JP4527225B2 - Manufacturing method of dust core - Google Patents

Manufacturing method of dust core Download PDF

Info

Publication number
JP4527225B2
JP4527225B2 JP2000008234A JP2000008234A JP4527225B2 JP 4527225 B2 JP4527225 B2 JP 4527225B2 JP 2000008234 A JP2000008234 A JP 2000008234A JP 2000008234 A JP2000008234 A JP 2000008234A JP 4527225 B2 JP4527225 B2 JP 4527225B2
Authority
JP
Japan
Prior art keywords
powder
magnetic
core
sol
dust core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000008234A
Other languages
Japanese (ja)
Other versions
JP2001196217A (en
Inventor
一男 島田
Original Assignee
ファインシンター三信株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファインシンター三信株式会社 filed Critical ファインシンター三信株式会社
Priority to JP2000008234A priority Critical patent/JP4527225B2/en
Publication of JP2001196217A publication Critical patent/JP2001196217A/en
Application granted granted Critical
Publication of JP4527225B2 publication Critical patent/JP4527225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Description

【0001】
【発明の属する技術分野】
本発明は圧粉磁心の製造方法に関し、更に詳しくは、銅損が小さく、鉄損も小さく、また強度特性が優れている圧粉磁心の製造方法に関する。
【0002】
【従来の技術】
圧粉磁心は、対象部品が複雑形状であっても高い歩留まりで製造できるので、従来の磁心の主流であったケイ素鋼板を用いた積層型磁心の代替品として広く用いられている。
この圧粉磁心は、一般に、鉄粉,センダスト粉,パーマロイ粉のような軟磁性粉末の表面をシリコーン樹脂のようなバインダ成分で被覆し、ついでその粉末を金型に充填したのち圧縮成形して所定形状の成形体にし、その成形体に加熱処理を行ってバインダ成分を硬化して製造されている。
【0003】
例えば、特開平9−260126号公報には、バインダ成分としてシリカゾル、シリコーン樹脂、および有機チタンから成る絶縁性バインダを用い、この絶縁性バインダで粒子径が75〜200μmの鉄粉末の表面を被覆し、その後、この鉄粉末を一旦50〜250℃の温度で加熱して上記バインダ成分の硬化処理を行い、ついで、鉄粉末を例えばステアリン酸亜鉛のような潤滑剤と一緒に金型に充填したのち所定形状に成形し、最後に、その成形体を550〜650℃の温度で焼鈍する圧粉磁心の製造方法が開示されている。
【0004】
【発明が解決しようとする課題】
上記先行技術の場合、バインダ成分としてシリコーン樹脂のような熱硬化性樹脂を用い、また成形時にステアリン酸亜鉛のような金属有機化合物を用いているので、その成形体を実施例で例示されているような600℃という高温で焼鈍すると、バインダ成分など有機物の熱分解が起こり、そのときの発生ガスによって焼鈍後の磁心にワレや亀裂などの欠陥が生ずる虞もある。そのため、上記先行技術では、緩徐な加熱条件で、一旦、バインダ成分の硬化処理を行うことが必要とされている。
【0005】
また、一般には、微細粒の鉄粉末は流動度に劣るため、金型への高密度充填が困難になる。そのため、微細粒の鉄粉を用いて金型で成形体を成形し、更にそれを焼鈍して圧粉磁心にすると、その圧粉磁心の嵩密度は低くなり、ひいてはその強度はあまり高くならないという問題がある。そのため、上記先行技術においては、粒子径が75〜200μmという粗大な鉄粉末が使用されている。
