heating furnace, 4 is a heater, and 5 is a semiconductor substrate.

前記課題は第1図に示すように、加熱炉(3)及び、該
加熱炉(3)に挿入されたシリコンからなるプロセスチ
ューブ(1)を有し、該プロセスチューブの外壁面(1
a)、内壁面(lb)若しくは内部(IC)の少なくと
も何れかに、該プロセスチューブ(1)の管壁に沿って
管状に、該シリコン中よりも金属不純物の拡散係数の小
さい物質からなる金属不純物の拡散抑制層(2)を設け
てなる本発明による半導体製造装置によって解決される
As shown in FIG.
a) At least on the inner wall surface (lb) or inside (IC), a metal made of a substance having a smaller diffusion coefficient of metal impurities than in the silicon is formed in a tubular shape along the tube wall of the process tube (1). This problem is solved by the semiconductor manufacturing apparatus according to the present invention, which is provided with an impurity diffusion suppressing layer (2).

〔作 用〕[For production]

即ち本発明に係る半導体製造装置に用いるプロセスチュ
ーブは第1図に示すように、単結晶若しくは多結晶の高
純度シリコンからなるシリコンチューブ(1)により構
成することによって、変形温度を大幅に高め且つプロセ
スチューブの材料自体からの金属汚染をなくし、更にそ
のシリコンチューブ(1)外壁面(1a)、内壁面(1
b)、または内部(1c)の少な(とも何れか、例えば
外壁面(la)に、シリコンチューブ(1)の管壁に沿
って管状に、シリコンに比べて高温における遷移金属の
拡散係数が極度に小さい金属不純物の拡散抑制層(2)
を設け、これによって加熱炉(3)のヒータ(4)から
外壁面(1a)を介してプロセスチューブ(1)内に侵
入した遷移金属が、プロセスチューブ(1)内を拡散し
てプロセスチューブの内壁面(1b)に到達する時間を
大幅に遅延させ、これによってプロセスチューブ(1)
内に配置されている半導体基板(5)の高温熱処理にお
ける上記遷移金属による汚染を防止すると同時に、プロ
セスチューブ内壁面(1b)の汚染の度合によって決め
られるプロセスチューブ寿命を延長するものである。
That is, as shown in FIG. 1, the process tube used in the semiconductor manufacturing apparatus according to the present invention is constructed of a silicon tube (1) made of single-crystal or polycrystalline high-purity silicon, thereby significantly increasing the deformation temperature and It eliminates metal contamination from the material of the process tube itself, and also eliminates metal contamination from the silicon tube (1), outer wall surface (1a), and inner wall surface (1a).
b) or in the interior (1c) (either, for example, on the outer wall surface (la), tubularly along the tube wall of the silicon tube (1), the diffusion coefficient of transition metals at high temperatures compared to silicon is extremely Diffusion suppression layer for small metal impurities (2)
As a result, the transition metal that has entered the process tube (1) from the heater (4) of the heating furnace (3) through the outer wall surface (1a) diffuses inside the process tube (1), and the transition metal enters the process tube (1) through the outer wall surface (1a). This significantly delays the time it takes for the process tube (1) to reach the inner wall surface (1b).
This prevents contamination by the transition metal during high-temperature heat treatment of the semiconductor substrate (5) disposed inside the tube, and at the same time extends the life of the process tube, which is determined by the degree of contamination on the inner wall surface (1b) of the process tube.

〔実施例〕〔Example〕

以下本発明を、図示実施例により具体的に説明する。 The present invention will be specifically explained below with reference to illustrated embodiments.

第2図、第3図、第4図はそれぞれ本発明に係るプロセ
スチューブの第1、第2、第3の実施例の要部を模式的
に示す軸方向の断面図(a)及び軸に直角方向の断面図
(ハ)、第5図は本発明が適用された半導体製造装置の
一例を示す模式側断面図である。
FIGS. 2, 3, and 4 are axial cross-sectional views (a) and axial sectional views schematically showing essential parts of the first, second, and third embodiments of the process tube according to the present invention, respectively. A cross-sectional view in the right angle direction (c) and FIG. 5 are schematic side cross-sectional views showing an example of a semiconductor manufacturing apparatus to which the present invention is applied.

全図を通じ同一対象物は同一符合で示す。Identical objects are indicated by the same reference numerals throughout the figures.

