JPH07176498A - Reaction furnace with reaction gas preheater - Google Patents

Reaction furnace with reaction gas preheater

Info

Publication number
JPH07176498A
JPH07176498A JP32218193A JP32218193A JPH07176498A JP H07176498 A JPH07176498 A JP H07176498A JP 32218193 A JP32218193 A JP 32218193A JP 32218193 A JP32218193 A JP 32218193A JP H07176498 A JPH07176498 A JP H07176498A
Authority
JP
Japan
Prior art keywords
reaction
furnace
reaction gas
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32218193A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Hirano
光浩 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP32218193A priority Critical patent/JPH07176498A/en
Publication of JPH07176498A publication Critical patent/JPH07176498A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute various chemical reactions in a reaction tube at substantially uniform temperature by providing a preheater having means for controlling to heat reaction gas. CONSTITUTION:A reaction gas is introduced from a reaction gas inlet 9. The gas is heated to a predetermined temperature to meet a reaction temperature in a reaction tube 3 of a reaction furnace 11 while flowing in a direction indicated at a reaction gas flow 13, and so controlled to be heated as not to generate a temperature difference between the upper part and the lower part in the tube 3. A heating tube 6 of a reaction gas preheater 5 is formed of high purity quarts, and a soaking element 7 is made of high purity silicon carbide to reduce generation of impurities. Further, a temperature of the element 7 is controlled by a thermocouple 8, and a temperature difference of reaction gas between the upper part and the lower part of the tube 3 is reduced. Thus, a thin film in which impurity concentration, thickness of an oxide film and a film thickness are uniform can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体の製造工程で用い
られる各種の薄膜製造装置、不純物拡散炉、酸化炉ある
いはエッチング装置等の反応炉に導入する反応ガスの予
熱装置に係り、特に半導体中への不純物の均一な熱拡
散、あるいは均一な膜厚および膜質の熱酸化膜等を生成
するのに好適な縦型の反応炉における反応ガスの予熱装
置を備えた反応炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film manufacturing apparatus used in a semiconductor manufacturing process, a reaction gas preheating apparatus to be introduced into a reaction furnace such as an impurity diffusion furnace, an oxidation furnace, an etching apparatus, etc. TECHNICAL FIELD The present invention relates to a reactor equipped with a preheating device for a reaction gas in a vertical reactor which is suitable for uniform thermal diffusion of impurities into a substrate, or for producing a thermal oxide film having a uniform film thickness and film quality.

【0002】[0002]

【従来の技術】従来の半導体製造装置の1つである縦型
の不純物拡散炉や酸素による熱酸化膜の生成に用いられ
ている酸化反応炉を例に挙げて説明する。図2は、従来
の代表的な酸素等の酸化性ガスによる熱酸化膜の生成に
用いられる酸化反応炉を示すものであって、反応炉11
は、反応管加熱炉1と、SiC(炭化ケイ素)等で作製
されている均熱管2、およびステンレス鋼等の耐熱、耐
食性の合金などからなる反応管3により主に構成されて
いる。そして、反応管3の内部にはシリコン等からなる
ウエハ(図示せず)を多段に保持するボート(図示せ
ず)が配設されている。そして、反応ガス入口9から反
応ガスとして酸素等の酸化性のガスが供給され、反応ガ
スノズル10および反応管3のガス導入管4を経由して
反応管3内に酸化性のガスが導入され、例えばシリコン
ウエハ等の熱酸化プロセスが実施される。しかしなが
ら、従来の酸化反応炉において、反応ガスは室温の状態
で反応管3内に供給されるので、反応ガスはガス導入管
4内を通過中に均熱管2により予熱されて多少は温度は
上昇するが、反応管内に上下に多段に保持されているシ
リコン等のウエハの上部と下部においてはかなり大きい
温度差、例えば約2〜3℃の温度差が生じる。このた
め、反応管3内における反応ガスの分解生成ガスの分圧
分布が反応管内の上部と下部とでは不均一となり、この
ためシリコン等のウエハ表面での反応形態に差が生じ、
不純物濃度および膜厚あるいは膜質が不均一となった
り、また生成される熱酸化膜等のの品質に劣化が生じる
等の問題があった。
2. Description of the Related Art A vertical type impurity diffusion furnace which is one of conventional semiconductor manufacturing apparatuses and an oxidation reaction furnace used for producing a thermal oxide film by oxygen will be described as an example. FIG. 2 shows a conventional typical oxidation reaction furnace used for forming a thermal oxide film using an oxidizing gas such as oxygen.
Is mainly composed of a reaction tube heating furnace 1, a soaking tube 2 made of SiC (silicon carbide) or the like, and a reaction tube 3 made of a heat-resistant or corrosion-resistant alloy such as stainless steel. A boat (not shown) for holding wafers (not shown) made of silicon or the like in multiple stages is arranged inside the reaction tube 3. Then, an oxidizing gas such as oxygen is supplied as a reaction gas from the reaction gas inlet 9, and the oxidizing gas is introduced into the reaction tube 3 via the reaction gas nozzle 10 and the gas introduction tube 4 of the reaction tube 3, For example, a thermal oxidation process of a silicon wafer or the like is performed. However, in the conventional oxidation reaction furnace, since the reaction gas is supplied into the reaction tube 3 at room temperature, the reaction gas is preheated by the soaking tube 2 while passing through the gas introduction tube 4, and the temperature rises to some extent. However, a considerably large temperature difference, for example, a temperature difference of about 2 to 3 ° C. occurs between the upper part and the lower part of the wafer made of silicon or the like which is vertically held in multiple stages in the reaction tube. As a result, the partial pressure distribution of the decomposition product gas of the reaction gas in the reaction tube 3 becomes non-uniform in the upper part and the lower part in the reaction tube, which causes a difference in the reaction form on the wafer surface of silicon or the like.
There have been problems that the impurity concentration, the film thickness or the film quality becomes non-uniform, and the quality of the generated thermal oxide film or the like deteriorates.

