JPH03238771A - Thin type cell - Google Patents

Thin type cell

Info

Publication number
JPH03238771A
JPH03238771A JP2035450A JP3545090A JPH03238771A JP H03238771 A JPH03238771 A JP H03238771A JP 2035450 A JP2035450 A JP 2035450A JP 3545090 A JP3545090 A JP 3545090A JP H03238771 A JPH03238771 A JP H03238771A
Authority
JP
Japan
Prior art keywords
active material
layer
material layer
electrode active
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2035450A
Other languages
Japanese (ja)
Inventor
Shinichiro Mizuno
水野 信一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2035450A priority Critical patent/JPH03238771A/en
Publication of JPH03238771A publication Critical patent/JPH03238771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To enable the formation of an arbitrary pattern of cell at a desired position by sequentially laminating a negative current collector layer, a negative active material layer, a high polymer solid electrolyte layer, a positive active material layer and a positive current collector layer on a support body. CONSTITUTION:All units constituting a cell are made into a state of ink and applied to various types of support bodies via a coating or printing process, thereby forming a five-layer structure having a negative current collector layer 2, a negative active material layer 3, a high polymer solid electrolyte layer 4, a positive active material layer 5 and a positive current collector layer 6 sequentially laminated. Preferably, the high polymer solid electrolyte is used for preventing liquid leakage, and by dis. persing the negative active material layer 3 and the positive active material layer 5 with the high polymer solid electrolyte, both positive and negative electrodes can be made into a state of ink. Also, the current collector layers 2 and 6 are made into a state of ink through the dispersion of a conductive agent into a high polymer compound. According to the aforesaid construction, it becomes possible to form a primary cell portion of arbitrary shape and capacity at a desired position.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は高分子固体電解質を利用し、印割法により任意
の場所に一次電池部位を形成せしめる事ができ2時計、
電卓、ICカード等の電源として用いる事ができる薄型
電池である。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention utilizes a solid polymer electrolyte to form a primary battery part in any desired location by the marking method.
This is a thin battery that can be used as a power source for calculators, IC cards, etc.

(従来の技術) 従来、−次電池の電解質には液体のものが用いられてき
た。
(Prior Art) Conventionally, a liquid electrolyte has been used for negative batteries.

このため電池外部への液漏れ、!種物質の溶出などの発
生の恐れがあるため、長期安定性に問題があった・ さらに、電解質が液体であるので、これを封入する構造
をとる必要があり、!池を薄くするには限界があった。
Because of this, fluid leaks to the outside of the battery! There was a problem with long-term stability due to the risk of elution of seed substances. Furthermore, since the electrolyte is a liquid, it is necessary to have a structure that encloses it! There were limits to how thin the pond could be.

また、高分子固体電解質を用いた電池において。Also, in batteries using solid polymer electrolytes.

その電池を構成する層として正極活物質を塗工にて形成
せしめる方法として、特開平1−130473号公報に
、或いは正極活物質に高分子固体電解質を用いる方法と
して、特開平1−169874号公報。
A method of forming a positive electrode active material by coating as a layer constituting the battery is described in JP-A-1-130473, and a method of using a solid polymer electrolyte as a positive-electrode active material is described in JP-A-1-169874. .

特開平1−169872号公報に提案されている。This is proposed in Japanese Patent Application Laid-Open No. 1-169872.

しかし、これらの方法は一部の層に高分子固体電解質を
利用、もしくは塗工を用いるのにすぎなく電池を構成す
る全ての層を、塗工あるいは印刷法で形成することによ
って得られる製造の安易性と、それに伴なう製造コスト
の低減等での利点が充分に発揮されるものでなかった。
However, these methods only use solid polymer electrolytes or coating for some of the layers; they cannot be manufactured by forming all the layers constituting the battery by coating or printing. The advantages of ease of use and associated reduction in manufacturing costs have not been fully demonstrated.

(発明が解決しようとする課題) 本発明は、高分子固体電解質を用いる事によって液漏れ
の問題を解決した。
(Problems to be Solved by the Invention) The present invention has solved the problem of liquid leakage by using a solid polymer electrolyte.

更に、この高分子固体電解質で負極活物質、正極活物質
を分散することで、負極、正極をそれぞれインキ化する
事ができる。
Further, by dispersing the negative electrode active material and the positive electrode active material in this polymer solid electrolyte, the negative electrode and the positive electrode can be made into ink, respectively.

また、集電層は導電剤を高分子化合物に分散させてイン
キ化することにより、電子伝導性のみを有する物が得ら
れる。
Furthermore, a current collecting layer having only electronic conductivity can be obtained by dispersing a conductive agent in a polymer compound and forming it into an ink.

その結果、支持体へのインキの塗布、乾燥、硬化を繰り
返す事によって、負極の集電層、負極活物質層、高分子
固体電解質層、正極活物質層、正極の集電層を順次積層
し、任意の場所に任意のパターンの電池を形成する事が
可能となる。
As a result, by repeating the application of ink to the support, drying, and curing, the negative electrode current collecting layer, negative electrode active material layer, polymer solid electrolyte layer, positive electrode active material layer, and positive electrode current collecting layer were sequentially laminated. , it becomes possible to form batteries in any pattern in any location.

また1本発明により得られる薄型電池は可とう性。Furthermore, the thin battery obtained by the present invention is flexible.

支持体との密着性にも優れているため、印刷後に成形を
加える事もできるので、適用できる分野は広く。
Because it has excellent adhesion to the support, it can be molded after printing, so it can be applied to a wide range of fields.

製造も容易で安価なものが得られる。It is easy to manufacture and can be obtained at low cost.

以上のように1本発明は、1に池を構成する層を全てイ
ンキ化することによって、塗工または印刷により電池を
供給するものである。
As described above, one aspect of the present invention is to provide a battery by coating or printing by converting all the layers constituting the pond into ink (1).