本発明に係る半導体製造装置に用いられるプロセスチュ
ーブは、第2図に示す第1の実施例のように、例えば5
1[l程度の肉厚を有する内径220 Miφ程度の単
結晶若しくは多結晶シリコンからなるシリコンプロセス
チューブ11の外壁面1’la’と内壁面11bの全面
に、遷移金属不純物の拡散抑制層となる厚さ10um程
度の二酸化シリコン(SiO□)膜12Aと12Bが形
成されてなっている。
The process tube used in the semiconductor manufacturing apparatus according to the present invention is, for example, five
A diffusion suppressing layer for transition metal impurities is formed on the entire outer wall surface 1'la' and inner wall surface 11b of the silicon process tube 11 made of single crystal or polycrystalline silicon with an inner diameter of about 220 Miφ and a wall thickness of about 1[l]. Silicon dioxide (SiO□) films 12A and 12B having a thickness of about 10 um are formed.

この構造のプロセスチューブは、シリコンチューブ11
を、その外径よりも大きい炉の中に入れ、1000°C
110気圧程度の高温高圧中に純水を導入して行う高圧
酸化、或いは酸素(0□)十水素(H2)の燃焼ガスに
よるパイロジェニック酸化等の方法によりシリコンチュ
ーブの全面を酸化することによって形成される。
A process tube with this structure is a silicon tube 11
is placed in a furnace larger than its outer diameter and heated to 1000°C.
Formed by oxidizing the entire surface of the silicon tube using methods such as high-pressure oxidation by introducing pure water into a high temperature and high pressure environment of approximately 110 atmospheres, or pyrogenic oxidation using combustion gas of oxygen (0□) and hydrogen (H2). be done.

そしてこの構造のプロセスチューブにおいては、シリコ
ンの融点が1412°Cと極めて高温であるために、1
100〜1200程度の高温熱処理では変形を生ずるこ
とがない。
In a process tube with this structure, since the melting point of silicon is extremely high at 1412°C,
No deformation occurs during high-temperature heat treatment at temperatures of about 100 to 1,200 degrees Celsius.

また、SiO□膜12A 、12B中の遷移金属例えば
Feの拡散係数が、高温熱処理が行われる例えば110
0°Cにおいてはシリコン中の拡散係数5X10−hc
m2/sec程度に対してI Xl0−10cm”/s
ec程度と約5桁程度低いノテ、Sing膜12A 、
 12BがFe(7)拡散を抑制するバリアとして働き
、加熱炉のヒータから蒸発してプロセスチューブの外壁
面(厳密には外壁面に形成されているSiO□膜12膜
上2A上着したFeが同プロセスチューブの内壁面に出
て来る量は、シリコンのみからなるプロセスチューブに
対して約1/100程度まで減少させることができる。
Further, the diffusion coefficient of the transition metal such as Fe in the SiO□ films 12A and 12B is 110, for example, when the high temperature heat treatment is performed.
At 0°C, the diffusion coefficient in silicon is 5X10-hc
I Xl0-10cm”/s for about m2/sec
Note that the Sing film 12A is about 5 orders of magnitude lower than the ec level,
12B acts as a barrier to suppress Fe(7) diffusion, and the Fe deposited on 2A on the outer wall surface of the process tube (more precisely, on the SiO□ film 12 formed on the outer wall surface) is evaporated from the heater of the heating furnace. The amount coming out on the inner wall surface of the process tube can be reduced to about 1/100 of that of a process tube made only of silicon.

また、プロセスチューブの内壁面が限界のFe濃度に達
するまでの時間も、100倍程度に遅延させることがで
きる。なお、上記Feの拡散によるプロセスチューブ内
壁面の汚染量の減少によるプロセスチューブ寿命の延長
は、下記に示す(1)式を基にし、Sin、の膜厚20
μm、Siチューブの肉厚5閣として近位計算によって
求めたものである。
Further, the time required for the inner wall surface of the process tube to reach the critical Fe concentration can also be delayed by about 100 times. In addition, the extension of the process tube life due to the reduction in the amount of contamination on the inner wall surface of the process tube due to the diffusion of Fe is calculated based on the formula (1) shown below.
μm, which was determined by proximal calculation as the five wall thicknesses of the Si tube.