【0003】[0003]

【発明が解決しようとする課題】上述したごとく、従来
の半導体製造工程で用いられる縦型の不純物拡散炉や熱
酸化膜を生成する酸化反応炉等において、反応管内に温
度の低い室温程度の反応性ガスが導入されるため、反応
管内の上部と下部とにおいてはかなり大きい温度差が生
じ、そのため不純物拡散濃度にばらつきが生じたり、ま
た各種ウエハ等の表面に生成される熱酸化膜の膜厚なら
びに膜質が不均一になったり、また膜質が劣化するなど
の問題があった。
As described above, in a vertical impurity diffusion furnace or an oxidation reaction furnace for producing a thermal oxide film, which is used in a conventional semiconductor manufacturing process, a reaction at a room temperature with a low temperature in a reaction tube is performed. Since a reactive gas is introduced, a considerably large temperature difference occurs between the upper part and the lower part in the reaction tube, which causes variations in the impurity diffusion concentration and the thickness of the thermal oxide film formed on the surface of various wafers. In addition, there are problems that the film quality becomes non-uniform and that the film quality deteriorates.

【0004】本発明の第1の目的は、上記従来技術にお
ける問題点を解消するものであって、各種の反応管内に
供給する反応ガスを所定の温度に予熱し、反応管内で行
われる種々の化学反応を、ほぼ均一な温度で行うことの
できる反応ガスの予熱装置を備えた反応炉を提供するこ
とにある。本発明の第2の目的は、半導体中に各種の不
純物を均一な濃度で拡散させるのに好適な構造の拡散
炉、特に縦型の不純物拡散炉を提供するものである。さ
らに、本発明の第3の目的は、各種のウエハを熱酸化し
てほぼ均一な膜厚および膜質の熱酸化膜を形成するのに
好適な構造の酸化反応炉を提供することにある。
A first object of the present invention is to solve the above-mentioned problems in the prior art, in which the reaction gases supplied into various reaction tubes are preheated to a predetermined temperature and various reaction is carried out in the reaction tubes. It is an object of the present invention to provide a reaction furnace equipped with a reaction gas preheating device capable of performing a chemical reaction at a substantially uniform temperature. A second object of the present invention is to provide a diffusion furnace having a structure suitable for diffusing various impurities into a semiconductor at a uniform concentration, particularly a vertical type impurity diffusion furnace. A third object of the present invention is to provide an oxidation reactor having a structure suitable for thermally oxidizing various wafers to form a thermal oxide film having a substantially uniform film thickness and film quality.