【0006】
しかしながら、粒子径が大きい鉄粉末を用いた場合には、製造される圧粉磁心の形状も大きくならざるを得ない。そのため、上記先行技術では、最近強く要望されはじめている精密で、小型の圧粉磁心の製造には充分に対応できないという問題がある。
本発明は、先行技術における上記した問題を解決し、磁気特性はもち論のこと、銅損や鉄損が小さく、高密度・高強度であり、また粒径50μm以下の鉄粉を用いても製造することができるので、精密化、小型化の要望にも充分に応えることができる圧粉磁心と、それを先行技術に比べればより短縮化された工程で製造する方法の提供を目的とする。
【0007】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、粒径20〜100μmの磁性粉とシラン化合物及び重リン酸アルミニウムの重縮合体のゾルとを混合したのち、この混合物を温度80〜300℃で加熱して前記混合物の濾過が可能な状態で前記磁性粉の表面に前記ゾルの膜を形成し、この後の濾過により、前記膜を有する磁性粉の表面被覆粉体を濾取し、ついで、前記表面被覆粉体から得られた成形体を温度700℃以上で焼結することを特徴とする圧粉磁心の製造方法が提供される。
【0008】
【発明の実施の形態】
本発明においては、まず、磁性粉と後述する無機結合剤を混合する。ついで、その混合物を加熱する。
磁性粉としては、従来から圧粉磁心の原料として用いられているものであれば何であってもよく、例えば、鉄粉,フェライト粉,センダスト粉,パーマロイ粉,パーメンジュール粉のような軟磁性粉をあげることができる。とくに、鉄粉は、安価であると同時に高透磁率であるという点で好適である。
【0009】
この磁性粉の粒度は格別限定されるものではないが、微細な磁性を用いると小型の磁心を製造することができる。しかしながら、あまり微細な磁性粉を用いると、無機結合剤との混合時に凝集して団塊状になってしまったり、また成形時の成形圧を高めなければならなくなるなどの問題が生じてくる。このようなことから、磁性粉の粒度は20〜100μmに設定する。
【0010】
つぎに、無機結合剤としては、シリカ系ゾルを主体とするものが用いられる。例えば、エチルシリケートやブチルシリケートのようなシラン化合物と重リン酸アルミニウムの重縮合体がメタノールのような溶剤に分散しているゾルをあげることができる。
この混合過程で、上記した無機結合剤が磁性粉の表面を被覆して、電気絶縁性と結着性を備え、かつ潤滑性も備えているゾル膜が形成される。その結果、磁性粉の流動度が向上し、仮に当該磁性粉の粒度が20〜100μmという細かいものであっても、金型への高密度充填が可能となり、圧粉磁心は高強度になる。
【0011】
このときの加熱温度が低すぎると、上記したゾル膜の形成に多くの時間を要して生産性の低下を招き、また加熱温度を高くしすぎると、ゾル膜のゲル化が進んでゾル膜は高硬度化してその結着性が低下しはじめるので、製造した圧粉磁心の強度低下を招くようになる。このようなことから、本発明では加熱温度を80〜300℃に設定する。
【0012】
磁性粉と無機結合剤との混合割合は、磁性粉100重量部に対し無機結合剤10〜50重量部(固形分換算)に設定することが好ましい。
無機結合剤の混合割合が10重量部(固形分換算)より少ない場合は、磁性粉を被覆するゾル膜の形成量が少なくなるので、製造した圧粉磁心の強度が充分に高くならないとともに、磁性粉間の絶縁性も不充分となって鉄損が大きくなる。また混合割合が50重量部(固形分換算)より多くなると、鉄粉の流動度が劣化して金型への粉末の充填が非常に困難になる。無機結合剤の混合割合を上記した範囲に設定すると、磁性粉の表面を厚み1μm以下のゾル膜で均一に被覆することができ、そのことにより圧粉磁心の鉄損を小さくでき、励磁電流を小さくして銅損を小さくすることができ、同時に強度特性を高めることができる。
【0013】
上記した処理の終了後、全体を濾過して表面処理された磁性粉を濾取し、ついで、その磁性粉を、ただちに金型に充填し、そして所定形状に成形する。このとき、従来のような潤滑剤などの添加は不要である。
成形法としては、金型を用いた圧縮成形などを適用すればよい。この成形過程で、磁性粉は表面のゾル膜を介して相互に結着し、成形体が得られる。
【0014】
そして最後に、上記成形体を焼結する。このときの焼結は大気中または真空中で行えばよい。
この焼結過程で、磁性粉を相互に結着していたゾル膜はゲル化過程を経由して
【0015】
【化1】