C/(:o”: [2r/l+r ) erfc (xo/2(Dot)””+x/2(Dt)
””)・・・・(1)式 %式%) x:siチューブの肉厚 [10: Sin、中のFeの拡散係数DsSi中のF
eの拡散係数 また本発明に係るプロセスチューブは、第3図に示す第
2の実施例のように、例えば第1の実施例同様のシリコ
ンプロセスチューブ11の外壁面11aと内壁面11b
の全面に、遷移金属不純物の拡散抑制層(バリア)とな
る厚さ10μm程度のSiC膜22Aと22Bがコーテ
ィングされてなっている。
C/(:o”: [2r/l+r) erfc (xo/2(Dot)””+x/2(Dt)
"")... (1) Formula % Formula %) x: Wall thickness of Si tube [10: Sin, diffusion coefficient of Fe in DsF in Si
Further, the process tube according to the present invention has a diffusion coefficient of e, as in the second embodiment shown in FIG.
The entire surface is coated with SiC films 22A and 22B having a thickness of about 10 μm and serving as a diffusion suppressing layer (barrier) for transition metal impurities.

このSiCのコーテイング膜は、 [5iC1,+H2+CC14)等の混合ガスの気相成
長反応を利用して形成でき、その膜厚は前記Si0g膜
12A 、12Bよりも容易に厚く形成することができ
る。
This SiC coating film can be formed using a vapor phase growth reaction of a mixed gas such as [5iC1,+H2+CC14), and its film thickness can be easily formed to be thicker than the Si0g films 12A and 12B.

この構造においては、SiC内のFeの拡散係数がSi
ngに比べて10分の1程度と非常に小さく、且つ膜厚
を容易に一層厚く形成することができるので、プロセス
チューブの内壁面に出て来るFeの量は第1の実施例よ
り更に減少でき、またプロセスナューブの寿命も一層延
長される。
In this structure, the diffusion coefficient of Fe in SiC is
The amount of Fe coming out on the inner wall of the process tube is further reduced than in the first embodiment because it is very small, about one-tenth of ng, and the film thickness can be easily formed even thicker. This also further extends the life of the process tube.

また本発明に係るプロセスチューブは、第4図に示す第
3の実施例のように、シリコンプロセスチューブ31の
外壁面31aと内壁面31bに設けられ金属不純物の拡
散を抑制する厚さ10μm程度のSing膜32A 、
32Bの他に内部31cにも、金属不純物の拡散を抑制
する円筒状の例えば厚さ20am程度の5i02膜32
Cが設けられた構造を有する。
Further, as in the third embodiment shown in FIG. 4, the process tube according to the present invention has a thickness of about 10 μm provided on the outer wall surface 31a and the inner wall surface 31b of the silicon process tube 31 to suppress the diffusion of metal impurities. Sing film 32A,
In addition to 32B, inside 31c is also a cylindrical 5i02 film 32 with a thickness of about 20 am, for example, to suppress the diffusion of metal impurities.
It has a structure in which C is provided.

この構造のプロセスチューブ31は、前記高圧酸化酸い
はパイロジェニック酸化等により外壁面31a及び内壁
面31c+に、例えば10μm程度の厚さの5iOz膜
32Aと32C3を形成した第1のシリコンチューブ3
1A内に、同様な方法で外壁面31c2及び内壁面31
bに5i02膜32C2及び32Bを形成した、前記前
記第1のシリコンチューブ31Aの内径にしっくりと嵌
入する外径を有する第2のシリコンチューブ31Bを挿
入し、1100℃程度の高温熱処理を加えることにより
、上記SiO□膜32C3と3202即ち32Cを介し
て第1のシリコンチューブ31Aと第2のシリコンチュ
ーブ31Bを接着することにより形成される。そしてこ
の構造においては、プロセスチューブ31の内部にも金
属不純物の拡散を抑制する5i(h膜32Cが介在する
ので、プロセスチューブ内壁面31Bの金属汚染量は前
記実施例より減少し、プロセスチューブの汚染寿命も一
層延長される。
The process tube 31 having this structure is a first silicon tube 3 in which 5iOz films 32A and 32C3 having a thickness of, for example, about 10 μm are formed on the outer wall surface 31a and the inner wall surface 31c+ by the high-pressure oxidation acid or pyrogenic oxidation.
1A, the outer wall surface 31c2 and the inner wall surface 31 in the same manner.
By inserting a second silicone tube 31B having an outer diameter that fits snugly into the inner diameter of the first silicone tube 31A on which 5i02 films 32C2 and 32B are formed on b, and applying high temperature heat treatment at about 1100°C. , is formed by bonding the first silicon tube 31A and the second silicon tube 31B via the SiO□ films 32C3 and 3202, ie, 32C. In this structure, since the 5i (h film 32C that suppresses the diffusion of metal impurities is also present inside the process tube 31), the amount of metal contamination on the process tube inner wall surface 31B is reduced compared to the above embodiment, and the process tube is The contamination life is also further extended.