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明者は、鋭意検討した結果、!池を構成する単位を
全てインキ化する事によって、塗工または印刷により種
々の支持体上の任意の位置に、任意のパターンの電池を
形成せしめる事を可能としたものである。
(Means for Solving the Problem) As a result of intensive study, the inventor has found! By converting all the units constituting the cell into ink, it is possible to form a battery in any pattern on any position on various supports by coating or printing.

すなわち−2本発明は、支持体上に負極の集電層。That is, -2 The present invention provides a current collecting layer of a negative electrode on a support.

負極の活物質層、高分子同体電解質層、正極の活物質層
、正極の集電層を順次積層してなる5層構造の薄型−次
電池に関するものである。
The present invention relates to a thin secondary battery having a five-layer structure in which a negative electrode active material layer, a polymer electrolyte layer, a positive electrode active material layer, and a positive electrode current collecting layer are sequentially laminated.

以下1本発明の薄型−次電池について詳述する。Hereinafter, a thin secondary battery of the present invention will be described in detail.

本発明における支持体には、特に制限はなく、高分子フ
ィルム、紙などのシート状、または各種形状のプラスチ
ック成形品などの絶縁物、或いは金属。
The support in the present invention is not particularly limited, and may be a polymer film, a sheet such as paper, an insulating material such as a plastic molded product of various shapes, or a metal.

金属板、金属箔などの導電体やそれらの成形物が挙げら
れる。
Examples include conductors such as metal plates and metal foils, and molded products thereof.

正極および負極の集電層に用いられる導電剤としては、
カーボン粒子、アセチレンブラック粒子、グラファイト
粒子などが挙げられる。
As a conductive agent used in the current collecting layer of the positive electrode and negative electrode,
Examples include carbon particles, acetylene black particles, and graphite particles.

これらの粒子を分散させる為の高分子化合物には。For polymer compounds to disperse these particles.

特に制限はないが、具体的には、アクリル樹脂、塩ビ、
酢ビ共重合物、ポリカーボネート樹脂、ポリエステル樹
脂、アルキド樹脂、エポキシ樹脂、ポリアミド樹脂、ウ
レタン樹脂、フェノール樹脂、メラミン樹脂、ナイロン
樹脂、ポリオレフィン樹脂、セルロース系樹脂、ポリエ
チレン樹脂、ポリプロピレン樹脂、ポリビニルアルコー
ル樹脂、ABS樹脂、天然ゴム、スチロール樹脂、アセ
タール樹脂、テフロン樹脂、シリコン系樹脂などが挙げ
られる。
There are no particular restrictions, but specifically, acrylic resin, PVC,
Vinyl acetate copolymer, polycarbonate resin, polyester resin, alkyd resin, epoxy resin, polyamide resin, urethane resin, phenol resin, melamine resin, nylon resin, polyolefin resin, cellulose resin, polyethylene resin, polypropylene resin, polyvinyl alcohol resin, Examples include ABS resin, natural rubber, styrene resin, acetal resin, Teflon resin, and silicone resin.

また、これらの樹脂は、二種類以上併用する事ができる
Moreover, two or more types of these resins can be used in combination.

さらに、導電剤と分散に使用する高分子化合物の量的関
係には特に制限はなく、目的に応じて適当な範囲で種々
変更できる。
Furthermore, the quantitative relationship between the conductive agent and the polymer compound used for dispersion is not particularly limited, and can be varied within an appropriate range depending on the purpose.

高分子固体電解質層は、イオン伝導性高分子として。The polymer solid electrolyte layer is an ion-conducting polymer.

および(または) 4 CHz −CHz −0+−結合〔ただし、n≧1
〕を有する化合物と金属塩とからなるものが使用される
and (or) 4 CHz -CHz -0+- bond [however, n≧1
] and a metal salt are used.

好ましくは、前記の化合物が、アクリロイル変性ポリア
ルキレンオキシドと9分子内に二重結合を有し、且つ少
なくとも1つ以上の官能基をもつ有機化合物を共重合し
てなるポリマーを架橋させて得られる架橋型樹脂や、或
いは、アクリロイル変性ポリアルキレンオキシドと1分
子内に二重結合を有し5且つ少なくとも1つ以上の官能
基をもつ有機化合物を共重合してなるポリマーと架橋剤
を架橋させて得られる架橋型樹脂を用いる事によって、
室温下でもイオン伝導性の良好な高分子固体電解質が得
られる。
Preferably, the above-mentioned compound is obtained by crosslinking a polymer obtained by copolymerizing acryloyl-modified polyalkylene oxide and an organic compound having a double bond in 9 molecules and at least one functional group. A crosslinking agent is crosslinked with a crosslinked resin or a polymer obtained by copolymerizing an acryloyl-modified polyalkylene oxide with an organic compound having a double bond and at least one functional group in one molecule. By using the resulting crosslinked resin,
A solid polymer electrolyte with good ionic conductivity can be obtained even at room temperature.

具体的には、アクリロイル変性ポリアルキレンオキシド
としては1例えば、トリエチレングリコールモノアクリ
レート、テトラエチレングリコールモノアクリレート、
ポリエチレングリコールモノアクリレート メトキシテ
トラエチレングリコールモノアクリレート フェノキシ
テトラエチレングリコールモノアクリレート、メトキシ
ポリエチレングリコールモノアクリレート、トリエチレ
ングリコールモノメタクリレーロポリエチレングリコー
ルモノメタクリレート、メトキシポリエチレングリコー
ルモノメタクリレート、ポリエチレングリコールジアク
リレート、および、これらの化合物のエチレングリコー
ル構造をプロピレングリコール構造に、またエチレンオ
キサイドとプロピレンオキサイドとを任意の割合で共重
合構造にかえた化合物などが挙げられる。
Specifically, examples of acryloyl-modified polyalkylene oxides include triethylene glycol monoacrylate, tetraethylene glycol monoacrylate,
Polyethylene glycol monoacrylate Methoxytetraethylene glycol monoacrylate Phenoxytetraethylene glycol monoacrylate, methoxypolyethylene glycol monoacrylate, triethylene glycol monomethacrylate polyethylene glycol monomethacrylate, methoxypolyethylene glycol monomethacrylate, polyethylene glycol diacrylate, and these Examples include compounds in which the ethylene glycol structure of a compound is changed to a propylene glycol structure, or a compound in which an arbitrary ratio of ethylene oxide and propylene oxide is changed to a copolymer structure.