【0005】[0005]

【課題を解決するための手段】上記本発明の第1の目的
を達成するために、半導体の製造工程において用いられ
る各種の反応炉、例えばシリコン等の薄膜の気相成長、
半導体中への各種不純物の拡散、酸素ガス等の酸化性ガ
スによる熱酸化膜の形成、酸化シリコン等の絶縁膜の形
成、シリコン表面のパッシベーション等の表面安定化処
理、あるいは酸化シリコン膜等のドライエッチングを行
う各種の反応炉に導入される反応ガスを、各反応炉にお
ける反応温度に見合った所定の温度範囲に加熱し、反応
炉内に設置されている反応管内の温度分布がほぼ一定
(反応管内の上部と下部の温度差がほとんどない)とな
るように加熱制御する手段を有する反応ガスの予熱装置
を設けるものである。また、本発明の第2の目的を達成
するために、シリコンウエハ等の半導体中に各種の不純
物を拡散する縦型拡散炉において、該拡散炉に導入する
反応ガスの温度を、拡散炉内の拡散温度に見合った所定
の温度範囲に加熱し、拡散炉内温度がほぼ均一となるよ
うに加熱制御する手段を有する反応ガス予熱装置を設け
るものである。さらに、本発明の第3の目的を達成する
ために、シリコンウエハ等の各種のウエハに、乾燥した
酸素ガス等を導入して熱酸化を行い熱酸化膜を形成する
縦型の酸化反応炉において、該酸化反応炉内に導入する
酸素ガス等の反応ガスの温度を、酸化反応炉内における
酸化温度に見合った所定の温度範囲に加熱し、酸化炉内
における上部と下部の温度差が無くなるように加熱制御
する手段を有する反応ガス予熱装置を設け、均一な膜厚
で膜質の良好な熱酸化膜を形成するものである。本発明
の各種の反応炉内へ導入する反応ガスを所定の温度に加
熱制御する反応ガス予熱装置の構造は、例えば、図1の
反応ガス予熱器5に示すように、反応ガス入口9から反
応ガスを導入する。反応ガスは、矢印で示す反応ガス流
れ13に示す方向に流れる間に、反応炉11の反応管3
内の反応温度に見合った所定の温度に加熱され、反応管
3内の上部と下部との間に温度差が生じないように加熱
制御される。反応ガス予熱器5の加熱管6は、純度の高
い反応ガスをクリーン加熱するために、例えば1000
℃以上に加熱しても不純物(ガス、揮発物など)の発生
が少ない高純度石英製とすることが好ましく、さらに加
熱管6内に設ける均熱体(発熱体)7も、上記加熱管6
と同様にガスや揮発物などの不純物を発生しない高純度
の炭化ケイ素(SiC)製とすることが好ましい。この
ような構成とすることにより、各種の反応ガスをクリー
ン加熱することが可能となり反応ガスが汚染されること
はない。さらに、熱電対8により均熱体(発熱体)7の
温度制御を行うことにより、反応管3内の上部と下部の
反応ガスの温度差を、例えば常温の反応ガス(約20
℃)を約300℃に加熱(予熱)することにより、反応
管3内の反応温度が1000℃以上において約1℃以下
にコントロールすることが可能である。また、加熱管6
を、反応ガス予熱器5の内部で、細長く蛇行させるか、
あるいはスパイラル状に加工することによって反応ガス
の加熱効率を一段と向上させることが可能である。この
ように、本発明の反応ガスを予め所定の温度に加熱して
反応管内に導入された反応ガスは、均一な反応温度のも
とで速やかに分解され、分解生成ガスの分圧分布がほぼ
均一となり、例えば不純物濃度や酸化膜の膜厚および膜
質が均一な薄膜を形成することができる。
In order to achieve the first object of the present invention, various reaction furnaces used in a semiconductor manufacturing process, for example, vapor phase growth of a thin film of silicon or the like,
Diffusion of various impurities into semiconductors, formation of thermal oxide film by oxidizing gas such as oxygen gas, formation of insulating film such as silicon oxide, surface stabilization treatment such as passivation of silicon surface, or dry of silicon oxide film The reaction gas introduced into the various reaction furnaces for etching is heated to a predetermined temperature range corresponding to the reaction temperature in each reaction furnace, and the temperature distribution in the reaction tube installed in the reaction furnace is almost constant (reaction There is provided a reaction gas preheating device having means for controlling heating so that there is almost no temperature difference between the upper part and the lower part in the tube. Further, in order to achieve the second object of the present invention, in a vertical diffusion furnace that diffuses various impurities into a semiconductor such as a silicon wafer, the temperature of the reaction gas introduced into the diffusion furnace is controlled by A reaction gas preheating device having a means for heating to a predetermined temperature range corresponding to the diffusion temperature and controlling heating so that the temperature in the diffusion furnace becomes substantially uniform is provided. Further, in order to achieve the third object of the present invention, in a vertical oxidation reaction furnace in which a dry oxygen gas or the like is introduced into various wafers such as silicon wafers to perform thermal oxidation to form a thermal oxide film. The temperature of the reaction gas such as oxygen gas introduced into the oxidation reaction furnace is heated to a predetermined temperature range corresponding to the oxidation temperature in the oxidation reaction furnace so that the temperature difference between the upper part and the lower part in the oxidation furnace is eliminated. Further, a reaction gas preheating device having a heating control means is provided to form a thermal oxide film having a uniform film thickness and good film quality. The structure of the reaction gas preheater for heating and controlling the reaction gas to be introduced into various reaction furnaces of the present invention to a predetermined temperature is, for example, as shown in the reaction gas preheater 5 of FIG. Introduce gas. While the reaction gas flows in the direction indicated by the reaction gas flow 13 indicated by the arrow, the reaction tube 3 of the reaction furnace 11
It is heated to a predetermined temperature corresponding to the reaction temperature inside, and heating is controlled so that no temperature difference occurs between the upper part and the lower part in the reaction tube 3. The heating pipe 6 of the reaction gas preheater 5 is, for example, 1000 in order to cleanly heat the reaction gas having high purity.
It is preferable to use high-purity quartz in which impurities (gas, volatile matter, etc.) are less likely to be generated even if it is heated to a temperature of not less than 0 ° C.
Similarly to, it is preferable to use high-purity silicon carbide (SiC) that does not generate impurities such as gas and volatile matter. With such a structure, various reaction gases can be cleanly heated and the reaction gases are not contaminated. Furthermore, by controlling the temperature of the soaking body (heating element) 7 with the thermocouple 8, the temperature difference between the upper and lower reaction gases in the reaction tube 3 can be adjusted, for example, to the reaction gas at room temperature (about 20%).
It is possible to control the reaction temperature in the reaction tube 3 to about 1 ° C. or lower by heating (preheating) to about 300 ° C. Also, the heating pipe 6
Inside the reaction gas preheater 5 in a slender manner, or
Alternatively, it is possible to further improve the heating efficiency of the reaction gas by processing it into a spiral shape. As described above, the reaction gas of the present invention, which is heated to a predetermined temperature in advance and introduced into the reaction tube, is rapidly decomposed under a uniform reaction temperature, and the partial pressure distribution of the decomposition product gas is almost equal. It becomes uniform, and for example, a thin film having uniform impurity concentration, oxide film thickness, and film quality can be formed.

