JPH03241604A - Formation of insulated layer of electric equipment - Google Patents

Formation of insulated layer of electric equipment

Info

Publication number
JPH03241604A
JPH03241604A JP2037498A JP3749890A JPH03241604A JP H03241604 A JPH03241604 A JP H03241604A JP 2037498 A JP2037498 A JP 2037498A JP 3749890 A JP3749890 A JP 3749890A JP H03241604 A JPH03241604 A JP H03241604A
Authority
JP
Japan
Prior art keywords
insulated layer
rotor
insulating layer
alumina
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2037498A
Other languages
Japanese (ja)
Inventor
Takashi Tokuda
徳田 隆士
Akihiko Takahashi
昭彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2037498A priority Critical patent/JPH03241604A/en
Publication of JPH03241604A publication Critical patent/JPH03241604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

PURPOSE:To obtain an insulated layer having good heat resistance and pressure durability by applying a coating agent, in which a prescribed amount of alumina and an organic solvent are arranged with a prescribed amount of transformed aluminium silicate, to a base metal for being heated and dried to form an insulated layer. CONSTITUTION:Transformed aluminium silicate 12 to 40wt.%, desirably 25wt.% as a base material, alumina having an average grain diameter 4 to 5mum 85 to 60wt.%, desirably 70wt.% as a filter and methanol 5wt.% as an organic solvent are mixed to prepare insulating coating varnish. This insulating coating varnish is dipped and coated, for instance, in a laminated rotor iron core slot part and spontaneously dried for about one hour followed by being heated by inductive heating at 300 deg.C for one hour to form an insulated layer. Al melted at 700 to 730 deg.C is casted in a rotor iron core made in this way at pressure of 140kg/cm<2> to form a rotor bar and an end ring for being made an aluminium die-casting rotor. Thereby, the insulated layer having good heat resistance and pressure durability can easily be formed.

Description

【発明の詳細な説明】 人、 産業上の利用分野 本発明は、電気機器における耐熱・耐圧性の高い絶縁層
を形成する方法に関する。
TECHNICAL FIELD The present invention relates to a method for forming an insulating layer with high heat resistance and pressure resistance in electrical equipment.

B 発明の概要 本発明は、電気機器の絶縁層形成方法において、基剤と
しての変性アルミニウムシリケートと、充填剤としての
アルミナと、有機溶剤とを含有する無機系絶縁塗料を塗
装し、加熱乾燥することにより、耐熱性、耐圧性の高い
絶縁層を形成できるようにしたものである。
B. Summary of the Invention The present invention provides a method for forming an insulating layer for electrical equipment, in which an inorganic insulating paint containing modified aluminum silicate as a base, alumina as a filler, and an organic solvent is coated and dried by heating. This makes it possible to form an insulating layer with high heat resistance and high pressure resistance.

C9従来の技術 一般の電気機器においては、通常コーティング法により
絶縁層の形成が行われている。
C9 Prior Art In general electrical equipment, insulating layers are usually formed by a coating method.

例えばかご形誘導電動機においては、効率を向上させる
ための一手法として損失低減があり、その−例として回
転子の漂遊負荷損の低減がある。この漂遊負荷損を低減
するためには、ローターバー間に誘起される電圧に基づ
いて回転子鉄心を通って流れる電流による横流績を低減
することが有効である。
For example, in squirrel cage induction motors, one technique for improving efficiency is loss reduction, an example of which is reduction of rotor stray load losses. In order to reduce this stray load loss, it is effective to reduce the cross current caused by the current flowing through the rotor core based on the voltage induced between the rotor bars.

このような理由から、かご形誘導電動機においては横流
績を低減させるためにローターバーと回転子鉄心との間
に絶縁を施されている。そして、製造上一般的にはスロ
ット内壁に絶縁が施されるが、一般的には回転子鉄心を
絶縁塗料に浸漬して行うコーティング法が採用されてい
る。
For this reason, in squirrel cage induction motors, insulation is provided between the rotor bar and the rotor core in order to reduce cross current. In manufacturing, insulation is generally applied to the slot inner walls, and a coating method is generally employed in which the rotor core is dipped in an insulating paint.

D 発明が解決しようとする課題 しかしながら、従来から知られている絶縁塗料を用いて
も耐熱・耐圧性が高い絶縁層が得られないという問題が
ある。
D. Problems to be Solved by the Invention However, there is a problem in that even if conventionally known insulating paints are used, an insulating layer with high heat resistance and pressure resistance cannot be obtained.