上記アクリロイル変性ポリアルキレンオキシドは。The above acryloyl-modified polyalkylene oxide is.

分子量には特に制限はなく、2種類以上併用しても良い
There is no particular restriction on the molecular weight, and two or more types may be used in combination.

また1分子内に二重結合を有し、且つ少なくとも1つ以
上の官能基をもつ有機化合物において、官能基としては
、カルボキシル基、水酸基、エポキシ基。
Further, in organic compounds having a double bond in one molecule and at least one functional group, examples of the functional group include a carboxyl group, a hydroxyl group, and an epoxy group.

イソシアネート基、アミノ基などであり、具体的には、
アクリル酸、メタクリル酸、2−ヒドロキシエチル(メ
タ)アクリレート、グリシジル(メタ)アクリレート、
2−イソシアナトエチル(メタ)アクリレート3アミノ
エチル(メタ)アクリレートなどのアクリルモノマーな
どや、或いは、(無水)マレイン酸、(無水)イタコン
酸、(無水)テトラヒドロフタル酸などが挙げられる。
These include isocyanate groups and amino groups, specifically,
Acrylic acid, methacrylic acid, 2-hydroxyethyl (meth)acrylate, glycidyl (meth)acrylate,
Examples include acrylic monomers such as 2-isocyanatoethyl (meth)acrylate and 3-aminoethyl (meth)acrylate, maleic acid (anhydride), itaconic acid (anhydride), and tetrahydrophthalic acid (anhydride).

上記の分子内に二重結合を有し、且つ少なくとも1つ以
上の官能基をもつ有機化合物は2種類以上併用すること
ができる。
Two or more of the above organic compounds having a double bond and at least one functional group in the molecule can be used in combination.

尚、アクリロイル変性ポリアルキレンオキシドと。In addition, with acryloyl modified polyalkylene oxide.

分子内に二重結合を有し、且つ少なくとも1つ以上の官
能基をもつ有機化合物を共重合させる為に、適当な溶剤
と開始剤を加えて加熱する事もできる。
In order to copolymerize an organic compound having a double bond in its molecule and at least one functional group, an appropriate solvent and initiator can be added and heated.

得られる共重合物の分子量には、特に制限はなく。There is no particular restriction on the molecular weight of the obtained copolymer.

アクリロイル変性ポリアルキレンオキシドと9分子内に
二重結合を有し、且つ少なくとも1つ以上の官能基をも
つ有機化合物を共重合させる比率にも、特に制限はない
が1通常は重量比で99.9 / 0.1〜10/90
.好ましくは99/l〜50150の範囲で共重合させ
るのが良い。
There is no particular restriction on the ratio of copolymerizing the acryloyl-modified polyalkylene oxide and the organic compound having 9 double bonds in the molecule and at least one functional group, but the weight ratio is usually 99. 9/0.1~10/90
.. It is preferable to copolymerize in a range of 99/l to 50,150/l.

アクリロイル変性ポリアルキレンオキシドが少なすぎる
とイオン伝導性が著しく低下し2分子内に二重結合を有
し、且つ少なくとも1つ以上の官能基をもつ有機化合物
が少なすぎると、充分な架橋反応がなされないためであ
る。
If the amount of acryloyl-modified polyalkylene oxide is too small, the ionic conductivity will drop significantly, and if the amount of the organic compound that has a double bond in two molecules and at least one functional group is too small, sufficient crosslinking reaction will not occur. This is so that it will not happen.

また、使用される架橋剤は、前述の共重合物中の官能基
と反応して架橋反応をおこすものが用いられる。
Further, the crosslinking agent used is one that reacts with the functional groups in the above-mentioned copolymer to cause a crosslinking reaction.

具体的には、ヘキサメチレンジイソシアネート。Specifically, hexamethylene diisocyanate.

2.4−トリレンジイソシアネートなどや、それらの誘
導体、エチレングリコール、ジエチレングリコール、グ
リセリンなどや、それらの誘導体、アクリル樹脂、エポ
キシ樹脂、フェノール樹脂、アミノ樹脂、ポリエステル
樹脂、セルロース系樹脂などが挙げられる。
Examples include 2,4-tolylene diisocyanate, derivatives thereof, ethylene glycol, diethylene glycol, glycerin, and derivatives thereof, acrylic resin, epoxy resin, phenol resin, amino resin, polyester resin, cellulose resin, and the like.

また、用いられる金属塩は、L t、Na、に、Rb、
Cs、Mg、Ba、Cu、AI、Zn、Ni。
In addition, the metal salts used include Lt, Na, Rb,
Cs, Mg, Ba, Cu, AI, Zn, Ni.

Ag、 およびHgの過塩素酸塩、チオシアン酸塩。Ag, and Hg perchlorate and thiocyanate.

はう酸塩、テトラフルオロはう酸塩、トリフルオロ酢酸
塩、トリフルオロメタンスルホン酸塩、ヘキサフルオロ
りん酸塩、およびハロゲン化物などが挙げられる。
Examples include salts of salt, tetrafluoroacetate, trifluoroacetate, trifluoromethanesulfonate, hexafluorophosphate, and halides.

