JPH03242925A - Liquid phase epitaxy method - Google Patents

Liquid phase epitaxy method

Info

Publication number
JPH03242925A
JPH03242925A JP4073590A JP4073590A JPH03242925A JP H03242925 A JPH03242925 A JP H03242925A JP 4073590 A JP4073590 A JP 4073590A JP 4073590 A JP4073590 A JP 4073590A JP H03242925 A JPH03242925 A JP H03242925A
Authority
JP
Japan
Prior art keywords
temperature
substrate
liquid phase
molten metal
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4073590A
Other languages
Japanese (ja)
Inventor
Kaneyuki Akagi
赤木 謙之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP4073590A priority Critical patent/JPH03242925A/en
Publication of JPH03242925A publication Critical patent/JPH03242925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To make it possible to obtain an epitaxial layer having few defects by raising the temperature of a substrate in a reducing atmosphere to a temperature at which the surface thereof is melted in a specified rate, and by keeping the substrate in these conditions for a prescribed time. CONSTITUTION:The temperature of a substrate 5 is raised in a reducing atmosphere to a temperature at which the surface thereof is melted in the rate of 0.1 to 0.2wt.% in a molten metal 4, and the substrate is kept in these conditions for a prescribed time. Subsequently, the molten metal 4 is made to grow in liquid phase epitaxy by a method wherein the temperature thereof is raised to the starting temperature of the liquid phase epitaxial growth or above. In other words, the substrate 5 is exposed to the reducing atmosphere of a high temperature lower than the starting temperature of the liquid phase epitaxial growth and thereby an oxide film on the substrate 5 is reduced. Moreover, a reducing reaction advances to the inside of the oxide film, since the surface of the substrate 5 is melted. According to this constitution, the epitaxial growth of the molten metal proceeds smoothly and a melt-back interface is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、m−v族化合物からなる基材に■族の溶融金
属を液相エピタキシャル成長させる、特に■−v族化合
物半導体からp−n接合半導体を製造する上で好適な液
相エピタキシャル威長方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention involves liquid phase epitaxial growth of a molten metal of group Ⅰ on a base material made of an m-v group compound. The present invention relates to a liquid phase epitaxial growth method suitable for manufacturing junction semiconductors.

(従来の技術) 液相エピタキシャル成長を行なう場合、例えば第2図に
示す装置、即ち、グラファイト、石英又は酸化アルミニ
ウムからなる第1の台板l上に溶融金属4、例えば溶融
ガリウムとこれを液相エピタキシャル成長させる基板5
、例えばGaAsやGaPからなる基板を隣接して配置
し、更にこの上に第2の台板2を例えばスペーサ8によ
りこの第1の台板との間に間隙を開けて載置した装置を
用いて、第4図に示すように前記溶融金属を液相エピタ
キシャル成長開始温度以上に昇温し、この温度に一定時
間保持した後冷却を行なうことによって液相エピタキシ
ャル成長を行なう方法が特開昭55−59717号公報
に記載されている。
(Prior Art) When performing liquid phase epitaxial growth, for example, the apparatus shown in FIG. Substrate 5 for epitaxial growth
For example, an apparatus is used in which substrates made of GaAs or GaP are placed adjacent to each other, and a second base plate 2 is placed on top of the substrates with a gap formed between them and the first base plate by, for example, spacers 8. As shown in FIG. 4, a method is disclosed in JP-A-55-59717 in which liquid phase epitaxial growth is carried out by heating the molten metal to a temperature above the liquid phase epitaxial growth starting temperature, holding it at this temperature for a certain period of time, and then cooling it. It is stated in the No.

ここで、上記第2の台板2及びスペーサ8は第1の台板
1と同様な材料で構成されている。
Here, the second base plate 2 and the spacer 8 are made of the same material as the first base plate 1.

また、前記公報には、p−n接合半導体を得る場合、第
1図に示すように、第1の台板lの溶融金属4と反対側
の基板5に隣接する面に溝7を形成して、この溝7の中
に不純物6、例えばSiを入れて液相エピタキシャル成
長を行なう方法が記載されている。
The publication also states that when obtaining a p-n junction semiconductor, as shown in FIG. A method is described in which an impurity 6, for example, Si, is introduced into the groove 7 and liquid phase epitaxial growth is performed.