即ち、前述したかご形誘導電動機のスロット絶縁を従来
の絶縁塗料で形成した場合、例えばアルミダイキャスト
ロータとする場合の溶融アルミニウムの温度(680〜
730℃)と圧力(100kg/cWr以上)とに耐え
られる絶縁塗膜を安定的に形成できないという問題があ
る。
That is, when the slot insulation of the above-mentioned squirrel-cage induction motor is formed with a conventional insulating paint, for example, when an aluminum die-cast rotor is formed, the temperature of molten aluminum (680 ~
There is a problem in that it is not possible to stably form an insulating coating film that can withstand pressure (100 kg/cWr or higher) (730° C.) and pressure (100 kg/cWr or higher).

一方、耐熱・耐圧性の高い絶縁層を形成しようとすると
処理工程が複雑で処理コストが高いという問題もある。
On the other hand, when attempting to form an insulating layer with high heat resistance and pressure resistance, there is a problem that the processing steps are complicated and the processing cost is high.

したがって、例えばかご形誘導電動機のアルミダイキャ
ストロータにも対応できる、高耐熱・耐圧性の絶縁層を
簡易に形成する方法が求められている。
Therefore, there is a need for a method for easily forming an insulating layer with high heat resistance and pressure resistance, which can be applied to aluminum die-cast rotors of squirrel cage induction motors, for example.

E 課題を解決するための手段 本発明に係る電気機蓋の絶縁層形成方法は、基剤として
の変性アルミニウムシリケート15〜40重量部に対し
て充填剤としてのアルミナ85〜60重量部と有機溶剤
とを配合してなる無機系絶縁塗料を母材に塗装し、加熱
乾燥して絶縁層を形成することを特徴とする。
E. Means for Solving the Problems The method for forming an insulating layer on an electric machine lid according to the present invention uses 15 to 40 parts by weight of modified aluminum silicate as a base material, 85 to 60 parts by weight of alumina as a filler, and an organic solvent. The method is characterized in that an inorganic insulating paint made by blending the above is applied to a base material, and then heated and dried to form an insulating layer.

本発明で基剤として用いる変性アルミニウムシリケート
は、ケイ酸塩系結合剤であり、シリケート(ケイ酸塩)
の硬化反応を促進する触媒としてアルミニウムを含有す
るものである。
The modified aluminum silicate used as a base material in the present invention is a silicate-based binder, and is a silicate-based binder.
It contains aluminum as a catalyst to promote the curing reaction.

また、充填剤として用いるアルミナは粉末状であれば特
に限定されず、例えば平均粒子径4〜5μm程度のもの
が好適である。
Further, the alumina used as the filler is not particularly limited as long as it is in powder form, and for example, one having an average particle diameter of about 4 to 5 μm is suitable.

本発明では、変性アルミニウムシリケートとアルミナと
を組合せることにより、高耐熱・耐圧性の無機系絶縁層
が得られ、かかる効果を得ろためには、変性アルミニウ
ムシリケートとアルミナとを前者15〜40重量部に3 4 対し、後者85〜60重量部の割合で用いる必要がある
。これは、これらの範囲以外の割合で用いても耐熱性・
耐圧性が向上するという効果が得られないからである。
In the present invention, by combining modified aluminum silicate and alumina, an inorganic insulating layer with high heat resistance and pressure resistance can be obtained. It is necessary to use the latter at a ratio of 85 to 60 parts by weight compared to 34 parts by weight. This means that heat resistance and
This is because the effect of improving pressure resistance cannot be obtained.

かかる効果が得られることを確かめるために次の試験を
行った。
In order to confirm that such an effect can be obtained, the following test was conducted.