好ましくは、LiC10,、Li5CN、NaCl0a
 、KClO4、Cu  (C104)z 、Mg  
(C10a )t 、Zn  (CIOa )z 、Z
n  (ClO2)よ ・6且gOなどの金属塩が挙げ
られる。
Preferably LiC10, Li5CN, NaCl0a
, KClO4, Cu(C104)z, Mg
(C10a)t, Zn (CIOa)z, Z
Examples include metal salts such as n (ClO2) and 6 and gO.

尚、その性能を阻害しない範囲で必要に応じて。In addition, as necessary within the range that does not impede its performance.

難燃剤、易燃化剤、防曇剤、劣化防止剤、粘着性付与剤
、界面活性剤、滑剤9発泡剤、消泡剤、レベリング剤、
シランカフプリング剤、硬化触媒、無微充填剤などの添
加剤を適宜加えることができる。
Flame retardants, flammability agents, antifogging agents, deterioration inhibitors, tackifiers, surfactants, lubricants 9 Foaming agents, antifoaming agents, leveling agents,
Additives such as a silane cuff pulling agent, a curing catalyst, and a non-fine filler can be added as appropriate.

負極活物質層に用いられる金属粒子としては、AI、L
i、Zn、Na、などが用いられる。
The metal particles used in the negative electrode active material layer include AI, L
i, Zn, Na, etc. are used.

好ましくは、Zn、Liが用いられる。Preferably, Zn and Li are used.

これらの金属粒子は1粒径が300μm以下、好ましく
は100μm以下、特に好ましくは50μm以下のもの
が用いられる。
These metal particles have a single particle size of 300 μm or less, preferably 100 μm or less, particularly preferably 50 μm or less.

これ以上粒径が大きいと均一な薄膜が得られない。If the particle size is larger than this, a uniform thin film cannot be obtained.

これらの金属微粒子を分散させるバインダーポリマーと
しては、イオン伝導性を有する。前述の高分子固体電解
質層に用いられている化合物を使用してなる。
The binder polymer in which these metal fine particles are dispersed has ion conductivity. It is made using the compound used in the polymer solid electrolyte layer mentioned above.

さらに金属粒子、前述の高分子固体電解質層に用いられ
ている化合物のそれぞれの量的関係には特に制限はなく
、目的に応じて適当な範囲で種々変更可能である。
Further, there is no particular restriction on the quantitative relationship between the metal particles and the compound used in the above-mentioned solid polymer electrolyte layer, and various changes can be made within an appropriate range depending on the purpose.

正極活物質層に用いられる正極活物質粒子としては9例
えば二酸化マンガン、三酸化モリブデン、五酸化バナジ
ウムなどの金属酸化物、又はチタン若しくはニオブの硫
化物などが用いることができる。
As the positive electrode active material particles used in the positive electrode active material layer, for example, metal oxides such as manganese dioxide, molybdenum trioxide, vanadium pentoxide, or sulfides of titanium or niobium can be used.

これらの正極活物質粒子は1粒径が300.cam以下
、好ましくは100μm以下、特に好ましくは50μm
以下のものが用いられる。
Each particle size of these positive electrode active material particles is 300. cam or less, preferably 100 μm or less, particularly preferably 50 μm
The following are used:

これ以上粒径が大きいと均一な薄膜が得られない。If the particle size is larger than this, a uniform thin film cannot be obtained.

これらの正極活物質粒子を分散させるバインダーポリマ
ーとしては、イオン伝導性を有する。前述の高分子固体
電解質層に用いられている化合物を使用してなる。
The binder polymer in which these positive electrode active material particles are dispersed has ion conductivity. It is made using the compound used in the polymer solid electrolyte layer mentioned above.

また、必要に応じて正極活物質層の電子伝導性を増す為
に導電剤として、前述のカーボン粒子、アセチレンブラ
ック粒子、グラファイト粒子などを添加しても良い。
Further, if necessary, the aforementioned carbon particles, acetylene black particles, graphite particles, etc. may be added as a conductive agent to increase the electronic conductivity of the positive electrode active material layer.

さらに正極活物質微粒子、前述の高分子固体電解質層に
用いられている組成物、導電剤のそれぞれの量的関係に
は特に制限はなく、目的に応じて適当な範囲で種々変更
可能である。
Further, there is no particular restriction on the quantitative relationship among the positive electrode active material fine particles, the composition used in the polymer solid electrolyte layer, and the conductive agent, and various changes can be made within an appropriate range depending on the purpose.

本発明における塗工法または印刷法には、特!こ制限さ
れるものでなく2例えばロールコート、スピンコードス
クリーン印刷などが挙げられ、任意の方法を用いて目的
とする支持体上に電池部位を形成させることができる。
The coating method or printing method in the present invention has special features! The battery portion can be formed on the desired support using any method, including but not limited to roll coating, spin code screen printing, etc.

(実施例) 以下、実施例により本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

実施例1 第1図に示すように支持体lとしてアルミニウム@(厚
さ0.25mm)を使用し、その上に負極の集電層2を
形成させた。
Example 1 As shown in FIG. 1, aluminum @ (thickness: 0.25 mm) was used as the support 1, and the current collecting layer 2 of the negative electrode was formed thereon.

負極の集電層は次のように作成した。The current collecting layer of the negative electrode was created as follows.

導電性カーボンブラック(パルカンXC−72キヤボフ
ト社製品)10g、ポリウレタン樹脂(N−2304日
本ポリウレタン工業株式会社製品)12g。
10 g of conductive carbon black (Palcan XC-72, product of Kyaboft Co., Ltd.), 12 g of polyurethane resin (N-2304, product of Nippon Polyurethane Industries Co., Ltd.).

硝化綿(セルツバHIG旭化成社製品)8g、)ルエン
5g、を混合し、ボールミルによって24時間分散混合
し、負極の集電層用インキを調整した。この負極の集電
層用インキをロールコータ−により。
8 g of nitrified cotton (Seltsuba HIG, product of Asahi Kasei Co., Ltd.) and 5 g of luene were mixed and dispersed for 24 hours using a ball mill to prepare an ink for the current collecting layer of the negative electrode. Apply this negative electrode current collecting layer ink using a roll coater.

乾燥膜厚が5μmになるように塗布し、100℃で5分
間加熱する事で溶媒を除去し、負極の集電層を形成せし
めた。
The coating was applied to a dry film thickness of 5 μm, and the solvent was removed by heating at 100° C. for 5 minutes to form a negative electrode current collecting layer.

さらに負極の集電層2の上に負極活物質層3を形成させ
た。
Further, a negative electrode active material layer 3 was formed on the current collecting layer 2 of the negative electrode.

負極活物質層は次のように作成した。The negative electrode active material layer was created as follows.

亜鉛末leg、イオン伝導性の高分子として平均分子量
3000のポリエチレングリコール5g、過塩素酸リチ
ウムのメチルエチルケトン溶液(濃度0゜2 g/c 
c) 1.0 c c、メチルエチルケトン5gを混合
してボールミルによって24時間分散混合し。
Zinc powder leg, 5 g of polyethylene glycol with an average molecular weight of 3000 as an ion-conductive polymer, and a methyl ethyl ketone solution of lithium perchlorate (concentration 0゜2 g/c)
c) 1.0 cc and 5 g of methyl ethyl ketone were mixed and dispersed for 24 hours using a ball mill.

負極活物質層用インキを調整した。An ink for the negative electrode active material layer was prepared.

この負極活物質層用インキをロールコータ−により、乾
燥膜厚が15μmになるように塗布し、150℃で5分
間加熱する事で溶媒を除去し、負極活物質層を形成せし
めた。
This negative electrode active material layer ink was applied using a roll coater so that the dry film thickness was 15 μm, and the solvent was removed by heating at 150° C. for 5 minutes to form a negative electrode active material layer.

さらに、負極活物質層3の上に高分子固体電解質層4を
形成させた。
Furthermore, a solid polymer electrolyte layer 4 was formed on the negative electrode active material layer 3.

高分子固体電解質層は次のように作成する。The polymer solid electrolyte layer is created as follows.

平均分子量3000のポリエチレングリコール10g、
過塩素酸リチウムのメチルエチルケトン溶液(濃度0.
2g/cc)1.0cc、メチルエチルケトン5gを混
合して高分子固体電解質層用インキを調整した。この高
分子固体電解質層用インキをロールコータ−により、乾
燥膜厚が10μmになるように塗布し、150℃で5分
間加熱する事で溶媒を除去し、負極活物質層を形成せし
めた。
10 g of polyethylene glycol with an average molecular weight of 3000,
Methyl ethyl ketone solution of lithium perchlorate (concentration 0.
2 g/cc) and 5 g of methyl ethyl ketone were mixed to prepare an ink for a polymer solid electrolyte layer. This polymer solid electrolyte layer ink was applied using a roll coater so that the dry film thickness was 10 μm, and the solvent was removed by heating at 150° C. for 5 minutes to form a negative electrode active material layer.

さらに高分子固体電解質層4の上に正極活物質層5を形
成させた。
Further, a positive electrode active material layer 5 was formed on the polymer solid electrolyte layer 4.

正極活物質層は次のように作成する。The positive electrode active material layer is created as follows.

二酸化マンガン30g、イオン伝導性の高分子として分
子量3000のポリエチレングリコール5g。
30 g of manganese dioxide, 5 g of polyethylene glycol with a molecular weight of 3000 as an ion-conducting polymer.

過塩素酸リチウムのメチルエチルケトン溶液(濃度0.
2 g/ c c) 1.0 c c、メチルエチルケ
トン5gを混合し、ボールミルによって24時間分散混
合し。
Methyl ethyl ketone solution of lithium perchlorate (concentration 0.
2 g/cc) 1.0 cc and 5 g of methyl ethyl ketone were mixed and dispersed for 24 hours using a ball mill.

正極活物質層用インキを調整した。An ink for the positive electrode active material layer was prepared.

この正極活物質層用インキをロールコータ−により、乾
燥膜厚が25μmになるように塗布し、150℃で5分
間加熱する事で溶媒を除去し、正極活物質層を形成せし
めた。
This positive electrode active material layer ink was applied using a roll coater so that the dry film thickness was 25 μm, and the solvent was removed by heating at 150° C. for 5 minutes to form a positive electrode active material layer.

さらに正極活物質層5の上に正極の集電層6を形成させ
た。
Further, a positive electrode current collection layer 6 was formed on the positive electrode active material layer 5.

この正極の集電層は、前述の負極の集電層2と同じ組成
のインキを用いて、負極の集電層と同じ条件で形成せし
めた。
This current collecting layer of the positive electrode was formed using an ink having the same composition as the current collecting layer 2 of the negative electrode described above and under the same conditions as the current collecting layer of the negative electrode.

以上の如くアルミニウム支持体上にそれぞれのインキを
積層して5層構造の電池を作った。
As described above, each ink was laminated on an aluminum support to produce a battery with a five-layer structure.

この電池(5cmx5cmの形状)について負荷抵抗1
00にΩをつなぎ20℃にて定抵抗放電試験を行ったと
ころ、電池容量は2mAhであった。
Load resistance 1 for this battery (5cm x 5cm shape)
When a constant resistance discharge test was conducted at 20° C. by connecting Ω to 00, the battery capacity was 2 mAh.

実施例2 実施例1において、負極活物質層、高分子固体電解質層
及び正極活物質層に使用されているイオン伝導性高分子
の平均分子量300oのポリエチレングリコールにかえ
て1次のようなイオン伝導性高分子の化合物を用いた。
Example 2 In Example 1, instead of polyethylene glycol having an average molecular weight of 300o as the ion-conducting polymer used in the negative electrode active material layer, solid polymer electrolyte layer, and positive electrode active material layer, a primary ion conductor was used. A polymeric compound was used.

メトキシポリエチレングリコールモノアクリレート(新
中村化学AM−90G)を60g、メタクリル酸グリシ
ジル4g、メタクリル酸3g、過酸化ヘンジイル4g。
60 g of methoxypolyethylene glycol monoacrylate (Shin Nakamura Chemical AM-90G), 4 g of glycidyl methacrylate, 3 g of methacrylic acid, and 4 g of hendiyl peroxide.

メチルエチルケトン31gの混合溶液を80℃に加熱し
た40gのメチルエチルケトン中に撹拌しながら4時間
かけて滴下した。
A mixed solution of 31 g of methyl ethyl ketone was added dropwise to 40 g of methyl ethyl ketone heated to 80° C. over 4 hours with stirring.

その後、2時間撹拌した後2合成終了とした。添加量も
、平均分子量3000のポリエチレングリコールが5g
に対して、上記のように合成した組成物をLogに変え
る。その他は、実施例1と同様にそれぞれのインキを支
持体上に積層して5層構造の電池をつくり、放電試験を
行ったところ電池容量は8mAhであった。
Thereafter, after stirring for 2 hours, the second synthesis was completed. The amount added is 5g of polyethylene glycol with an average molecular weight of 3000.
, the composition synthesized as above is changed to Log. Other than that, each ink was laminated on a support in the same manner as in Example 1 to make a battery with a five-layer structure, and when a discharge test was conducted, the battery capacity was 8 mAh.

実施例3 実施例1において、負極活物質層、高分子固体電解質層
及び正極活物質層に使用されているイオン伝導性高分子
の平均分子量3000のポリエチレングリコールに変え
て2次のようなイオン伝導性高分子の化合物を用いた。
Example 3 In Example 1, the ion conductive polymer used in the negative electrode active material layer, polymer solid electrolyte layer, and positive electrode active material layer was replaced with polyethylene glycol having an average molecular weight of 3000, and a secondary ion conductor was used instead. A polymeric compound was used.

メトキシポリエチレングリコールモノアクリレート(新
中村化学AM−90G)を80g、アクリル酸2−ヒド
ロキシエチル5g、過酸化ヘンジイル4g。メチルエチ
ルケトン44gの混合溶液を80℃に加熱した45gの
メチルエチルケトン中に撹拌しながら4時間かけて滴下
した。
80 g of methoxypolyethylene glycol monoacrylate (Shin Nakamura Chemical AM-90G), 5 g of 2-hydroxyethyl acrylate, and 4 g of hendiyl peroxide. A mixed solution of 44 g of methyl ethyl ketone was added dropwise to 45 g of methyl ethyl ketone heated to 80° C. over 4 hours with stirring.

その後、2時間撹拌した後、室温まで冷却し、ヘキサメ
トキシメチロールメラミン15gを添加し。
After stirring for 2 hours, the mixture was cooled to room temperature and 15 g of hexamethoxymethylolmelamine was added.

さらに30分間撹拌した後1合成終了とした。After stirring for an additional 30 minutes, 1 synthesis was completed.

添加量も、平均分子量3000のポリエチレングリコー
ルが5gに対して、上記のように合成した化合物を10
gに変えた。
The amount added is 10 g of the compound synthesized as above for 5 g of polyethylene glycol with an average molecular weight of 3000.
changed to g.

その他は、実施例1と同様にそれぞれのインキを支持体
上に積層して5層構造の電池をつくり、放電試験を行っ
たところ電池容量は10mAhであった。
Otherwise, in the same manner as in Example 1, each ink was laminated on a support to make a battery with a five-layer structure, and a discharge test was conducted, and the battery capacity was 10 mAh.

実施例4 実施例3において、負極活物質層、高分子固体電解質層
及び正極活物質層に使用されている過塩素酸リチウムの
メチルエチルケトン溶液(濃度0.2g/c()にかえ
て、過塩素酸亜鉛6水和物のメチルエチルケトン溶液(
濃度0.2 g / c c )を用いた。
Example 4 In Example 3, a methyl ethyl ketone solution of lithium perchlorate (concentration 0.2 g/c () used in the negative electrode active material layer, solid polymer electrolyte layer, and positive electrode active material layer) was replaced with perchlorine. Methyl ethyl ketone solution of zinc acid hexahydrate (
A concentration of 0.2 g/cc) was used.

その他は、実施例3と同様にそれぞれのインキを支持体
上に積層して5層構造の電池をつくり、放電試験を行っ
たところ電池容量は5mAhであった。
Otherwise, in the same manner as in Example 3, each ink was laminated on a support to make a battery with a five-layer structure, and a discharge test was performed, and the battery capacity was 5 mAh.

実施例5 支持体1として25μmのポリエステルフィルムを用い
、実施例1における負極の集電層用インキを。
Example 5 A 25 μm polyester film was used as the support 1, and the ink for the current collecting layer of the negative electrode in Example 1 was used.

250メツシユのポリテトラフルオロエチレン製スクリ
ーンを用いて、乾燥塗膜が5μmになるように。
Using a 250 mesh polytetrafluoroethylene screen, the dry coating film was 5 μm thick.

スクリーン印刷し、ioo℃で5分間加熱することで溶
媒を除去し、負極の集電層を形成せしめた。
The solvent was removed by screen printing and heating at IOOO° C. for 5 minutes to form a negative electrode current collecting layer.

次いで、負極の集電層上に実施例1における負極活物質
層用インキを、100メツシエのポリテトラフルオロエ
チレン製スクリーンを用いて、乾燥塗膜が15μmにな
るように、スクリーン印刷し、150℃で5分間加熱す
ることで溶媒を除去し、負極活物質層を形成せしめた。
Next, the ink for the negative electrode active material layer in Example 1 was screen printed on the current collecting layer of the negative electrode using a 100 Messier polytetrafluoroethylene screen so that the dry coating thickness was 15 μm, and the ink was heated at 150°C. The solvent was removed by heating for 5 minutes to form a negative electrode active material layer.

次いで、負極活物質層上に実施例1における高分子同体
電解質層用インキを、200メツシユのボリテトラフル
オロエチレン製スクリーンを用いて、乾燥塗膜が108
mになるように、スクリーン印刷し。
Next, the ink for the polymer isoelectrolyte layer in Example 1 was applied onto the negative electrode active material layer using a 200-mesh polytetrafluoroethylene screen until the dry coating film was 108.
Screen print it so that it looks like m.

150℃で5分間加熱することで溶媒を除去し、高分子
固体電解質層を形成せしめた。
The solvent was removed by heating at 150° C. for 5 minutes to form a solid polymer electrolyte layer.

次いで、高分子固体電解質層上に実施例1における正極
活物質層用インキを、80メソシユのポリテトラフルオ
ロエチレン製スクリーンを用いて、乾燥塗膜が25μm
になるように、スクリーン印刷し。
Next, the ink for the positive electrode active material layer in Example 1 was applied onto the polymer solid electrolyte layer using an 80 mesoyu polytetrafluoroethylene screen until the dry coating film had a thickness of 25 μm.
Screen print it so it looks like this.

150℃で5分間加熱することで溶媒を除去し、正極活
物質層を形成せしめた。
The solvent was removed by heating at 150° C. for 5 minutes to form a positive electrode active material layer.

次いで、正極活物質層上に実施例Iにおける正極の集電
層用インキにて、上記の負極の集電層と同様にして正極
の集電層を形成せしめた。
Next, a positive electrode current collecting layer was formed on the positive electrode active material layer using the positive electrode current collecting layer ink of Example I in the same manner as the negative electrode current collecting layer.

以上のごとく、実施例1に用いられた各インキはそのま
までも、スクリーン印刷が可能であり、その他の条件は
実施例1と同様にして、支持体上に5層構造の電池をつ
くり、放電試験を行ったところ電池容量は1.8 m 
Aであった。
As described above, each ink used in Example 1 can be used as is for screen printing.Other conditions were the same as in Example 1, a battery with a five-layer structure was made on a support, and a discharge test was conducted. When I did this, the battery capacity was 1.8 m.
It was A.

〔発明の効果〕〔Effect of the invention〕

本発明の薄型電池は、高分子固体電解質を利用する事に
よって、電池を構成する単位を全てインキ化するので、
塗工または印刷により、任意の場所に任意の形状で、任
意の電池容量の一次電池部位を形成できる。
The thin battery of the present invention utilizes a solid polymer electrolyte, and all the units that make up the battery are made into ink.
By coating or printing, a primary battery part can be formed in any location, in any shape, and with any battery capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は薄型電池の断面図を示す。 1は支持体、2は負極の集電層、3は負極活物質層。 4は高分子固体電解質層、5は正極活物質層、6は正極
の集電層。
FIG. 1 shows a cross-sectional view of a thin battery. 1 is a support, 2 is a negative electrode current collection layer, and 3 is a negative electrode active material layer. 4 is a polymer solid electrolyte layer, 5 is a positive electrode active material layer, and 6 is a current collecting layer of the positive electrode.

Claims (1)

【特許請求の範囲】 1、支持体上に負極の集電層、負極活物質層、高分子固
体電解質層、正極活物質層、正極の集電層を順次塗工ま
たは印刷してなることを特徴とする薄型電池。 2、正極及び負極の集電層が、導電剤を高分子化合物に
分散したものからなることを特徴とする請求項1記載の
薄型電池。 3、高分子個体電解質層は、 ▲数式、化学式、表等があります▼結合〔ただし、m≧
1〕 および(または) ▲数式、化学式、表等があります▼結合〔ただし、n≧
1〕 を有する化合物と金属塩とからなることを特徴とする請
求項1記載の薄型一次電池。 4、高分子固体電解質が、 (1)アクリロイル変性ポリアルキレンオキシドと、分
子内に二重結合を有し、且つ少なくとも1つ以上の官能
基をもつ有機化合物を共重合してなるポリマーを架橋さ
せて得られる架橋型樹脂、 (2)或いは、アクリロイル変性ポリアルキレンオキシ
ドと、分子内に二重結合を有し、且つ少なくとも1つ以
上の官能基をもつ有機化合物を共重合してなるポリマー
と架橋剤を架橋させて得られる架橋型樹脂であることを
特徴とする請求項3記載の薄型一次電池。 5、負極活物質層は、金属粒子を高分子固体電解質に分
散したものからなることを特徴とする請求項1記載の薄
型電池。 6、正極活物質層は、正極活物質粒子を高分子固体電解
質に分散したものからなることを特徴とする請求項1記
載の薄型電池。
[Claims] 1. A negative electrode current collecting layer, a negative electrode active material layer, a polymer solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collecting layer are sequentially coated or printed on a support. Features a thin battery. 2. The thin battery according to claim 1, wherein the current collecting layers of the positive electrode and the negative electrode are made of a polymer compound in which a conductive agent is dispersed. 3. Polymer solid electrolyte layer has the following: ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Bonds [However, m≧
1] and (or) ▲There are mathematical formulas, chemical formulas, tables, etc. ▼Bond [However, n≧
1] The thin primary battery according to claim 1, comprising a compound having the following and a metal salt. 4. The solid polymer electrolyte is made by crosslinking a polymer obtained by copolymerizing (1) acryloyl-modified polyalkylene oxide and an organic compound having a double bond in the molecule and at least one functional group. (2) Alternatively, a crosslinked resin obtained by copolymerizing an acryloyl-modified polyalkylene oxide and an organic compound having a double bond in the molecule and at least one functional group; 4. The thin primary battery according to claim 3, wherein the thin primary battery is a crosslinked resin obtained by crosslinking an agent. 5. The thin battery according to claim 1, wherein the negative electrode active material layer is made of metal particles dispersed in a solid polymer electrolyte. 6. The thin battery according to claim 1, wherein the positive electrode active material layer is made of positive electrode active material particles dispersed in a solid polymer electrolyte.
JP2035450A 1990-02-16 1990-02-16 Thin type cell Pending JPH03238771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2035450A JPH03238771A (en) 1990-02-16 1990-02-16 Thin type cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2035450A JPH03238771A (en) 1990-02-16 1990-02-16 Thin type cell

Publications (1)

Publication Number Publication Date
JPH03238771A true JPH03238771A (en) 1991-10-24

Family

ID=12442152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2035450A Pending JPH03238771A (en) 1990-02-16 1990-02-16 Thin type cell

Country Status (1)

Country Link
JP (1) JPH03238771A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434871A (en) * 1990-05-29 1992-02-05 Yuasa Corp Manufacture of battery
EP0576686A4 (en) * 1992-01-21 1995-04-26 Dai Ichi Kogyo Seiyaku Co Ltd Cell.
WO1999030376A2 (en) * 1997-12-05 1999-06-17 Mi Rae Battery Co., Ltd. Battery-included pcb
CN103181016A (en) * 2010-09-13 2013-06-26 加利福尼亚大学董事会 Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US10530011B1 (en) 2014-07-21 2020-01-07 Imprint Energy, Inc. Electrochemical cells and metal salt-based electrolytes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914264A (en) * 1982-06-30 1984-01-25 ハイドロ−ケベツク Lithium battery flexible composite anode using nonaqueous medium
JPH01130479A (en) * 1987-11-13 1989-05-23 Kimoto & Co Ltd Thin type thermo electromotive secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914264A (en) * 1982-06-30 1984-01-25 ハイドロ−ケベツク Lithium battery flexible composite anode using nonaqueous medium
JPH01130479A (en) * 1987-11-13 1989-05-23 Kimoto & Co Ltd Thin type thermo electromotive secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434871A (en) * 1990-05-29 1992-02-05 Yuasa Corp Manufacture of battery
EP0576686A4 (en) * 1992-01-21 1995-04-26 Dai Ichi Kogyo Seiyaku Co Ltd Cell.
WO1999030376A2 (en) * 1997-12-05 1999-06-17 Mi Rae Battery Co., Ltd. Battery-included pcb
WO1999030376A3 (en) * 1997-12-05 1999-12-09 Mi Rae Battery Co Ltd Battery-included pcb
JP2013541143A (en) * 2010-09-13 2013-11-07 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Ionic gel electrolytes, energy storage devices, and methods for their production
KR20130115246A (en) * 2010-09-13 2013-10-21 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
CN103181016A (en) * 2010-09-13 2013-06-26 加利福尼亚大学董事会 Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US9368283B2 (en) 2010-09-13 2016-06-14 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US9742030B2 (en) 2010-09-13 2017-08-22 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
JP2018049833A (en) * 2010-09-13 2018-03-29 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニアThe Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US10297862B2 (en) 2010-09-13 2019-05-21 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US10826119B2 (en) 2010-09-13 2020-11-03 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US11264643B2 (en) 2010-09-13 2022-03-01 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US10530011B1 (en) 2014-07-21 2020-01-07 Imprint Energy, Inc. Electrochemical cells and metal salt-based electrolytes

Similar Documents

Publication Publication Date Title
CA1339619C (en) Radiation cured solid electrolytes and electrochemical devices employing the same
JP3046323B2 (en) Solid-state layered electrochemical cell
JP3257516B2 (en) Laminated electrolyte and battery using the same
CN100364166C (en) Paste-like masses for electrochemical components, layers produced therefrom and electrochemial components
US5604660A (en) Electrochemical cell having solid polymer electrolyte and asymmetric inorganic electrodes
US5011751A (en) Electrochemical device
US20100036060A1 (en) Electrolyte compositions
JP3429305B2 (en) Ion conductive polymer material
KR100816278B1 (en) Process for producing coating liquid for electrode formation, electrode and electrochemical element
CA2039836A1 (en) Preparation of radiation cured solid electrolytes and electrochemical devices employing the same
JP2001052747A (en) Lithium secondary battery
CA2370818C (en) Pasty materials with nanocrystalline materials for electrochemical components and layers and electrochemical components produced with said materials
Kuwabata et al. Rechargeable lithium battery cells fabricated using poly (methyl methacrylate) gel electrolyte and composite of V 2 O 5 and polypyrrole
JP2003092138A (en) Polymer solid electrolyte and polymer solid electrolyte lithium battery
JPH03238771A (en) Thin type cell
JP3022317B2 (en) Polymer solid electrolyte
CN112397718B (en) Self-healing silicon-based negative electrode material of lithium ion battery and preparation method thereof
JP3062203B2 (en) Electrochemical element
JPH04267055A (en) Solid electrode composition
JPH08298137A (en) Secondary battery and electrode used in this secondary battery
JPH076787A (en) Battery
JPH07302586A (en) Battery electrode and its manufacture
JPH01169873A (en) Cell
JP3038945B2 (en) Lithium secondary battery
JPH1036657A (en) Polymerizable monomer, solid polyelectrolyte comprising the same, and its use