JPH03238158A - Method for arc-melting and casting nb-ti series alloy - Google Patents

Method for arc-melting and casting nb-ti series alloy

Info

Publication number
JPH03238158A
JPH03238158A JP3553490A JP3553490A JPH03238158A JP H03238158 A JPH03238158 A JP H03238158A JP 3553490 A JP3553490 A JP 3553490A JP 3553490 A JP3553490 A JP 3553490A JP H03238158 A JPH03238158 A JP H03238158A
Authority
JP
Japan
Prior art keywords
mold
alloy
solidified
side wall
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3553490A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Otaki
大滝 光弘
Akira Hideno
秀野 晃
Chikahiro Suzai
京太 須齋
Takuya Suzuki
卓哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3553490A priority Critical patent/JPH03238158A/en
Publication of JPH03238158A publication Critical patent/JPH03238158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To product a high quality cast ingot without any shrinkage hole and segregation by successively widening the inner diameter at the side wall of a water cooled steel-made mold upward in arc-melting and casting method for Ni-Ti series alloy. CONSTITUTION:The Nb-Ti series alloy bar material 6 is used as the anode and the water cooled steel-made mold 7 is used as the cathode and arc discharge is generated between the both and the alloy bar material 6 is continuously melted and this molten metal is dropped and cast into the water cooled steel- made mold 7. Then, by successively widening the inner diameter R at the side wall 1 in the water cooled steel-made mold 2 upward, air gap between the solidified body and the mold 2, developed by solidified shrinkage and heat shrinkage of the solidified body is narrowed while shifting the solidified body downward in the mold 2 by gravity and heat radiation to a mold from the solidified body is improved. Therefore, the solidified velocity is fast and the high quality cast ingot without defect, such as segregation, is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高品質の鋳塊を製出し得るN b−Ti系合
金のアーク溶解鋳造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for arc melting and casting Nb-Ti alloys that can produce high-quality ingots.

〔従来の技術〕[Conventional technology]

アーク溶解鋳造法は高融点金属の溶解鋳造に適した方法
であり、その構成は第4図に例示した如きものである。
The arc melting casting method is a method suitable for melting and casting high melting point metals, and its configuration is as illustrated in FIG.

即ち被溶解金属材料6を陽極となし、水冷銅鋳型7を陰
極となして、双方間にアーク放電を生ぜしめて上記金属
材料6を連続的に溶融し、この溶融金属を上記水冷銅鋳
型7内に落下させて鋳造するものである。
That is, using the metal material 6 to be melted as an anode and the water-cooled copper mold 7 as a cathode, arc discharge is generated between the two to continuously melt the metal material 6, and the molten metal is transferred into the water-cooled copper mold 7. It is cast by dropping it onto the ground.

而して上記水冷銅鋳型の形状は、通常の鋳型と同様に側
壁1内面が垂直に形成されたもので、この水冷銅鋳型7
内に落下した溶融金属は鋳型底部2から順次上方に向け
て凝固し、凝固時の固液界面形状つまりズンブは、くぼ
みの浅い皿状の形状を呈し、従って得られる鋳塊は引は
巣や偏析等の欠陥のない高品質のものである。
The shape of the water-cooled copper mold is such that the inner surface of the side wall 1 is vertical, similar to a normal mold.
The molten metal that has fallen into the mold solidifies sequentially upward from the mold bottom 2, and the solid-liquid interface shape during solidification, or zumbu, takes on a shallow dish-like shape, so the resulting ingot is free from cavities and cavities. It is of high quality and has no defects such as segregation.