変性アルミニウムシリケートとアルミナとの割合(組成
比)を次表のように変化させた絶縁層を形成してこれを
710℃の溶融アルミニウム中に10分間浸漬した場合
の絶縁層の剥離の有無を調べたところ、次表に示す結果
を得た。すなわち、次表に示すように上記範囲以外の組
成比とした場合には絶縁層が剥離してしまい、絶縁層の
耐熱性の向上が認め一方、有機溶剤は塗料の粘度を調整
するためのものであり、例えばメタノールなどのアルコ
ール系溶剤を用いるのが望ましい。例えば作業性等を考
慮して200〜600 cpの粘度となるように調整す
るには全体量中3〜10重景%程度用いればよい。
An insulating layer was formed with the ratio (composition ratio) of modified aluminum silicate and alumina changed as shown in the table below, and the insulating layer was immersed in molten aluminum at 710°C for 10 minutes, and the presence or absence of peeling of the insulating layer was investigated. As a result, we obtained the results shown in the following table. In other words, as shown in the following table, if the composition ratio is outside the above range, the insulating layer will peel off, and the heat resistance of the insulating layer will be improved.On the other hand, the organic solvent is used to adjust the viscosity of the paint. Therefore, it is desirable to use an alcoholic solvent such as methanol. For example, in order to adjust the viscosity to 200 to 600 cp in consideration of workability, etc., it is sufficient to use about 3 to 10% of the total amount.

なお、本発明に用いる無機系絶縁塗料は、上述した成分
の他、必要に応じて安定剤、顔料などの添加物を含有す
るものである。
The inorganic insulating paint used in the present invention contains additives such as stabilizers and pigments, if necessary, in addition to the above-mentioned components.

本発明ではかかる無機系絶縁塗料を例えば回転子鉄心の
ロータ内壁などの母材に塗装する。この塗装は作業性の
面から浸漬塗装が好ましい。そして、塗装後、例えば3
00〜400℃の温度で加熱乾燥する乙とにより絶縁層
とする。
In the present invention, such an inorganic insulating paint is applied to a base material such as the rotor inner wall of the rotor core. Dip coating is preferred for this coating from the viewpoint of workability. After painting, for example 3
An insulating layer is formed by heating and drying at a temperature of 00 to 400°C.

なお、本発明に係る電気機器の絶縁層形成方法はかご形
回転子のスロット絶縁の他、各種電気機器の高耐熱・耐
圧絶縁に用いて有用なものである。
The method for forming an insulating layer for electrical equipment according to the present invention is useful for not only slot insulation of squirrel cage rotors but also high heat-resistant and high-voltage insulation for various electrical equipment.

F  作    用 上述した無機系絶縁塗料は、加熱乾燥されると、変性ア
ルミニウムシリケート中のアルミニウムが触媒となって
シリケートの硬化反応が促進され、アルミナを含有する
高耐熱性の無機系絶縁層が形成登れる。また、上記塗料
は常温での乾燥性が良いので、均一な絶縁層が形成され
る。
F Effect When the above-mentioned inorganic insulating paint is heated and dried, the aluminum in the modified aluminum silicate acts as a catalyst to accelerate the curing reaction of the silicate, forming a highly heat-resistant inorganic insulating layer containing alumina. I can climb it. Furthermore, since the above paint dries well at room temperature, a uniform insulating layer is formed.

実施例 以下、本発明を実施例に基づいて説明する。Example Hereinafter, the present invention will be explained based on examples.

変性アルミニウムシリケート25重量部、平均粒子径4
〜5μmのアルミナ70重量部及びメタノール5重量部
を混合して絶縁塗料を調製した。
25 parts by weight of modified aluminum silicate, average particle size 4
An insulating paint was prepared by mixing 70 parts by weight of ~5 μm alumina and 5 parts by weight of methanol.

この絶縁塗料を積層された回転子鉄心スロット部に浸漬
塗装し、約1時間自然乾燥した後、誘導加熱により30
0℃、1時間の加熱乾燥を行い、絶縁層を形成した。
This insulating paint was dip-coated onto the laminated rotor core slots, air-dried for about an hour, and then heated for 30 minutes by induction heating.
Heat drying was performed at 0° C. for 1 hour to form an insulating layer.

かかる回転子鉄心に、700〜730℃で溶融されたア
ルミニウムを140kg/cnrの圧力でキャスティン
グし、ローターバ・−及びエンドリングを形成し、実施
例に係るアルミダイキャストロータとした。
Aluminum molten at 700 to 730° C. was cast onto the rotor core at a pressure of 140 kg/cnr to form a rotor bar and an end ring, thereby producing an aluminum die-cast rotor according to an example.

比較のため、スロット部に絶縁層を形成していない回転
子鉄心に、同様に溶融アルミニウムをキャスティングし
てローターバー及びエンドリングを形成し、比較例に係
るアルミダイキャストロータとした。
For comparison, rotor bars and end rings were formed by casting molten aluminum in the same manner on a rotor core without an insulating layer formed in the slot portions, thereby obtaining an aluminum die-cast rotor according to a comparative example.