(発明が解決しようとする課題) しかしながら、このような方法でエピタキシャル成長を
行なうと、たとえ、還元雰囲気中でエピタキシャル成長
を行なったとしても基板上の酸化被膜が十分に除去され
ないうちに溶融金属、例えば溶融ガリウムの移動が起こ
るので均一なエピタキシャル層が得られない。
(Problem to be Solved by the Invention) However, when epitaxial growth is performed using such a method, even if epitaxial growth is performed in a reducing atmosphere, molten metal, e.g. Since gallium migration occurs, a uniform epitaxial layer cannot be obtained.

また、p−n接合半導体を製造する場合、基板上の酸化
被膜が十分に除去されていないので残存する酸化被膜に
よって得られるp−n接合半導体への不純物のドーピン
グ量が異なってくるため、安定した特性のp−n接合半
導体が得られないといった問題がある。
In addition, when manufacturing a p-n junction semiconductor, the oxide film on the substrate is not sufficiently removed, so the amount of impurity doped into the resulting p-n junction semiconductor varies depending on the remaining oxide film, resulting in a stable There is a problem that a pn junction semiconductor with such characteristics cannot be obtained.

更には、基板の一部にくわれが生じ、このため、上記基
板上の酸化被膜による問題と併せて、従来の特開昭55
−59717号公報に記載された方法では均一で欠陥の
少ないメルトバック界面が得られないといった問題があ
る。
Furthermore, cracks occur in a part of the substrate, which, in addition to the problem caused by the oxide film on the substrate,
The method described in Japanese Patent No. 59717 has a problem in that a uniform meltback interface with few defects cannot be obtained.

(課題を解決するための手段) 本発明は上記課題を解決するため、前記基材を還元雰囲
気中でその表面が溶融して溶融金属中に0.1重量バー
セントル0.2重量パーセントの割合で溶解する温度に
昇温してこの温度に一定時間保ち1次いで溶融金属な液
相エピタキシャル成長開始温度以上に昇温する方法で溶
融金属を液相エピタキシャル成長させるようにしたもの
である。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention is directed to melting the surface of the base material in a reducing atmosphere and adding 0.1 weight percent to 0.2 weight percent of the base material to the molten metal. The liquid phase epitaxial growth of the molten metal is carried out by raising the temperature to a melting temperature, maintaining this temperature for a certain period of time, and then increasing the temperature to a temperature higher than the liquid phase epitaxial growth start temperature of the molten metal.

(作用) 上記本発明方法によれば、溶融金属を液相エピタキシャ
ル成長させるまでの一定時間にわたって基材は液相エピ
タキシャル成長開始温度未満の高温の還元雰囲気にさら
され、基板上の酸化被膜は還元される。更に、この酸化
被膜の還元反応は基材の表面が溶融しているため、酸化
被膜の内部まで進行する。
(Function) According to the method of the present invention, the base material is exposed to a reducing atmosphere at a high temperature below the liquid phase epitaxial growth start temperature for a certain period of time until the molten metal is liquid phase epitaxially grown, and the oxide film on the substrate is reduced. . Furthermore, since the surface of the base material is melted, this reduction reaction of the oxide film progresses to the inside of the oxide film.

また、このように基材の表面が溶融し、溶融金属中に0
.1重量バーセントル0.2重量パーセントの割合で溶
解しているため、スムーズな溶融金属のエピタキシャル
成長がなされ、メルトバック界面が得られる。
In addition, the surface of the base material is melted in this way, and 0% is added to the molten metal.
.. Since the metal is melted at a ratio of 0.2 weight percent to 1 weight percent, smooth epitaxial growth of the molten metal is achieved and a melt-back interface is obtained.

(実施例) 以下に実施例を示し、本発明を更に詳しく説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

既に説明した第1図の装置でp−n接合GaAs化合物
半導体を製造する場合につき、以下に説明する。
The case where a pn junction GaAs compound semiconductor is manufactured using the apparatus shown in FIG. 1 described above will be described below.

即ち、第1図の装置において、第1の台板l、第2の台
板2に平板状の石英板又はグラファイト板を使用し、ま
た、スペーサ8にも同様の材質のものを使用する。
That is, in the apparatus shown in FIG. 1, a flat quartz plate or a graphite plate is used for the first base plate 1 and the second base plate 2, and the spacer 8 is also made of the same material.