Figure 0004527225
【0016】
磁性粉を相互に結合する。
このとき、焼結温度は700℃以上に設定することが好ましい。理由は明確ではないが、圧粉磁心の強度特性が向上するだけではなく、磁気特性の向上も認められるからである。
【0017】
【実施例】
粒度20〜75μmの鉄粉100重量部に対し、変性アルミニウムシリケートゾル(溶剤はメタノール、固形分50重量%)30重量部をミキサに投入し、約1時間混合した。ついで、温度100℃で加熱して約60分間混合したのち濾過して鉄粉を濾取した。
【0018】
得られた鉄粉を金型に充填し、成形圧5ton/cm2で圧縮成形を行い、外径130mm,内径100mm,厚み10mmの成形体にした。
ついで、この成形体を、真空中において600℃,700℃,800℃,1000℃の各温度で1時間の焼結を行って圧粉磁心を製造した。
得られた圧粉磁心につき、圧環強度、鉄損、磁束密度、最大透磁率を測定した。
【0019】
以上の結果を一括して表1に示した。
なお、比較のために、粒度150μmの鉄粉を用いて、実施例と同様の条件で圧粉磁心を製造し、その特性も調査し、その結果も表1に併記した。
【0020】
【表1】
Figure 0004527225
【0021】
表1から明らかなように、本発明方法で製造した圧粉磁心は、比較例に比べて強度特性が大幅に向上しており、また鉄損も大幅に小さくなっている。
【0022】
【発明の効果】
以上の説明で明らかなように、本発明の製造方法によれば、焼結温度を高くすると得られる圧粉磁心の強度特性が大幅に向上する。逆にいえば、低い焼結温度であっても、従来と同等の強度特性を有する圧粉磁心を製造することができ、熱エネルギー的に有利である。
【0023】
また、本発明で製造された圧粉磁心は鉄損も小さいので例えばヨークで使用可能な磁束密度を大きく設定でき、更には、焼結温度を高めて最大透磁率を大きくすることにより励磁電流を小さくすることができ、その結果、コイル電流を小さくして銅損を低減することが可能である。
また、本発明の場合、上記した磁気特性と相俟って、用いる磁性粉が20〜100μm以下と微細であっても圧粉磁心の製造が可能であるため、製品の精密化、小型化が可能になる。
【0024】
これらの効果は、いずれも、バインダとして従来のように熱硬化性樹脂などの有機物を用いることなく、シリカ系ゾルを主体とする無機結合剤を用い、そのゾル膜で磁性粉の表面を被覆したことによって得られるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a powder magnetic core, and more particularly to a method for manufacturing a powder magnetic core having a small copper loss, a small iron loss, and excellent strength characteristics.
[0002]
[Prior art]
Since the dust core can be manufactured with a high yield even if the target part has a complicated shape, it is widely used as an alternative to a laminated core using a silicon steel plate, which has been the mainstream of conventional magnetic cores.
This dust core is generally formed by coating the surface of a soft magnetic powder such as iron powder, sendust powder or permalloy powder with a binder component such as silicone resin, and then filling the powder into a mold, followed by compression molding. A molded body having a predetermined shape is manufactured, and the molded body is heated to cure the binder component.
[0003]
For example, in JP-A-9-260126, an insulating binder made of silica sol, silicone resin, and organic titanium is used as a binder component, and the surface of iron powder having a particle diameter of 75 to 200 μm is coated with this insulating binder. Thereafter, the iron powder is once heated at a temperature of 50 to 250 ° C. to cure the binder component, and then the iron powder is filled into a mold together with a lubricant such as zinc stearate. A method of manufacturing a dust core is disclosed in which a predetermined shape is formed, and finally, the formed body is annealed at a temperature of 550 to 650 ° C.
[0004]
[Problems to be solved by the invention]
In the case of the above prior art, a thermosetting resin such as a silicone resin is used as a binder component, and since a metal organic compound such as zinc stearate is used at the time of molding, the molded body is exemplified in the examples. When annealing at such a high temperature of 600 ° C., thermal decomposition of an organic substance such as a binder component occurs, and there is a possibility that defects such as cracks and cracks may occur in the magnetic core after annealing due to the gas generated at that time. For this reason, in the above prior art, it is necessary to temporarily cure the binder component under mild heating conditions.
[0005]
In general, fine iron powder is inferior in fluidity, making it difficult to fill the mold with high density. Therefore, if a compact is molded with a metal mold using fine iron powder and then annealed into a powder magnetic core, the bulk density of the powder magnetic core will be low, and the strength will not be so high. There's a problem. Therefore, in the above prior art, coarse iron powder having a particle size of 75 to 200 μm is used.
[0006]
However, when iron powder having a large particle diameter is used, the shape of the produced dust core must be increased. For this reason, the above prior art has a problem that it cannot sufficiently cope with the manufacture of a precise and small-sized powder magnetic core that has recently been strongly demanded.
The present invention solves the above-mentioned problems in the prior art, the magnetic properties are of course, copper loss and iron loss are small, high density and high strength, and iron powder having a particle size of 50 μm or less can be used. The purpose is to provide a dust core that can sufficiently meet the demand for precision and miniaturization, and a method for manufacturing it in a process that is shortened compared to the prior art. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a magnetic powder having a particle size of 20 to 100 μm and a sol of a polycondensate of a silane compound and aluminum phosphate are mixed, and then the mixture is heated to 80 to 300 ° C. The sol film is formed on the surface of the magnetic powder in a state in which the mixture can be filtered by heating with, and then the surface coating powder of the magnetic powder having the film is collected by filtration. , method for producing a dust core, which comprises sintering the resulting formed form obtained from the surface-coated powder at a temperature 700 ° C. or higher is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, first, magnetic powder and an inorganic binder described later are mixed. The mixture is then heated.
Any magnetic powder may be used as long as it is conventionally used as a raw material for a powder magnetic core. For example, soft magnetic materials such as iron powder, ferrite powder, sendust powder, permalloy powder, and permendur powder. You can give powder. In particular, iron powder is preferable in that it is inexpensive and has high permeability.
[0009]
The particle size of the magnetic powder is not particularly limited, but a small magnetic core can be manufactured by using fine magnetic powder . However, if too fine magnetic powder is used, problems such as agglomeration in the form of a nodule upon mixing with the inorganic binder and a need to increase the molding pressure during molding occur. For this reason, the particle size of the magnetic powder to set the 20 to 100 [mu] m.
[0010]