しかしながら被溶解鋳造金属材料6がNb−Ti系合金
のように熱電導率が極端に低い材料の場合は、鋳型側壁
1や底部2の面上に形成した凝固層は、なかなか成長せ
ず、従ってズンブは深いすり林状に形成され、その結果
鋳塊内部には収縮孔や偏析等の欠陥が発生し、これらの
欠陥は、NbTi系合金等のように超電導線としてミク
ロンオーダーの超極細線にまで加工して用いられる金属
材料では、断線の原因となり製造歩留りを著しく低下さ
せるという問題があった。
However, if the cast metal material 6 to be melted is a material with extremely low thermal conductivity, such as a Nb-Ti alloy, the solidified layer formed on the mold side walls 1 and bottom 2 does not grow easily, and therefore Zunbu is formed in the form of a deep forest, and as a result, defects such as shrinkage pores and segregation occur inside the ingot, and these defects can be turned into superfine wires on the micron order as superconducting wires such as NbTi alloys. Metal materials that are processed to the point where they are used have a problem in that they cause wire breakage and significantly reduce manufacturing yields.

〔課題を解決する為の手段及び作用] 本発明はかかる状況に鑑み鋭意研究の結果なされたもの
で、その目的とするところは凝固速度が速く、依って偏
析等の欠陥のない高品質の鋳塊を製出し得るNb−Ti
系合金のアーク溶解鋳造法を提供することにある。
[Means and effects for solving the problem] The present invention was made as a result of intensive research in view of the above situation, and its purpose is to provide a high-quality casting that has a fast solidification rate and is free from defects such as segregation. Nb-Ti that can produce lumps
The object of the present invention is to provide an arc melting and casting method for alloys.

即ち本発明は、Nb−Ti系合金棒材を陽極となし、上
記合金棒材の下方に配置した水冷銅鋳型を陰極となして
、双方間にアーク放電を生ぜしめて前記合金棒材を連続
的に溶融し、当該溶融金属を前記水冷銅鋳型内に落下せ
しめて鋳造するNbTi系合金のアーク溶解鋳造方法に
おいて、水冷銅鋳型の側壁内面の径を上方に向けて順次
広げたことを特徴とするものである。
That is, in the present invention, an Nb-Ti alloy bar is used as an anode, a water-cooled copper mold placed below the alloy bar is used as a cathode, and arc discharge is generated between the two to continuously move the alloy bar. A method for arc melting and casting NbTi-based alloys in which the molten metal is cast by dropping it into the water-cooled copper mold, characterized in that the diameter of the inner surface of the side wall of the water-cooled copper mold is gradually expanded upward. It is something.

以下に本発明方法にて用いる水冷銅鋳型の形状を図を参
照して具体的に説明する。
The shape of the water-cooled copper mold used in the method of the present invention will be specifically explained below with reference to the drawings.

第1図に示した鋳型は、側壁1と底部2とが一体となっ
た鋳型、又第2図に示した鋳型は、鋳型底部を底台3と
なして側壁1と分離できるようにした分割鋳型、又第3
図に示した鋳型は上記底台3上面に凝固体を係止する為
の突起部4を設けた鋳型で、いずれの鋳型も側壁1内面
の径が上方に向けて順次θの角度で広がりをもつ、つま
りテーパーを有した鋳型である。尚、上記第1〜3図に
おいて鋳型内の冷却水路の図示は割愛した。
The mold shown in FIG. 1 is a mold in which the side wall 1 and the bottom part 2 are integrated, and the mold shown in FIG. Mold, third
The mold shown in the figure has a protrusion 4 on the top surface of the base 3 for retaining the solidified material, and in each mold, the diameter of the inner surface of the side wall 1 gradually expands upward at an angle of θ. In other words, it is a mold with a taper. In addition, in the said FIGS. 1-3, the illustration of the cooling waterway in a mold is omitted.

本発明方法において、このように鋳型に上方に向けてテ
ーパーを設けた理由は、凝固体が凝固収縮及び熱収縮し
て生じた凝固体と鋳型との間のエアギヤ・ンプを、凝固
体が自重によって鋳型内を下方に移動できるようにする
ことによって挟めて、凝固体から鋳型への熱放出を高め
るためである。
In the method of the present invention, the reason why the mold is tapered upward is that the air gear pump between the solidified material and the mold, which is caused by solidification shrinkage and thermal contraction of the solidified material, is prevented by the solidified material due to its own weight. This is to increase heat release from the solidified body to the mold by allowing it to move downward within the mold.