そして、まず、溝7を形成した第1の台板1のこの溝7
の端面に基板(GaAs基板)5の端面を合せて第1の
台板l上に基板5を配置し、更にこの基板5の他端に接
して溶融金属(溶融ガリウム)4を配置し、溝7中に不
純物(St)6を入れる。
First, the groove 7 of the first base plate 1 in which the groove 7 was formed is
A substrate 5 is placed on the first base plate l with the end surface of the substrate (GaAs substrate) 5 aligned with the end surface of the substrate 5, and a molten metal (molten gallium) 4 is placed in contact with the other end of the substrate 5, and a groove is formed. Impurity (St) 6 is introduced into 7.

次いで、第3図に示すように、この状態で基板5のGa
Asの溶融金属4である溶融ガリウムへの溶解度が0.
1重量バーセントル0.2重量パーセントとなる温度、
即ち670℃〜680℃まで昇温し、この温度で基板5
及び溶融金属4をH?還元雰囲気中で1時間保持し、し
かる後、この基板5及び溶融金属4を第2の台板2で覆
う。この際に過剰な溶融金属4である溶融ガリウムが溝
7中に流れ込むので不純物6であるStが製品中に取り
込まれる。
Next, as shown in FIG. 3, Ga of the substrate 5 is removed in this state.
The solubility of As in molten gallium, which is the molten metal 4, is 0.
The temperature at which 1 weight bar centre is 0.2 weight percent,
That is, the temperature is raised to 670°C to 680°C, and the substrate 5 is heated at this temperature.
and molten metal 4 to H? The substrate 5 and molten metal 4 are kept in a reducing atmosphere for one hour, and then covered with a second base plate 2. At this time, excess molten gallium, which is the molten metal 4, flows into the groove 7, so that St, which is the impurity 6, is incorporated into the product.

この後、基板5及び溶融金属4を930℃まで昇温し、
この温度で一定時間、例えば1時間保持し、次いでl”
Q/min〜2℃/ m i nの冷却速度で冷却する
ことにより溶融金属4である溶融ガリウムを基板5のG
aAs上にエピタキシャル成長させる。 ここで不純物
6であるSiは両性不純物であるので、このようにして
p−n接合半導体を得ることができる。
After that, the temperature of the substrate 5 and the molten metal 4 is raised to 930°C,
Hold at this temperature for a certain period of time, for example 1 hour, then l”
The molten gallium, which is the molten metal 4, is cooled to the G of the substrate 5 by cooling at a cooling rate of Q/min to 2°C/min.
Epitaxially grown on aAs. Since Si, which is the impurity 6, is an amphoteric impurity, a pn junction semiconductor can be obtained in this manner.

以上にGaAs化合物半導体に溶融ガリウムをエピタキ
シャル成長させ、Si不純物をドーピングする場合につ
いて述べたが、上記GaAs化合物半導体に代えてGa
AJIAs化合物半導体を使用したりすることができる
など、本発明方法は基材がm−v族化合物であって溶融
金属が■族の金属である他のものについても適用できる
のは勿論である。
The case where molten gallium is epitaxially grown on a GaAs compound semiconductor and doped with Si impurities has been described above.
Of course, the method of the present invention can also be applied to other materials in which the base material is an m-v group compound and the molten metal is a group (I) metal, such as AJIAs compound semiconductor.

(発明の効果) 以上の実施例のようにして液相エピタキシャル成長を行
なうことにより、液相エピタキシャル成長開始前の還元
雰囲気中で基材表面の酸化被膜が除去され、また、基材
表面が溶融金属への溶解度が0.1重量バーセントル0
.2重量パーセントとなる程度の僅かな量、即ち基材に
影響を与えない程度に溶融しているので、欠陥の少ない
エピタキシャル層が得られるとともに、基材とエピタキ
シャル層との界面を均一なメルトバックとすることがで
きる。
(Effects of the Invention) By performing liquid phase epitaxial growth as in the above embodiments, the oxide film on the surface of the base material is removed in a reducing atmosphere before the start of liquid phase epitaxial growth, and the surface of the base material is transferred to molten metal. Solubility of 0.1 weight bar centre 0
.. Since it is melted in a small amount of 2% by weight, that is, to the extent that it does not affect the base material, an epitaxial layer with few defects can be obtained, and the interface between the base material and the epitaxial layer can be uniformly melted back. It can be done.