【0006】[0006]

【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。なお、本実施例においては反応
ガスとしてドライ(乾燥)酸素を用い、シリコンウエハ
の表面に熱酸化膜の形成を常圧(1気圧)近傍の圧力で
行うドライ酸化炉に反応ガス予熱器を用いた場合を例に
挙げて説明する。図1は、本発明の反応ガス予熱器5を
備えた反応炉の構成の一例を示す模式図である。反応炉
11の反応管3内には、シリコンウエハを多段に保持し
たボート(図示せず)が配置されている。本実施例にお
いては、乾燥された純度の高い酸素を用い、被処理物と
してシリコンウエハ上に熱酸化膜の形成を1気圧(常
圧)付近の圧力で行う、いわゆるドライ酸化炉に本発明
の反応ガス予熱器5を適用した場合について述べる。未
処理のシリコンウエハは、大気中の酸素(O2)によっ
ても容易に反応し、その表面には自然に酸化膜が形成さ
れる。この自然酸化膜は、酸化反応を制御して生成した
ものではなく、所望する次工程での反応成膜処理の障害
となるものである。それで、反応管3内に保持されたシ
リコンウエハは、極力大気中の酸素に曝されないように
保護する必要があり、通常の場合は熱酸化膜の形成を行
う前に窒素(N2)ガス等の不活性ガスを反応管3内に
導入して自然酸化膜の生成を防止する処置がとられてい
る。次に、未処理のシリコンウエハの表面に熱酸化膜を
形成する方法について説明する。まず、反応ガス入口9
より、乾燥された純度の高いO2ガスを、反応ガス予熱
器5の高純度石英製の加熱管6の内部に供給し、反応管
3内で行われる酸化反応温度に見合った所定の温度に加
熱制御する。加熱管6の内部には、上記O2ガスを所定
の温度に加熱制御する方法として、均熱体7の温度を熱
電対8等により任意の設定の温度に加熱制御することも
可能である。なお、加熱管6の形状として、反応ガス予
熱器5内に細長く蛇行させるか、またはスパイラル状に
配設することで反応ガス(O2ガス)の均熱効率を向上
させることができる。一方、熱酸化膜の形成を行うウエ
ハは、反応管3の外周部に設けられている均熱管2と、
発熱体等の加熱手段が設けられている反応管加熱炉1お
よび均熱管2により所定の温度に加熱制御される反応管
3内に、ウエハ支持ボート(図示せず)によって保持さ
れている。上記反応ガス予熱器5により、反応管3内の
酸化反応温度に見合った所定の温度に加熱されたO2
スは、反応ガスノズル10から反応管3のガス導入管4
を経由して、反応管3の上部より下部の方向にほぼ均等
な流速で導入され、ウエハの表面を酸化した後、未反応
のO2ガスは、反応ガス出口14から系外に排出され
る。この間、反応管3の上部および下部に温度差が生じ
ないように、上記反応ガス予熱器5の出口部(反応ガス
ノズル接続部12)の反応ガス温度および反応管3内の
上部および下部の反応ガス温度は加熱制御される。この
ようにして、反応管3内に充填されたウエハはSi+O
2=SiO2の反応によりほぼ均一に酸化され、その表面
に均一な膜厚と膜質が良好な熱酸化膜が形成される。な
お、上記酸化膜の生成にはO2ガスを用いたが、所定量
の水蒸気を所定の温度および時間で反応管3内に導入す
ることにより、Si+2H2O=SiO2+2H2の反応
で酸化膜を形成させることも可能である。本実施例にお
いて、反応ガスの温度を300℃に予め加熱し、反応管
3内の反応温度を1000℃に設定して、反応管3内の
最上部と最下部における温度差を測定した結果、約1℃
以下で、実質的にはほとんど温度差がなく、反応管3内
の温度をほぼ設定の温度に均一に保持することができる
と共に、最上位と最下位のウエハにおいて形成された熱
酸化膜の膜厚はほぼ同じであり、また均質で良好な膜質
の熱酸化膜が得られた。
Embodiments of the present invention will be described below in more detail with reference to the drawings. In this example, dry oxygen is used as a reaction gas, and a reaction gas preheater is used in a dry oxidation furnace that forms a thermal oxide film on the surface of a silicon wafer at a pressure near normal pressure (1 atm). The case will be described as an example. FIG. 1 is a schematic diagram showing an example of the configuration of a reaction furnace equipped with a reaction gas preheater 5 of the present invention. A boat (not shown) holding silicon wafers in multiple stages is arranged in the reaction tube 3 of the reaction furnace 11. In the present embodiment, a so-called dry oxidation furnace is used in which a dried high-purity oxygen is used and a thermal oxide film is formed on a silicon wafer as an object to be processed at a pressure of about 1 atm (normal pressure). The case where the reaction gas preheater 5 is applied will be described. The untreated silicon wafer easily reacts with oxygen (O 2 ) in the atmosphere, and an oxide film is spontaneously formed on its surface. This natural oxide film is not generated by controlling the oxidation reaction, but it is an obstacle to the reaction film forming process in the desired next step. Therefore, it is necessary to protect the silicon wafer held in the reaction tube 3 so that it is not exposed to oxygen in the atmosphere as much as possible, and normally, nitrogen (N 2 ) gas or the like is formed before forming a thermal oxide film. The above inert gas is introduced into the reaction tube 3 to prevent the formation of a natural oxide film. Next, a method of forming a thermal oxide film on the surface of an unprocessed silicon wafer will be described. First, the reaction gas inlet 9