なお、この実施例において金属不純物拡散抑制層は前記
気相成長によるSiC層により形成してもよい。
In this embodiment, the metal impurity diffusion suppression layer may be formed of the SiC layer formed by vapor phase growth.

第5図は、熱酸化、拡散アニール等半導体基板の高温熱
処理を行うために、前記第1の実施例に示したシリコン
プロセスチューブ11を用いて構成した半導体製造装置
の一例を示したもので、図中、11はシリコンプロセス
チューブ、12A 、12Bは前記10ttm程度の厚
さを有するSi0g膜、13は管状加熱炉、14はカン
タル等からなるヒータ、15はガス導入口、16はガス
排出口、17は石英等からなるシャッタ(蓋)、18は
保温材、19は石英等よりなり半導体基板を立て並べる
ボート、20は高温熱処理が行われる被処理半導体基板
を示している。
FIG. 5 shows an example of a semiconductor manufacturing apparatus constructed using the silicon process tube 11 shown in the first embodiment, in order to perform high-temperature heat treatments such as thermal oxidation and diffusion annealing on semiconductor substrates. In the figure, 11 is a silicon process tube, 12A and 12B are Si0g films having a thickness of about 10 ttm, 13 is a tubular heating furnace, 14 is a heater made of Kanthal or the like, 15 is a gas inlet, 16 is a gas outlet, Reference numeral 17 indicates a shutter (lid) made of quartz or the like, 18 a heat insulating material, 19 a boat made of quartz or the like on which semiconductor substrates are arranged vertically, and 20 a semiconductor substrate to be processed to be subjected to high temperature heat treatment.

本発明に係るシリコンプロセスチューブにおいては、チ
ューブ自体が高純度を有し、且つプロセスチューブの外
壁面、内壁面、及び内部の少なくとも何れかに遷移金属
不純物の拡散抑制(バリア)層となる5iO1、SiC
等の膜が形成されているので、上記第5図に示すような
半導体製造装置を用いて熱酸化、拡散等の工程において
、半導体基板に対して1100℃以上の高温熱処理を行
った際、プロセスチューブ自体からの遷移金属の放出は
なく、且つプロセスチューブの外壁面を介しヒータから
プロセスチューブ内に侵入する遷移金属の拡散速度も大
幅に低下するので、この拡散遷移金属のプロセスチュー
ブ内壁面からの放出量も大幅に減少し、半導体基板の極
端な遷移金属汚染が防止されると同時に、内壁面汚染の
度合を基準にして決められるプロセスチューブの寿命も
延長される。
In the silicon process tube according to the present invention, the tube itself has high purity, and 5iO1 serves as a diffusion suppression (barrier) layer for transition metal impurities on at least one of the outer wall surface, inner wall surface, and inside of the process tube. SiC
Because films such as The transition metal is not released from the tube itself, and the diffusion rate of the transition metal that enters the process tube from the heater through the outer wall of the process tube is greatly reduced. Emissions are also significantly reduced, preventing extreme transition metal contamination of semiconductor substrates, and at the same time extending the life of the process tube, which is determined based on the degree of inner wall contamination.

またシリコンの融点が高いのでチューブの変形も生じな
い。
Furthermore, since the melting point of silicon is high, the tube does not deform.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明に係る半導体製造装置において
は、高温熱処理における半導体基板の遷移金属による汚
染を防止すると同時にプロセスチューブの寿命を延長さ
せ、且つプロセスチューブの変形をも防止する、 従って本発明は、半導体装置の性能及び歩留りの向上、
製造費用の低減に有効である。
As explained above, in the semiconductor manufacturing apparatus according to the present invention, it is possible to prevent contamination of the semiconductor substrate with transition metals during high-temperature heat treatment, extend the life of the process tube, and also prevent deformation of the process tube. Therefore, the present invention is to improve the performance and yield of semiconductor devices,
It is effective in reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、 第2図、第3図、第4図はそれぞれ本発明に係るプロセ
スチューブの第1、第2、第3の実施例の要部を模式的
に示す軸方向の断面図(a)及び軸に直角方向の断面図
(b)、 第5図は本発明が適用された半導体製造装置の一例を示
す模式側断面図である。 図において、 1.11.31はシリコンプロセスチューブ、la、 
lla 、 31aは外壁面、lb、 llb 、 3
1bは内壁面、3.13は加熱炉、 4.14はヒータ、 5.20は半導体基板、 12A 、 12B 、 32A 、 32822A 
、 22B −優薄はSiC を示す。 膜 2C はSi0g膜、
FIG. 1 is a diagram illustrating the principle of the present invention, and FIGS. 2, 3, and 4 schematically illustrate the main parts of the first, second, and third embodiments of the process tube according to the present invention, respectively. FIG. 5 is a schematic side sectional view showing an example of a semiconductor manufacturing apparatus to which the present invention is applied. In the figure, 1.11.31 is the silicon process tube, la,
lla, 31a is the outer wall surface, lb, llb, 3
1b is an inner wall surface, 3.13 is a heating furnace, 4.14 is a heater, 5.20 is a semiconductor substrate, 12A, 12B, 32A, 32822A
, 22B-excellent indicates SiC. Film 2C is a Si0g film,