而して前記テーパーは、その角度θを0,1°以上とす
るのが凝固体の移動が良好になされて好ましい。
Preferably, the angle θ of the taper is 0.1° or more, so that the solidified material can move well.

上記において、鋳型を第2図に示したように鋳型底部を
底台3となして側壁lから分離可能な分割鋳型となし、
鋳造途中で底台3を降下させ凝固体がより下方に移動し
易くすることが好ましい。
In the above, the mold is made into a split mold with the bottom of the mold serving as a base 3 and separable from the side wall l, as shown in FIG.
It is preferable to lower the base 3 during casting to make it easier for the solidified material to move downward.

更には第3図に示したように底台3に凝固体を係止する
為の突起部4を設け、凝固体を底台3と一緒に人為的に
下方へ移動させ、凝固体を鋳型側壁1内面により強く密
着させるようにするのが凝固体の冷却が強力になされて
特に好ましいものである。
Furthermore, as shown in FIG. 3, a protrusion 4 for locking the solidified material is provided on the bottom pedestal 3, and the solidified material is artificially moved downward together with the bottom pedestal 3, so that the solidified material is attached to the side wall of the mold. 1. It is particularly preferable to make the solidified body adhere more tightly to the inner surface of the solid body, since this allows the solidified body to be cooled more strongly.

上記において、鋳型底台3を降下させる方法は、底台3
の下部にスクリュー棒5を遊嵌して取付け、このスクリ
ュー棒5を回転して降下させる方法等任意の方法が適用
される。又上記底台3上簡に設ける突起部4は、上方に
向けて広がりを有するもの或いはリング状のもの等凝固
体を底台3に連結し得る形状のものであればよく、その
材質は銅等の熱伝導性に優れた金属材料が好ましい。又
鋳型底台3には鋳造中常時降下刃を伺与しておいて、凝
固収縮又は熱収縮に伴い発生し増加する凝固体と鋳型と
の間のエアギャップを即座に除去できるようにするのが
望ましい。
In the above, the method of lowering the mold base 3 is as follows:
Any method can be applied, such as attaching the screw rod 5 loosely to the lower part of the screw rod 5 and rotating and lowering the screw rod 5. The protrusion 4 provided on the top of the base 3 may be any shape that can connect the solidified body to the base 3, such as one that expands upward or a ring shape, and its material may be copper. Metal materials with excellent thermal conductivity, such as, are preferable. In addition, a descending blade is always provided on the mold base 3 during casting, so that the air gap between the solidified material and the mold, which increases due to solidification shrinkage or heat shrinkage, can be immediately removed. is desirable.

本発明方法において、被溶解金属材料にはNbTi二元
合金を始めとして上記合金にTaやHf等を添加したN
b−Ti系合金が広く適用される。特に超電導を示す合
金は細線にまで伸線されるのでその効果が有効に発現さ
れる。
In the method of the present invention, the metal material to be melted is NbTi binary alloy, NbTi alloy, NbTi alloy, etc.
b-Ti alloys are widely applied. In particular, since alloys exhibiting superconductivity are drawn into fine wires, their effects are effectively expressed.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例I N b−45%Ti合金棒を陽極とし、第1図に示した
側壁内面にテーパーを有する一体型の水冷銅鋳型を陰極
として用いて真空アーク溶解鋳造法にて高さ1000m
m、最大径520mφの円錐状のNb45%Ti合金鋳
塊を4本鋳造した。
Example I Nb-45% Ti alloy rod was used as an anode, and an integrated water-cooled copper mold with a tapered inner side wall as shown in Fig. 1 was used as a cathode to form a molded product with a height of 1000 m by vacuum arc melting and casting.
Four conical Nb45%Ti alloy ingots with a maximum diameter of 520 mφ were cast.