As a result, the dried high-purity O 2 gas is supplied to the inside of the heating tube 6 made of high-purity quartz of the reaction gas preheater 5 to reach a predetermined temperature corresponding to the oxidation reaction temperature performed in the reaction tube 3. Control heating. Inside the heating tube 6, as a method for controlling the above-mentioned O 2 gas to a predetermined temperature, it is also possible to control the temperature of the soaking body 7 to a desired temperature by a thermocouple 8 or the like. As the shape of the heating pipe 6, the reaction gas preheater 5 can be made to meander in a slender shape or spirally arranged to improve the soaking efficiency of the reaction gas (O 2 gas). On the other hand, the wafer on which the thermal oxide film is formed includes a soaking tube 2 provided on the outer peripheral portion of the reaction tube 3,
A wafer supporting boat (not shown) holds a reaction tube heating furnace 1 provided with a heating means such as a heating element and a reaction tube 3 whose heating is controlled to a predetermined temperature by a soaking tube 2. The O 2 gas heated by the reaction gas preheater 5 to a predetermined temperature corresponding to the oxidation reaction temperature in the reaction tube 3 is supplied from the reaction gas nozzle 10 to the gas introduction tube 4 of the reaction tube 3.
Is introduced into the reaction tube 3 in a direction from the upper part to the lower part at a substantially uniform flow rate to oxidize the surface of the wafer, and then the unreacted O 2 gas is discharged from the reaction gas outlet 14 to the outside of the system. . During this period, the reaction gas temperature at the outlet of the reaction gas preheater 5 (reaction gas nozzle connection portion 12) and the reaction gas at the upper and lower portions of the reaction tube 3 are adjusted so that a temperature difference does not occur between the upper and lower portions of the reaction tube 3. The temperature is controlled by heating. In this way, the wafer filled in the reaction tube 3 is Si + O.
The 2 = SiO 2 reaction causes almost uniform oxidation, and a thermal oxide film having a uniform film thickness and good film quality is formed on the surface thereof. Although O 2 gas was used for the formation of the oxide film, by introducing a predetermined amount of water vapor into the reaction tube 3 at a predetermined temperature and for a certain time, the reaction is performed by the reaction of Si + 2H 2 O = SiO 2 + 2H 2. It is also possible to form a film. In this example, the temperature of the reaction gas was preheated to 300 ° C., the reaction temperature in the reaction tube 3 was set to 1000 ° C., and the temperature difference between the uppermost part and the lowermost part in the reaction tube 3 was measured. About 1 ℃
In the following, there is substantially no temperature difference, the temperature in the reaction tube 3 can be maintained at a substantially preset temperature, and the thermal oxide film formed on the uppermost and lowermost wafers is formed. The thickness was almost the same, and a uniform and good thermal oxide film was obtained.