更には、不純物をドーピングする場合においては、不純
物が均一に取り込まれた平滑度の良好なエピタキシャル
層が得られる。
Furthermore, in the case of doping with impurities, an epitaxial layer with good smoothness in which the impurities are uniformly incorporated can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明に係る液相エピタキ
シャル装置を模式的に表わした断面図、第3図は本発明
方法における昇温過程を示すグラフ、第4図は従来方法
における昇温過程を示すグラフである。 1・・・第1の台板、2・・・第2の台板、3・・・間
隙、4・・・溶融金属、5・・・基板、6・・・不純物
、7・・・溝、8・・・スペーサ。 特 許 出 願 人  日本ビクター株式会社第4図
FIGS. 1 and 2 are cross-sectional views schematically showing the liquid phase epitaxial apparatus according to the present invention, FIG. 3 is a graph showing the temperature increase process in the method of the present invention, and FIG. 4 is a graph showing the temperature increase in the conventional method. It is a graph showing the process. DESCRIPTION OF SYMBOLS 1... First base plate, 2... Second base plate, 3... Gap, 4... Molten metal, 5... Substrate, 6... Impurity, 7... Groove , 8... Spacer. Patent applicant: Victor Japan Co., Ltd. Figure 4

Claims (1)

【特許請求の範囲】[Claims] 第1の台板上にIII族の溶融金属とIII−V族化合物から
なる基材を隣接して配置し、更にこの上に第2の台板を
前記第1の台板との間に間隙を開けて載置して行なう液
相エピタキシャル成長方法において、前記基材を還元雰
囲気中でその表面が溶融して前記溶融金属中に0.1重
量パーセント乃至0.2重量パーセントの割合で溶解す
る温度に昇温してこの温度に一定時間保ち、次いで前記
溶融金属を液相エピタキシャル成長開始温度以上に昇温
することを特徴とする液相エピタキシャル成長方法。
A base material made of a group III molten metal and a group III-V compound is placed adjacent to each other on a first base plate, and a second base plate is placed on top of the base material with a gap between it and the first base plate. In a liquid phase epitaxial growth method performed by opening and placing the base material, the temperature at which the surface of the base material melts in a reducing atmosphere and dissolves in the molten metal at a rate of 0.1% by weight to 0.2% by weight. 1. A method for liquid phase epitaxial growth, characterized in that the temperature is raised to a temperature of 100 to 100 nm, maintained at this temperature for a certain period of time, and then the temperature of the molten metal is raised to a temperature higher than a temperature at which liquid phase epitaxial growth starts.
JP4073590A 1990-02-21 1990-02-21 Liquid phase epitaxy method Pending JPH03242925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4073590A JPH03242925A (en) 1990-02-21 1990-02-21 Liquid phase epitaxy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4073590A JPH03242925A (en) 1990-02-21 1990-02-21 Liquid phase epitaxy method

Publications (1)

Publication Number Publication Date
JPH03242925A true JPH03242925A (en) 1991-10-29

Family

ID=12588894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4073590A Pending JPH03242925A (en) 1990-02-21 1990-02-21 Liquid phase epitaxy method

Country Status (1)

Country Link
JP (1) JPH03242925A (en)

Similar Documents

Publication Publication Date Title
US4116733A (en) Vapor phase growth technique of III-V compounds utilizing a preheating step
JPH0484418A (en) Method of heteroepitaxial development of iii-v group compound semiconductor for different types of substrates
JPH0534825B2 (en)
JPH05175150A (en) Compound semiconductor and its manufacture
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
JPH03242925A (en) Liquid phase epitaxy method
US3530011A (en) Process for epitaxially growing germanium on gallium arsenide
US3619304A (en) Method of manufacturing gallium phosphide electro luminescent diodes
US4578126A (en) Liquid phase epitaxial growth process
JP2004172556A (en) Semiconductor device and its manufacturing method
JPH0218319B2 (en)
JP2914246B2 (en) Epitaxial wafer and semiconductor light emitting device
JPH0645249A (en) Growth method of gaas layer
JP2534945B2 (en) Method for manufacturing semiconductor device
JP2565908B2 (en) Compound semiconductor device
JP2645418B2 (en) GaAs compound semiconductor single crystal
JP3097587B2 (en) Epitaxial wafer for light emitting semiconductor device
CN116324047A (en) Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single-crystal ingot, and method for producing indium phosphide substrate
JPS6186500A (en) Manufacture of gaalas light emitting semiconductor
JPH09266175A (en) Semiconductor wafer manufacturing method and semiconductor wafer
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JPH01179411A (en) Iii-v compound semiconductor vapor growth method
JPS63304617A (en) Method of growing compound semiconductor crystal
JP2003246699A (en) SEMICONDUCTOR WAFER OF SiC SINGLE CRYSTAL AND METHOD OF PRODUCING THE SAME
JPS589578B2 (en) Optical semiconductor device and its manufacturing method