Next, as the inorganic binder, those mainly composed of silica-based sol are used. For example, a sol in which a polycondensate of a silane compound such as ethyl silicate or butyl silicate and aluminum biphosphate is dispersed in a solvent such as methanol can be given.
In this mixing process, the above-described inorganic binder covers the surface of the magnetic powder, and a sol film having electrical insulation and binding properties and lubricity is formed. As a result, the fluidity of the magnetic powder is improved, and even if the magnetic powder has a fine particle size of 20 to 100 μm, the mold can be filled with high density, and the powder magnetic core has high strength.
[0011]
If the heating temperature at this time is too low, it takes a lot of time to form the sol film, resulting in a decrease in productivity. If the heating temperature is too high, the sol film is gelled and the sol film is gelled. As the hardness increases, its binding property begins to decrease, leading to a decrease in strength of the produced dust core. For this reason, in the present invention to set the heating temperature to 80 to 300 ° C..
[0012]
The mixing ratio of the magnetic powder and the inorganic binder is preferably set to 10 to 50 parts by weight (in terms of solid content) of the inorganic binder with respect to 100 parts by weight of the magnetic powder.
When the mixing ratio of the inorganic binder is less than 10 parts by weight (in terms of solid content), the amount of the sol film that coats the magnetic powder is reduced, so that the strength of the produced dust core is not sufficiently high and the magnetic Insulation between the powders is insufficient and iron loss increases. On the other hand, if the mixing ratio is more than 50 parts by weight (in terms of solid content), the fluidity of the iron powder is deteriorated and it becomes very difficult to fill the mold with the powder. When the mixing ratio of the inorganic binder is set within the above range, the surface of the magnetic powder can be uniformly coated with a sol film having a thickness of 1 μm or less, which can reduce the iron loss of the dust core and reduce the excitation current. The copper loss can be reduced by reducing the size, and the strength characteristics can be enhanced at the same time.
[0013]
After completion of the above treatment, the whole is filtered to collect the surface-treated magnetic powder, and then the magnetic powder is immediately filled in a mold and formed into a predetermined shape. At this time, it is not necessary to add a conventional lubricant or the like.
As a molding method, compression molding using a mold may be applied. In this molding process, the magnetic powders are bonded to each other through the sol film on the surface, and a molded body is obtained.
[0014]
Finally, the molded body is sintered. Sintering at this time may be performed in air or in vacuum.
In this sintering process, the sol film in which the magnetic powders are bonded to each other passes through the gelation process.
[Chemical 1]
Figure 0004527225
[0016]
Bond magnetic powders to each other.
At this time, the sintering temperature is preferably set to 700 ° C. or higher. The reason is not clear, but not only the strength characteristics of the dust core are improved, but also the magnetic characteristics are improved.
[0017]
【Example】
30 parts by weight of modified aluminum silicate sol (solvent is methanol, solid content: 50% by weight) is put into a mixer with respect to 100 parts by weight of iron powder having a particle size of 20 to 75 μm, and mixed for about 1 hour. Next, the mixture was heated at a temperature of 100 ° C. and mixed for about 60 minutes, followed by filtration to collect iron powder.
[0018]
The obtained iron powder was filled in a mold and compression molded at a molding pressure of 5 ton / cm 2 to obtain a molded body having an outer diameter of 130 mm, an inner diameter of 100 mm, and a thickness of 10 mm.
Subsequently, this compact was sintered in vacuum at 600 ° C., 700 ° C., 800 ° C., and 1000 ° C. for 1 hour to produce a dust core.
About the obtained powder magnetic core, the crumbling strength, the iron loss, the magnetic flux density, and the maximum permeability were measured.
[0019]
The above results are collectively shown in Table 1.
For comparison, a powder magnetic core was manufactured under the same conditions as in the examples using iron powder having a particle size of 150 μm, the characteristics thereof were investigated, and the results are also shown in Table 1.
[0020]
[Table 1]
Figure 0004527225
[0021]
As is apparent from Table 1, the powder magnetic core produced by the method of the present invention has significantly improved strength characteristics and significantly reduced iron loss as compared with the comparative example.
[0022]
【The invention's effect】
As is apparent from the above description, according to the manufacturing method of the present invention, the strength characteristics of the dust core obtained when the sintering temperature is raised are greatly improved. In other words, even at a low sintering temperature, a dust core having strength characteristics equivalent to those of the conventional one can be manufactured, which is advantageous in terms of thermal energy.
[0023]
In addition, since the iron core produced by the present invention has low iron loss, the magnetic flux density usable in, for example, the yoke can be set large, and further, the excitation current can be increased by increasing the maximum magnetic permeability by increasing the sintering temperature. As a result, the coil current can be reduced and the copper loss can be reduced.
In addition, in the case of the present invention, in combination with the above-mentioned magnetic characteristics, even if the magnetic powder to be used is as fine as 20 to 100 μm or less, it is possible to manufacture a powder magnetic core. It becomes possible.
[0024]
Both of these effects are achieved by using an inorganic binder mainly composed of silica-based sol and coating the surface of the magnetic powder with the sol film without using an organic material such as a thermosetting resin as in the past as a binder. Can be obtained.