【0007】[0007]

【発明の効果】以上詳細に説明したごとく、本発明の反
応ガスの予熱装置を備えた反応炉によれば、 (1)反応ガスを、あらかじめ反応温度に見合った所定
の温度に加熱して反応炉の反応管内に供給し、反応管内
の温度の温度分布をほぼ均一にすることができるので、
反応管内に多段に配置されているウエハ間、特に反応管
内の上部と下部のウエハにおいて生成される薄膜の膜厚
の均一性が良好となり、均質で膜質の良い薄膜を得るこ
とができる。 (2)反応炉において反応管内の温度差を著しく小さく
することができるので、製品の歩留りが一段と向上す
る。 (3)温度分布の均一な反応炉を構成することができ、
半導体製造装置としての信頼性が向上する。
As described in detail above, according to the reaction furnace having the reaction gas preheating apparatus of the present invention, (1) the reaction gas is heated to a predetermined temperature corresponding to the reaction temperature in advance and reacted. Since it is supplied into the reaction tube of the furnace and the temperature distribution of the temperature in the reaction tube can be made almost uniform,
The thin film formed between the wafers arranged in multiple stages in the reaction tube, particularly the upper and lower wafers in the reaction tube, has a good uniformity of the film thickness, and a homogeneous thin film having a good film quality can be obtained. (2) Since the temperature difference in the reaction tube in the reaction furnace can be made extremely small, the product yield is further improved. (3) A reactor having a uniform temperature distribution can be constructed,
The reliability as a semiconductor manufacturing device is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で例示した反応ガス予熱器を備
えた反応炉の構成の一例を示す模式図。
FIG. 1 is a schematic diagram showing an example of the configuration of a reaction furnace equipped with a reaction gas preheater exemplified in an embodiment of the present invention.