Claims (1)

【特許請求の範囲】[Claims] 加熱炉(3)及び該加熱炉(3)に挿入されたシリコン
からなるプロセスチューブ(1)を有し、該プロセスチ
ューブの外壁面(1a)、内壁面(1b)若しくは内部
(1c)の少なくとも何れかに、該プロセスチューブ(
1)の管壁に沿って管状に、該シリコン中よりも金属不
純物の拡散係数の小さい物質からなる金属不純物の拡散
抑制層(2)を設けてなることを特徴とする半導体製造
装置。
It has a heating furnace (3) and a process tube (1) made of silicon inserted into the heating furnace (3), and at least the outer wall surface (1a), inner wall surface (1b), or inside (1c) of the process tube. Either the process tube (
A semiconductor manufacturing apparatus characterized in that a metal impurity diffusion suppressing layer (2) made of a substance having a smaller diffusion coefficient of metal impurities than that in the silicon is provided in a tubular shape along the tube wall of (1).
JP4473390A 1990-02-26 1990-02-26 Manufacture equipment for semiconductor Pending JPH03246932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4473390A JPH03246932A (en) 1990-02-26 1990-02-26 Manufacture equipment for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4473390A JPH03246932A (en) 1990-02-26 1990-02-26 Manufacture equipment for semiconductor

Publications (1)

Publication Number Publication Date
JPH03246932A true JPH03246932A (en) 1991-11-05

Family

ID=12699649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4473390A Pending JPH03246932A (en) 1990-02-26 1990-02-26 Manufacture equipment for semiconductor

Country Status (1)

Country Link
JP (1) JPH03246932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053332A1 (en) * 2010-10-19 2012-04-26 昭和電工株式会社 Group-iii-nitride semiconductor element and multi-wavelength-emitting group-iii-nitride semiconductor layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053332A1 (en) * 2010-10-19 2012-04-26 昭和電工株式会社 Group-iii-nitride semiconductor element and multi-wavelength-emitting group-iii-nitride semiconductor layer

Similar Documents

Publication Publication Date Title
US5759426A (en) Heat treatment jig for semiconductor wafers and a method for treating a surface of the same
JPH03246932A (en) Manufacture equipment for semiconductor
JPH1116903A (en) Forming method of thin oxide film using wet oxidation
JPS59189622A (en) Diffusion furnace process tube for semiconductor
US20010023136A1 (en) Method for fabricating gate oxide film of semiconductor device
JPS5837977B2 (en) Open tube aluminum diffusion method
JPS63239200A (en) Method for strengthening silicon wafer
JPH025521A (en) Manufacture of semiconductor device
US20060134925A1 (en) Method of forming a gate insulating layer of a semiconductor device using deuterium gas
JP2001345314A (en) Device and method for heat treatment
JPS5933256B2 (en) Manufacturing method of semiconductor device
JPH07176498A (en) Reaction furnace with reaction gas preheater
JPH04134816A (en) Semiconductor manufacturing equipment
JPS5821826A (en) Apparatus for manufacturing semiconductor
JP4557499B2 (en) Substrate processing equipment
JPS61135128A (en) Manufacture of semiconductor device
JP2009111216A (en) Heat treatment apparatus
JPS58102518A (en) Vapor growth method
JPH05152229A (en) Heat treatment furnace
JP2617726B2 (en) Reaction tube for heat treatment
JPH027516A (en) Method of diffusing impurity in semiconductor
JPH02130818A (en) Formation of electrode wiring of semiconductor device
JPS61203652A (en) Manufacture of semiconductor device
JP3462368B2 (en) Apparatus and method for manufacturing semiconductor device
JPH05152180A (en) Semiconductor device and its manufacture