このように製造した実施例及び比較例のアルミダイキャ
ストロータのエンドリング部を7− 切削により除去後、隣接するローターバー間の抵抗値を
測定した。この結果を第1図に示す。
After removing the end ring portions of the aluminum die-cast rotors of Examples and Comparative Examples manufactured in this way by 7-cut cutting, the resistance value between adjacent rotor bars was measured. The results are shown in FIG.

第1図に示すように、実施例に係るロータでは抵抗値が
1.5X10−2〜3.5X10−2(Ω・m)であり
、比較例の8X10’−’ 〜5X10−’(Ω・m)
と比較すると2ケタ以上大きかった。なお、かかる結果
は、IEEE Transaction on Ene
rgyConversion、 Vol、 EC−2,
No、 3. September  1987に示さ
れるデータからみても、十分な横流損低減の効果がある
ことを示している。
As shown in FIG. 1, the resistance value of the rotor according to the example is 1.5X10-2 to 3.5X10-2 (Ω・m), and the resistance value of the comparative example is 8X10'-' to 5X10-' (Ω・m). m)
It was more than two orders of magnitude larger than that. Furthermore, such results are based on IEEE Transaction on Ene
rgyConversion, Vol, EC-2,
No, 3. The data shown in September 1987 also show that there is a sufficient effect of reducing cross flow loss.

また、両者のロータ鉄心部を旋盤により切削してアルミ
ニウムのキャスティング状態を観察したところ、比較例
に比べて実施例のものはアルミ導体中に空隙が少なかっ
た。これは、スロット内壁がセラミック塗装されて平滑
化されることにより、溶融アルミニウムの流れが良好に
なった結果であると認められる。
Further, when the rotor core portions of both were cut using a lathe and the state of aluminum casting was observed, it was found that there were fewer voids in the aluminum conductor in the example than in the comparative example. It is recognized that this is the result of smoothing the inner wall of the slot with ceramic coating, which improves the flow of molten aluminum.

このように本発明によるスロット絶縁は上述したように
耐熱・耐圧性が良好であり、か8− かる絶縁を施した回転子にアルミダイキャストにより四
−ターバー及びエンドリングを形成しても絶縁層が剥離
することがない。すなわち、このように形成されたスロ
ット絶縁により、横流損が確実に低減され、かご形誘導
電動機の効率アップを図ることができる。
As described above, the slot insulation according to the present invention has good heat resistance and pressure resistance, and even if a four-turner and an end ring are formed by aluminum die-casting on a rotor with such insulation, the insulation layer will not be removed. will not peel off. In other words, the slot insulation formed in this manner reliably reduces cross-current loss, making it possible to improve the efficiency of the squirrel-cage induction motor.

また、本発明方法により形成された絶縁層はセラミック
塗膜であるので、例えばアルミダイキャストをする場合
に溶融アルミニウムの流れ性が改善され、アルミ導体中
の空隙の形成が低減できるという効果も奏することが認
められた。
Furthermore, since the insulating layer formed by the method of the present invention is a ceramic coating, the flowability of molten aluminum is improved when aluminum die-casting is performed, and the formation of voids in the aluminum conductor can be reduced. This was recognized.

なお、塗装を浸漬塗装によって行うと、塗装ムラが少な
いので、例えばアルミダイキャスト後のローターバーと
回転子鉄心との間の抵抗値のバラツキが少いという効果
も奏する。
Note that when the coating is performed by dip coating, there is less unevenness in the coating, so that there is also an effect that, for example, there is less variation in the resistance value between the rotor bar and the rotor core after aluminum die-casting.

H発明の効果 本発明は、変性アルミニウムシリケートとアルミナとを
含有する無機系絶縁塗料を塗装し、加熱乾燥することに
より絶縁層を形成する構成となっているので、耐熱・耐
圧性の良好な絶縁層が簡易に形成できる。
H Effects of the Invention The present invention has a structure in which an insulating layer is formed by coating an inorganic insulating paint containing modified aluminum silicate and alumina and drying it by heating. Layers can be easily formed.