【図2】従来の反応炉の構成の一例を示す模式図。FIG. 2 is a schematic diagram showing an example of the configuration of a conventional reaction furnace.

【符号の説明】[Explanation of symbols]

1……反応管加熱炉 2……均熱管 3……反応管 4……ガス導入管 5……反応ガス予熱器 6……加熱管 7……均熱体(発熱体) 8……熱電対 9……反応ガス入口 10…反応ガスノズル 11…反応炉 12…反応ガスノズル接続部 13…反応ガス流れ 14…反応ガス出口(排気口) 1 ... Reaction tube heating furnace 2 ... Soaking tube 3 ... Reaction tube 4 ... Gas introduction tube 5 ... Reacting gas preheater 6 ... Heating tube 7 ... Soaking body (heating element) 8 ... Thermocouple 9 ... Reactive gas inlet 10 ... Reactive gas nozzle 11 ... Reactor 12 ... Reactive gas nozzle connection 13 ... Reactive gas flow 14 ... Reactive gas outlet (exhaust port)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】半導体の製造工程において用いられる各種
の反応炉において、該反応炉に導入される反応ガスの温
度を、上記反応炉の反応温度に見合った所定の温度範囲
に加熱制御し、反応炉内における温度分布をほぼ均一に
制御する手段を設けたことを特徴とする反応ガスの予熱
装置を備えた反応炉。
1. In various reaction furnaces used in a semiconductor manufacturing process, the temperature of a reaction gas introduced into the reaction furnace is controlled by heating to a predetermined temperature range corresponding to the reaction temperature of the reaction furnace, and the reaction is carried out. A reactor equipped with a preheating device for a reaction gas, which is provided with means for controlling the temperature distribution in the furnace substantially uniformly.
【請求項2】請求項1記載の反応ガスの予熱装置は、反
応ガスを加熱する加熱管を高純度の石英を用いて構成し
てなることを特徴とする反応ガスの予熱装置を備えた反
応炉。
2. The reaction gas preheating apparatus according to claim 1, wherein the heating pipe for heating the reaction gas is made of high-purity quartz, and the reaction gas preheating apparatus is provided. Furnace.
【請求項3】請求項1記載の反応ガスの予熱装置は、反
応ガスを加熱する加熱管を高純度の石英を用いて構成
し、上記加熱管の内部に高純度の炭化ケイ素からなる発
熱体を配設して、加熱する反応ガスを所定の温度範囲に
制御する手段を設けたことを特徴とする反応ガスの予熱
装置を備えた反応炉。
3. The reaction gas preheating apparatus according to claim 1, wherein the heating tube for heating the reaction gas is made of high-purity quartz, and a heating element made of high-purity silicon carbide is provided inside the heating tube. And a means for controlling a reaction gas to be heated within a predetermined temperature range, the reaction furnace having a reaction gas preheating device.
【請求項4】請求項1ないし請求項3のいずれか1項に
おいて、反応炉は半導体中に不純物をほぼ均一に拡散さ
せる縦型の不純物拡散炉であることを特徴とする反応ガ
スの予熱装置を備えた反応炉。
4. The reaction gas preheating device according to claim 1, wherein the reaction furnace is a vertical impurity diffusion furnace for diffusing impurities into a semiconductor substantially uniformly. Reactor equipped with.
【請求項5】請求項1ないし請求項3のいずれか1項に
おいて、反応炉は酸化性のガスを導入してウエハを熱酸
化し、ほぼ均一な膜厚および膜質の熱酸化膜を形成する
酸化反応炉であることを特徴とする反応ガスの予熱装置
を備えた反応炉。
5. The reactor according to claim 1, wherein the reaction furnace introduces an oxidizing gas to thermally oxidize the wafer to form a thermal oxide film having a substantially uniform film thickness and film quality. A reactor equipped with a reaction gas preheating device, which is an oxidation reactor.
【請求項6】請求項5において、酸化性のガスはドライ
酸素ガスであり、酸化反応炉はドライ酸化炉であること
を特徴とする反応ガスの予熱装置を備えた反応炉。
6. The reaction furnace according to claim 5, wherein the oxidizing gas is dry oxygen gas, and the oxidation reaction furnace is a dry oxidation furnace.
JP32218193A 1993-12-21 1993-12-21 Reaction furnace with reaction gas preheater Pending JPH07176498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32218193A JPH07176498A (en) 1993-12-21 1993-12-21 Reaction furnace with reaction gas preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32218193A JPH07176498A (en) 1993-12-21 1993-12-21 Reaction furnace with reaction gas preheater

Publications (1)

Publication Number Publication Date
JPH07176498A true JPH07176498A (en) 1995-07-14

Family

ID=18140855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32218193A Pending JPH07176498A (en) 1993-12-21 1993-12-21 Reaction furnace with reaction gas preheater

Country Status (1)

Country Link
JP (1) JPH07176498A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139641A (en) * 1996-06-24 2000-10-31 Kokusai Electric Co., Ltd. Substrate processing apparatus having a gas heating tube
EP1139694A2 (en) 2000-03-30 2001-10-04 Toshiba Ceramics Co., Ltd. Fluid heating apparatus
KR20180056388A (en) 2016-11-18 2018-05-28 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus, reaction tube structure and method of manufacturing semiconductor device
CN112813405A (en) * 2020-12-21 2021-05-18 苏州雨竹机电有限公司 Method for providing low temperature difference operation gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139641A (en) * 1996-06-24 2000-10-31 Kokusai Electric Co., Ltd. Substrate processing apparatus having a gas heating tube
US6332927B1 (en) 1996-06-24 2001-12-25 Kokusai Electric Co., Ltd. Substrate processing apparatus
EP1139694A2 (en) 2000-03-30 2001-10-04 Toshiba Ceramics Co., Ltd. Fluid heating apparatus
KR20010095084A (en) * 2000-03-30 2001-11-03 추후제출 Fluid heating apparatus
KR20180056388A (en) 2016-11-18 2018-05-28 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus, reaction tube structure and method of manufacturing semiconductor device
US11359283B2 (en) 2016-11-18 2022-06-14 Kokusai Electric Corporation Reaction tube structure and substrate processing apparatus
CN112813405A (en) * 2020-12-21 2021-05-18 苏州雨竹机电有限公司 Method for providing low temperature difference operation gas
CN112813405B (en) * 2020-12-21 2023-03-14 苏州雨竹机电有限公司 Method for providing low temperature difference operation gas

Similar Documents

Publication Publication Date Title
EP1388891B1 (en) System for heat treating semiconductor
EP1160838B1 (en) Heat treatment system and method
JP3024449B2 (en) Vertical heat treatment furnace and heat treatment method
JP3207943B2 (en) Low temperature oxide film forming apparatus and low temperature oxide film forming method
JP3578155B2 (en) Oxidation method of the object
US3258359A (en) Semiconductor etch and oxidation process
JPH07176498A (en) Reaction furnace with reaction gas preheater
US6806144B2 (en) Method and apparatus for improved gate oxide uniformity with reducing system contaminants
JP3794243B2 (en) Oxidation processing method and apparatus
JP2001223213A (en) Method and device for forming oxide layer on semiconductor wafer
JPS6224630A (en) Formation of thermal oxidation film and device therefor
JP2001308085A (en) Heat-treating method
JP3081886B2 (en) Film formation method
JP3516635B2 (en) Heat treatment equipment
JP3156925B2 (en) Cold wall type single-wafer lamp heating furnace
JPS63181315A (en) Equipment for heat treatment
JPH0574757A (en) High pressure oxidation furnace for semiconductor device
JPH06302566A (en) Method and apparatus for manufacturing semiconductor device
JP2693465B2 (en) Semiconductor wafer processing equipment
JPH04254328A (en) Manufacture of semiconductor device
JPH06310454A (en) Hot-wall type heat treatment device
JPS63161608A (en) Cvd evaporation system
JPH09153485A (en) Vapor growth device
JPS6315741B2 (en)
JPH11100675A (en) Vapor growth method