Claims (1)

粒径20〜100μmの磁性粉とシラン化合物及び重リン酸アルミニウムの重縮合体のゾルとを混合したのち、この混合物を温度80〜300℃で加熱して前記混合物の濾過が可能な状態で前記磁性粉の表面に前記ゾルの膜を形成し、この後の濾過により、前記膜を有する磁性粉の表面被覆粉体を濾取し、ついで、前記表面被覆粉体から得られた成形体を温度700℃以上で焼結することを特徴とする圧粉磁心の製造方法。After mixing a magnetic powder having a particle size of 20 to 100 μm and a sol of a polycondensate of a silane compound and aluminum polyphosphate, the mixture is heated at a temperature of 80 to 300 ° C. in a state where the mixture can be filtered. forming a film of the sol on the surface of the magnetic powder, by filtration after this, is filtered off surface coated powder of the magnetic powder having the film, then the temperature of the molded body obtained from the surface-coated powder A method for producing a powder magnetic core, comprising sintering at 700 ° C. or higher.
JP2000008234A 2000-01-17 2000-01-17 Manufacturing method of dust core Expired - Fee Related JP4527225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008234A JP4527225B2 (en) 2000-01-17 2000-01-17 Manufacturing method of dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000008234A JP4527225B2 (en) 2000-01-17 2000-01-17 Manufacturing method of dust core