これを例えばかご形回転子のスロット絶縁に用いろと横
流損が確実に低減されてかご形誘導電動機の効率がアッ
プするという効果を得ることができ、またロスによる温
度上昇が抑えられ、電動機が小形化できるという効果も
奏する。
If this is used, for example, in the slot insulation of a squirrel cage rotor, it will be possible to reliably reduce the cross current loss and increase the efficiency of the squirrel cage induction motor.In addition, the temperature rise due to loss will be suppressed, and the motor will increase. It also has the effect of being able to be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例と比較例に係るアルミダイキャストロー
タのローターバー間抵抗値の測定結果を示すグラフであ
る。
FIG. 1 is a graph showing the measurement results of the resistance values between rotor bars of aluminum die-cast rotors according to Examples and Comparative Examples.

Claims (1)

【特許請求の範囲】[Claims] 基剤としての変性アルミニウムシリケート15〜40重
量部に対して充填剤としてのアルミナ85〜60重量部
と有機溶剤とを配合してなる無機系絶縁塗料を母材に塗
装し、加熱乾燥して絶縁層を形成することを特徴とする
電気機器の絶縁層形成方法。
An inorganic insulation paint made by blending 15 to 40 parts by weight of modified aluminum silicate as a base material, 85 to 60 parts by weight of alumina as a filler, and an organic solvent is applied to the base material, and the insulation is heated and dried. A method for forming an insulating layer for an electrical device, the method comprising forming a layer.
JP2037498A 1990-02-20 1990-02-20 Formation of insulated layer of electric equipment Pending JPH03241604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2037498A JPH03241604A (en) 1990-02-20 1990-02-20 Formation of insulated layer of electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2037498A JPH03241604A (en) 1990-02-20 1990-02-20 Formation of insulated layer of electric equipment

Publications (1)

Publication Number Publication Date
JPH03241604A true JPH03241604A (en) 1991-10-28

Family

ID=12499190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2037498A Pending JPH03241604A (en) 1990-02-20 1990-02-20 Formation of insulated layer of electric equipment

Country Status (1)

Country Link
JP (1) JPH03241604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196217A (en) * 2000-01-17 2001-07-19 Sanshin:Kk Method of manufacturing dust core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196217A (en) * 2000-01-17 2001-07-19 Sanshin:Kk Method of manufacturing dust core
JP4527225B2 (en) * 2000-01-17 2010-08-18 ファインシンター三信株式会社 Manufacturing method of dust core

Similar Documents

Publication Publication Date Title
US4615778A (en) Process for electrodepositing mica on coil or bar connections and resulting products
US4723083A (en) Electrodeposited mica on coil bar connections and resulting products
JPS585903A (en) Heat dissipating insulator used for electric coil unit
JP2002206060A (en) Varnish composition, method for manufacturing the composition, coated winding wire and resultant coil
CN109251318A (en) A kind of oligomeric silsesquioxane modified solvent free organic siliconresin and preparation method thereof
JP2004285481A (en) Iron core having excellent insulation property of edge face and insulation film treatment method for edge face of iron core
JPH03241604A (en) Formation of insulated layer of electric equipment
US3213302A (en) Insulated metallic articles
CN116285470A (en) High-temperature reflective heat-insulating composite coating, preparation method thereof and application thereof in high-temperature-resistant motor
JPS61112552A (en) Manufacture of squirrel-cage rotor
JPH03243153A (en) Formation of insulation layer of electric apparatus
CN104616743B (en) High-hydrophobicity enameled wire for dry-type power transformer
JP3164949B2 (en) Self-fusing insulated wire and rotating electric machine using the same
JP4159308B2 (en) Rotating electric machine for vehicle and manufacturing method thereof
JP3382255B2 (en) Non-flammable coating paint for electronic parts, its production method and electronic parts coated with non-flammable paint
JP4740512B2 (en) Electrical steel sheet core with excellent end face insulation and method for insulating coating on the end face
JPH11341751A (en) Cage rotor and manufacturer thereof
JPS639326B2 (en)
WO2021229807A1 (en) Method for producing squirrel-cage rotor, and squirrel-cage rotor
JPS6070610A (en) Method of forming electric insulating film
JP3478164B2 (en) Cage rotor and method of manufacturing the same
JPS58212114A (en) Impregnation treatment of coil
CA1288726C (en) Process for electrodepositing mica on coil or bar connections and resulting products
JP2004055377A (en) Insulated wire and self-fusing insulated wire
JP2001026742A (en) Epoxy resin-based coating material composition