実施例2 陰極となす水冷銅鋳型に、第2図に示した鋳型底部を底
台となして側壁から分割した水冷銅鋳型を用いた他は実
施例1と同し方法により円錐状のNb−45%Ti合金
鋳塊を鋳造した。
Example 2 A conical Nb- A 45% Ti alloy ingot was cast.

実施例3 陰極となす水冷銅鋳型に第3図に示した鋳型底台上面に
突起部を設けた水冷銅鋳型を用いた他は実施例1と同し
方法により円錐状のNb−45%Ti合金鋳塊を鋳造し
た。
Example 3 A conical Nb-45%Ti mold was prepared in the same manner as in Example 1 except that a water-cooled copper mold having a protrusion on the upper surface of the mold base as shown in FIG. 3 was used as the cathode. An alloy ingot was cast.

尚、実施例2.3において鋳型底台の降下は前述のスク
リュー法により行い、降下刃は鋳造中常時付与するよう
にした。
In Example 2.3, the mold base was lowered by the screw method described above, and the lowering blade was always provided during casting.

上記実施例1及び3において、水冷銅鋳型の側壁内面の
テーパー角度θは種々に変化させた。
In Examples 1 and 3, the taper angle θ of the inner surface of the side wall of the water-cooled copper mold was varied.

比較例1 実施例1において、水冷銅鋳型に鋳型側壁内面にテーパ
ーを設けない従来の水冷銅鋳型を用いた他は実施例1と
同し方法により円柱状のNt+−45%Ti合金鋳塊を
鋳造した。
Comparative Example 1 A cylindrical Nt+-45% Ti alloy ingot was produced in the same manner as in Example 1, except that a conventional water-cooled copper mold without a taper on the inner surface of the mold side wall was used. Cast.

斯くの如くして得られた各々4本ずつのNb45%Ti
合金鋳塊について、1本は輪切りにしてカラーチエツク
法により引は巣及び断線原因となるTiリッチの硬い相
が析出したフレックル欠陥の有無を調べた。又残りの3
本の鋳塊については、これを銅マトリツクス中に6ml
l1φのNb−Tiフィラメントが4000本埋込まれ
た銅比1.8、直径1価の多芯超電導線に加工してNb
−Tiフィラメントの断線頻度を調査した。結果は第1
表に示した。
Four Nb45%Ti tubes were obtained in this way.
One of the alloy ingots was sliced into rounds and examined by the color check method for the presence or absence of freckle defects, in which a Ti-rich hard phase was precipitated, which could cause cavities and wire breakage. Also the remaining 3
For the book ingot, add 6ml of this in a copper matrix.
Processed into a multicore superconducting wire with a copper ratio of 1.8 and a monovalent diameter in which 4000 Nb-Ti filaments of l1φ were embedded.
-The frequency of disconnection of Ti filaments was investigated. The result is the first
Shown in the table.

尚、上記の多芯超電導線の製造は、前記鋳塊を熱間鍛造
後外削して170mmφの棒材となし、次いでこの棒材
を外径200術、内径170mmの銅製バイブに充填し
たのち、熱間押出及び適宜熱処理を施しつつ引抜加工を
行って2価φの超電導線材となした。しかるのちこの線
材を多数本中空銅ビレツト内に稠密充填し、これを前述
と同様に熱間押出及び引抜加工を行って超電導線材とな
し、この工程を所定回数繰り返し行って製造した。
The above-mentioned multicore superconducting wire is manufactured by hot forging the above-mentioned ingot and then externally milling it into a bar with a diameter of 170 mm.Then, this bar is filled into a copper vibrator with an outer diameter of 200mm and an inner diameter of 170mm. Then, hot extrusion and drawing with appropriate heat treatment were performed to obtain a divalent φ superconducting wire. Thereafter, a large number of these wires were densely packed into hollow copper billets, which were then subjected to hot extrusion and drawing in the same manner as described above to produce a superconducting wire, and this process was repeated a predetermined number of times to produce a superconducting wire.

第1表より明らかなように本発明方法品(No 1〜1
0)は鋳塊品質が良好なもので、従ってこの鋳塊を用い
て製造した多芯超電導線もNb−Tiフィラメントの断
線頻度が極めて低い値のものであった。
As is clear from Table 1, the products manufactured by the method of the present invention (No. 1 to 1)
No. 0) had good ingot quality, and therefore, the multicore superconducting wire produced using this ingot also had an extremely low frequency of Nb-Ti filament breakage.

鋳型に設υたテーパー角度θは、0.1″′以上におい
てその効果が顕著に認められた。
The effect was noticeable when the taper angle θ set in the mold was 0.1'' or more.

又鋳型種類による差を同しテーパー角度の鋳型について
比較すると、側面にテーパーを設けただけのもの(No
3)、底台を降下させたもの(No7)、底台に突起部
を設番シ降下させたもの(NolO)の順に断線頻度が
低下していることが判る。
Also, when comparing the differences between mold types for molds with the same taper angle, it is found that molds with only a taper on the sides (No.
It can be seen that the frequency of wire breakage decreases in the order of 3), the one in which the bottom pedestal is lowered (No. 7), and the one in which the protrusion is lowered on the bottom pedestal (No. 3).

これに対し比較方法品(lloll)は、鋳塊内部に引
は巣及びフレックル欠陥が多数存在し、従って多芯超電
導線のNb−Tiフィラメントの断線頻度も極めて高い
ものとなった。
On the other hand, in the comparison method product (lloll), there were many shrinkage cavities and freckle defects inside the ingot, and therefore the frequency of breakage of the Nb-Ti filaments of the multicore superconducting wire was extremely high.

以上Nb−45%Ti合金について説明したが、本発明
方法は、高融点で且つ熱伝導性に劣る金属材料の溶解鋳
造に適用してもその効果が発現されるものである。
Although the Nb-45% Ti alloy has been described above, the method of the present invention exhibits its effects even when applied to melting and casting of metal materials with a high melting point and poor thermal conductivity.

〔効果] 以上述べたように本発明方法によれば、引は巣や偏析の
ない高品質の鋳塊が容易に製造できて、工業上顕著な効
果を奏する。
[Effects] As described above, according to the method of the present invention, a high-quality ingot free of shrinkage cavities and segregation can be easily manufactured, and a remarkable effect is exhibited industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は本発明方法にて用いる水冷銅鋳型の態様例
を示す断面図、第4図はアーク溶解鋳造法の説明図であ
る。 1・・・鋳型側壁、 2・・・鋳型底部、 3・・・鋳
型底台、 4・・・突起部、 5・・・スクリュー棒。
1 to 3 are cross-sectional views showing embodiments of a water-cooled copper mold used in the method of the present invention, and FIG. 4 is an explanatory view of the arc melting casting method. DESCRIPTION OF SYMBOLS 1...Mold side wall, 2...Mold bottom, 3...Mold bottom stand, 4...Protrusion, 5...Screw rod.

Claims (2)

【特許請求の範囲】[Claims] (1)Nb−Ti系合金棒材を陽極となし、上記合金棒
材の下方に配置した水冷銅鋳型を陰極となして、双方間
にアーク放電を生ぜしめて前記合金棒材を連続的に溶融
し、当該溶融金属を前記水冷銅鋳型内に落下せしめて鋳
造するNb−Ti系合金のアーク溶解鋳造方法において
、水冷銅鋳型の側壁内面の径を上方に向けて順次広げた
ことを特徴とするNb−Ti系合金のアーク溶解鋳造方
法。
(1) Using the Nb-Ti alloy bar as an anode and the water-cooled copper mold placed below the alloy bar as a cathode, arc discharge is generated between the two to continuously melt the alloy bar. In the arc melting casting method for Nb-Ti alloy, in which the molten metal is cast by dropping it into the water-cooled copper mold, the diameter of the inner surface of the side wall of the water-cooled copper mold is gradually widened upward. Arc melting casting method for Nb-Ti alloy.
(2)水冷銅鋳型が側壁と底台とで分割可能な分割鋳型
であって、上記底台が上面に凝固体を係止する突起部を
有し、且つ下降可能な構造からなることを特徴とする請
求項(1)記載のNb−Ti系合金のアーク溶解鋳造方
法。
(2) The water-cooled copper mold is a split mold that can be divided into a side wall and a bottom pedestal, and the bottom pedestal has a protrusion on its upper surface that locks the solidified material, and has a structure that allows it to be lowered. A method for arc melting and casting a Nb-Ti alloy according to claim (1).
JP3553490A 1990-02-16 1990-02-16 Method for arc-melting and casting nb-ti series alloy Pending JPH03238158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3553490A JPH03238158A (en) 1990-02-16 1990-02-16 Method for arc-melting and casting nb-ti series alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3553490A JPH03238158A (en) 1990-02-16 1990-02-16 Method for arc-melting and casting nb-ti series alloy

Publications (1)

Publication Number Publication Date
JPH03238158A true JPH03238158A (en) 1991-10-23

Family

ID=12444404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3553490A Pending JPH03238158A (en) 1990-02-16 1990-02-16 Method for arc-melting and casting nb-ti series alloy

Country Status (1)

Country Link
JP (1) JPH03238158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060819A1 (en) * 2005-11-22 2007-05-31 Kabushiki Kaisha Kobe Seiko Sho Nb-CONTAINING ROD-SHAPED MATERIAL FOR USE IN MANUFACTURE OF SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060819A1 (en) * 2005-11-22 2007-05-31 Kabushiki Kaisha Kobe Seiko Sho Nb-CONTAINING ROD-SHAPED MATERIAL FOR USE IN MANUFACTURE OF SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE

Similar Documents

Publication Publication Date Title
US6640876B2 (en) Method and apparatus for manufacturing copper and/or copper alloy ingot having no shrinkage cavity and having smooth surface without wrinkles
JP4907248B2 (en) Continuous casting method of Al-Si aluminum alloy
JP2001505175A (en) Method and apparatus for making directionally solidified castings
JPS61169149A (en) Continuous casting method
JP3725620B2 (en) Method and apparatus for producing high purity copper single crystal
JPH03238158A (en) Method for arc-melting and casting nb-ti series alloy
JP5750393B2 (en) Cu-Ga alloy sputtering target and method for producing the same
JP2019520984A (en) High quality, void and inclusion free alloy wire
US4958678A (en) Method for producing reinforced block material of metal or the like
JPH09137239A (en) Method for molding half-molten metal
US6328823B1 (en) Aluminum sliding bearing alloy
JPH02311394A (en) W target material
US3794100A (en) Method of making a billet suitable for manufacturing into a superconductor
EP0498808A1 (en) Method of controlling the rate of heat extraction in mould casting
CN106623938A (en) Spray forming device for ultrahard aluminum lithium alloy
JPS5923898B2 (en) Continuous casting method for high silicon aluminum alloy
JPH08253830A (en) Production of single-crystal ni-base alloy casting having high single-crystallization ratio
JP4672203B2 (en) Method for producing ingot for gold bonding wire
JPS62292244A (en) Production of ingot
Frazier et al. The melt spinning of gamma titanium aluminides
CN210280570U (en) Thin-diameter bar casting copper mold with taper
JPH0337818B2 (en)
JP2004192972A (en) MANUFACTURING METHOD OF Nb3Sn-BASED SUPERCONDUCTIVE WIRE
JPH0724919B2 (en) Metal tube continuous casting method and apparatus
JPH08120366A (en) Method for continuously casting titanium cast slab