Publications (2)

Publication Number Publication Date
JP2001196217A JP2001196217A (en) 2001-07-19
JP4527225B2 true JP4527225B2 (en) 2010-08-18

Family

ID=18536543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008234A Expired - Fee Related JP4527225B2 (en) 2000-01-17 2000-01-17 Manufacturing method of dust core

Country Status (1)

Country Link
JP (1) JP4527225B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803353B2 (en) * 2005-08-03 2011-10-26 戸田工業株式会社 SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL
JP6437200B2 (en) * 2014-01-17 2018-12-12 株式会社タムラ製作所 Low noise reactor, dust core and manufacturing method thereof
WO2021199525A1 (en) * 2020-04-02 2021-10-07 Jfeスチール株式会社 Iron-based soft magnetic powder for dust cores, dust core and method for producing same
CA3173101A1 (en) * 2020-04-02 2021-10-07 Jfe Steel Corporation Iron-based soft magnetic powder for dust cores, dust core and methods of producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328375B2 (en) * 1971-09-27 1978-08-14
JPS61222207A (en) * 1985-03-28 1986-10-02 Toshiba Corp Manufacture of iron core
JPH0294406A (en) * 1988-09-29 1990-04-05 Tdk Corp Dust core
JPH03241604A (en) * 1990-02-20 1991-10-28 Meidensha Corp Formation of insulated layer of electric equipment
JPH03243153A (en) * 1990-02-20 1991-10-30 Meidensha Corp Formation of insulation layer of electric apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302420A (en) * 1987-01-16 1988-12-09 Nissan Chem Ind Ltd Production of magnetic iron powder
JPH05258934A (en) * 1992-03-11 1993-10-08 Kenichi Suzuki Magnetic material and manufacturing method thereof
JPH0762501A (en) * 1993-06-16 1995-03-07 Nippon Steel Corp Grain-oriented silicon steel sheet having excellent magnetostrictive characteristic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328375B2 (en) * 1971-09-27 1978-08-14
JPS61222207A (en) * 1985-03-28 1986-10-02 Toshiba Corp Manufacture of iron core
JPH0294406A (en) * 1988-09-29 1990-04-05 Tdk Corp Dust core
JPH03241604A (en) * 1990-02-20 1991-10-28 Meidensha Corp Formation of insulated layer of electric equipment
JPH03243153A (en) * 1990-02-20 1991-10-30 Meidensha Corp Formation of insulation layer of electric apparatus

Also Published As

Publication number Publication date
JP2001196217A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
JP4044591B1 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
KR101881246B1 (en) Soft magnetic material powder and method for producing same, and magnetic core and method for producing same
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
JP5580725B2 (en) Manufacturing method of dust core and dust core obtained by the manufacturing method
TWI585787B (en) Powder core
JP5202382B2 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP2009228107A (en) Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core
JP5597512B2 (en) Manufacturing method of dust core and dust core obtained by this manufacturing method
WO2018179812A1 (en) Dust core
JP5976284B2 (en) Method for producing dust core and method for producing powder for magnetic core
WO2014157517A1 (en) Powder magnetic core for reactor
JP2012253317A (en) Manufacturing method of dust core, and dust core manufactured by the method
JP7128439B2 (en) Dust core and inductor element
JP6615850B2 (en) Composite magnetic material and core manufacturing method
JP2003318014A (en) Dust core powder, high-strength dust core, and method of manufacturing the same
JP4527225B2 (en) Manufacturing method of dust core
JPWO2018052108A1 (en) Magnetic core and coil parts
JP2011129857A (en) Method of manufacturing dust core and dust core obtained by the method
JP5159751B2 (en) Manufacturing method of dust core and dust core obtained by this manufacturing method
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2019073748A (en) Method for producing magnetic material, method for producing dust core, method for manufacturing coil component, dust core, and coil component
JPH06204021A (en) Composite magnetic material and its manufacture
JP2006089791A (en) Method for manufacturing composite soft-magnetic sintered material having high density, high strength, high specific resistance and high magnetic flux density
JP2010185126A (en) Composite soft magnetic material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4527225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees