JPH03237352A - Production of ion sensor - Google Patents

Production of ion sensor

Info

Publication number
JPH03237352A
JPH03237352A JP2031528A JP3152890A JPH03237352A JP H03237352 A JPH03237352 A JP H03237352A JP 2031528 A JP2031528 A JP 2031528A JP 3152890 A JP3152890 A JP 3152890A JP H03237352 A JPH03237352 A JP H03237352A
Authority
JP
Japan
Prior art keywords
film
urushi
rays
ion
far
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2031528A
Other languages
Japanese (ja)
Other versions
JPH0752172B2 (en
Inventor
Shinichi Wakita
慎一 脇田
Kunishige Azuma
東 国茂
Akinobu Kawahara
川原 昭宣
Masataka Yamane
山根 昌隆
Sahori Takasuka
高須賀 さほり
Kazuo Tsutsumi
堤 和夫
Minoru Kashiwakura
柏倉 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shindengen Electric Manufacturing Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP2031528A priority Critical patent/JPH0752172B2/en
Publication of JPH03237352A publication Critical patent/JPH03237352A/en
Publication of JPH0752172B2 publication Critical patent/JPH0752172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain an ISFET with can be used stably over a long period of time with the lessened degradation in sensitivity and has good performance by drying and curing 'urushi' (Japanese lacquer) to be used as film material with far IR rays of a specific wavelength. CONSTITUTION:The soln. consisting of the 'urushi' (japancse lacquer) which is used as the film forming material and is applied on a gate insulating film 5 of the ISFET, a plasticizer, an additive, and the ion sensitive material is irradiated with the far IR rays, by which the 'urushi' is solidified and the high-polymer liquid film type ion sensitive film 6 is formed. The IR ray absorption spectrum region of the urushiol which is the essentila component of the 'urushi' is 3mum and 6 to 10mum and, therefore, the adhesive property between the sensitive film 6 and the gate film is improved by the irradiation with the IR rays of 3 to 10mum wavelength. In addition, the energy of the far IR rays acts on the inside as well and, therefore, the time required for hardening is shortened. Since the influence of the outdoor air temp., etc., is less received, the consistent quality is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はイオンセンサの製造方法、特に電界効果型トラ
ンジスタのゲート絶縁膜上に、高分子薄膜型のイオン感
応膜を形成してなるイオン選択性電界効果型イオンセン
サの製造方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing an ion sensor, and in particular to an ion selection method in which an ion sensitive film of a thin polymer film type is formed on a gate insulating film of a field effect transistor. The present invention relates to a method of manufacturing a field-effect ion sensor.

(従来の技術) 電界効果型トランジスタのゲート部に、検出対象に応じ
たイオン感応物質を含む化学選択性の膜を形成し、電解
液中または水溶液中の所定のイオン活量を検出するイオ
ン選択性電界効果型トランジスタ(Ion 5elec
tive Field Effect Transit
or。
(Prior art) Ion selection involves forming a chemically selective membrane containing an ion-sensitive substance depending on the detection target on the gate of a field effect transistor to detect a predetermined ion activity in an electrolytic solution or an aqueous solution. Ion field effect transistor (Ion 5elec)
tive Field Effect Transit
or.

以下頭文字をとってl5FETと略称する)として従来
から種々のものか知られている。
Various types of 15FETs (hereinafter abbreviated as 15FETs) have been known.

(従来技術の問題点) ところでの場合、例えば第1図のようにソース拡散領域
(2)とドレイン拡散領域(3)を有する半導体基板(
1)の面上に、二酸化けい素絶縁膜(4)を介して形成
された絶縁膜(5)は、Si3N4* AlzOz 、
Ta2O2等の無機絶縁膜であり、これに対して絶縁膜
(5)上に被着される高分子液膜型イオン感光膜(6)
は高分子膜である。しかしポリ塩化ビニルやポリウレタ
ン等の従来使用されている高分子膜は、一般には無機絶
縁膜であるゲート膜との密着性が十分ではなく、被検出
液中に浸漬して使用したとき剥離して使用できなくなる
難点かある。そこでこの問題を解決するための手段とし
て、例えばシランカップリング剤を用いて高分子液膜型
イオン感応膜をゲート絶縁膜上に固定化する方法等か提
案されている。
(Problems with the Prior Art) In this case, for example, a semiconductor substrate (2) having a source diffusion region (2) and a drain diffusion region (3) as shown in FIG.
The insulating film (5) formed on the surface of 1) via the silicon dioxide insulating film (4) is Si3N4*AlzOz,
This is an inorganic insulating film such as Ta2O2, and a polymeric liquid film type ion photosensitive film (6) is deposited on the insulating film (5).
is a polymer membrane. However, conventionally used polymer films such as polyvinyl chloride and polyurethane generally do not have sufficient adhesion to the gate film, which is an inorganic insulating film, and may peel off when used immersed in the liquid to be detected. There are some drawbacks that make it unusable. Therefore, as a means for solving this problem, a method has been proposed in which, for example, a silane coupling agent is used to immobilize a polymeric liquid film type ion-sensitive film on a gate insulating film.

しかし、上記の如き方法は工程が複雑であって製造か面
倒であるため、製造コストか高くなると云う難点かある
However, the above-mentioned method has a disadvantage in that the process is complicated and the manufacturing process is troublesome, resulting in high manufacturing costs.

また従来の方法によって作られる高分子液模型イオン感
応膜は、測定のため長時間被検出溶出液中に浸漬される
と、感応膜の表面に種々の不具合か生してくる。例えば
膜表面か凸凹になったり、時には素子から膜自体か剥離
する場合も発生し安定性や耐久性に問題を残す。
Furthermore, when a polymer liquid model ion sensitive membrane made by a conventional method is immersed in an eluent to be detected for a long time for measurement, various defects occur on the surface of the sensitive membrane. For example, the film surface becomes uneven, and sometimes the film itself peels off from the element, leaving problems with stability and durability.

従って従来方法によっては性能 安定性 耐久性、に優
れた高分子液膜型l5FETを簡単にかつ安価に製造す
ることは難しい。
Therefore, depending on the conventional method, it is difficult to easily and inexpensively manufacture a polymer liquid film type 15FET with excellent performance, stability, and durability.

そこて上記の如き問題の解決方法の一つとして、高分子
液膜型イオン感応膜を形成するために、可塑剤、添加剤
及び検出目的に応じたイオン感応物質を含む溶液中に、
更に密着性、接着性にすぐれるばかりてなく、堅固な膜
を形成しうる“うるし”を膜材料として混合した溶液を
用い、これをl5FETのゲート絶縁膜面上に塗布した
のち、温度か25〜30°C,湿度か80〜90%の範
囲に制御される恒温恒湿雰囲気中において、“うるし”
を硬化する方法か提案された。
Therefore, as one method to solve the above problems, in order to form a polymer liquid film type ion-sensitive membrane, a solution containing a plasticizer, additives, and an ion-sensitive substance according to the purpose of detection is added.
Furthermore, we used a solution containing lacquer as a film material, which not only has excellent adhesion and adhesion, but also can form a strong film, and after applying this on the gate insulating film surface of the 15FET, we heated it to a temperature of 25°C. "Urushi" is grown in a constant temperature and humidity atmosphere controlled at ~30°C and humidity of 80-90%.
Suggested methods for curing.

この方法は、前記の如き表面の不具合から生じてくる性
能、安定性、耐久性なとの問題の解決に寄与すると同時
に、前記密着性、接着性の向上のための面倒な製造法を
用いる必要もなくなるので製造コストの低下にも大きく
寄与する。
This method contributes to solving the problems of performance, stability, and durability caused by surface defects as described above, and at the same time, there is no need to use complicated manufacturing methods to improve the adhesion and adhesion. This also greatly contributes to lower manufacturing costs.

しかし、その反面“うるし”を含む感応膜の形成溶液の
硬化に当たって、上記の如き恒温恒湿雰囲気を用いる方
法では、装置自体が大型高価になるばかりてなく、硬化
に時間を要する。また逆に装置を小型安価にしようとす
ると恒温恒湿の制御精度を低下させることになり、外気
温度や外気湿度の影響を受は易くなって、硬化に要する
時間が変動する。このため安定な品質のものを得難く表
面の均一性にも問題を残す。
However, on the other hand, in the method of using a constant temperature and humidity atmosphere as described above for curing a solution for forming a sensitive film containing "lacquer", not only the apparatus itself becomes large and expensive, but also takes a long time for curing. On the other hand, if an attempt is made to make the device smaller and cheaper, the control accuracy of constant temperature and humidity will be lowered, and the curing time will fluctuate as it becomes more susceptible to the effects of outside temperature and humidity. For this reason, it is difficult to obtain a product of stable quality, and there remains a problem in surface uniformity.

(発明の目的) 本発明の目的とするところは、感度の低下などが少なく
、長期間に亘って安定に使用し得る、高分子液膜型イオ
ン感応膜を有するl5FETを、簡単かつ安価、しかも
短い時間で製造しつる手段の提供にある。
(Objective of the Invention) The object of the present invention is to easily and inexpensively develop an 15FET having a polymeric liquid film type ion-sensitive membrane, which can be used stably for a long period of time with little loss of sensitivity. The purpose is to provide a means for manufacturing and hanging in a short period of time.

(問題点を解決するための本発明の手段)本発明の特徴
とするところは、第1図のゲート絶縁膜(5)上塗布さ
れた、膜材料となる“うるし”可塑剤2添加剤及びイオ
ン感応物質からなる溶液(6)に遠赤外線を照射し、こ
れにより“うるし”を硬化をさせて感応膜を形成するこ
とにある。
(Means of the present invention for solving the problems) The present invention is characterized by the addition of the "lacquer" plasticizer 2, which is the film material, and The purpose is to irradiate a solution (6) made of an ion-sensitive substance with far infrared rays, thereby hardening the "lacquer" to form a sensitive film.

(作 用) 膜材料となる“うるし”の主成分であるウルシオールの
赤外線吸収スペクトル領域は3μmおよび6〜10μm
である。そこで主成分であるウルシオールの赤外線吸収
領域を中心とした波長を放射することにより、ウルシオ
ールの振動エネルギが増加し、ウルシオールでの重合反
応か活性化されて硬化かより促進される。その結果イオ
ン感応膜とゲート膜との密着性もよくなる。
(Function) The infrared absorption spectrum range of urushiol, which is the main component of "urushi" which is the film material, is 3 μm and 6 to 10 μm.
It is. Therefore, by emitting a wavelength centered on the infrared absorption region of urushiol, the main component, the vibrational energy of urushiol increases, activating the polymerization reaction in urushiol, and promoting curing. As a result, the adhesion between the ion-sensitive film and the gate film also improves.

これに加えて放射された遠赤外線のエネルギは、途中の
空気に殆ど吸収されず直接膜材料に作用されるため効率
よく硬化か行われる。従来の恒温恒温雰囲気を用いる方
法は水分を用いて膜の表面からの硬化か主体に行われて
いたのに対し、遠赤外線を用いる本発明の場合には、放
射エネルギは膜の表面ばかりてなく内部にも作用するの
で、深くエネルギか浸透し吸収されるので表面からそし
て内部から硬化か促進される。従って従来の恒温恒湿雰
囲気を用いた方法に比べて硬化に要する時間を大幅に短
縮てきる。しかも外気温などの影響を受けることも少な
いために、硬化に要する時間に変動を生ずることかない
ので品質を一定にすることかできる。
In addition, the radiated far-infrared energy is hardly absorbed by the air passing through the film and acts directly on the film material, so that curing is performed efficiently. In the conventional method using a constant temperature constant temperature atmosphere, the curing was mainly performed from the surface of the film using moisture, but in the case of the present invention using far infrared rays, the radiant energy is not only applied to the surface of the film. Since it also acts internally, the energy penetrates deeply and is absorbed, promoting hardening from the surface and from within. Therefore, the time required for curing can be significantly shortened compared to the conventional method using a constant temperature and constant humidity atmosphere. Moreover, since it is less affected by outside temperature, there is no variation in the time required for curing, so the quality can be kept constant.

また遠赤外線エネルギの吸収は熱を発生するために、“
つるし“の表面の粘性か低下し、表面の均一性を大きく
向上することかでき、従来の技術以上に膜表面の平坦化
か可能となり、均一な膜か形成できる。
In addition, absorption of far-infrared energy generates heat, so “
The viscosity of the hanging surface can be reduced and the surface uniformity can be greatly improved, making it possible to flatten the film surface more than with conventional techniques and forming a uniform film.

以上のように密着性、接着性の良い“うるし”膜か形成
れれるため、剥離や表面破裂と云った従来の有機膜での
問題点も改善され、耐久性の向上か期待てきる。
As described above, since a lacquer film with good adhesion and adhesion can be formed, problems with conventional organic films, such as peeling and surface rupture, can be alleviated, and durability can be expected to be improved.

次に本発明の実施例及び従来法による製品との比較例に
ついて説明する。
Next, examples of the present invention and comparative examples with products made by conventional methods will be described.

(実施例) イオン感応膜の材料として“うるし”733■添ガロ剤
としてテトラキス〔3,5−ビス(トリフルオロメチル
)フェニルはう酸カリウム塩(K”TEPB)を1wt
96を含む可塑剤フタル酸シー2−エチルヘキシン59
0■、K”イオン感応物質としてハリノマイシンlO■
を十分に溶解させた溶液を、l5FETのゲート絶縁膜
である窒化けい素(SI3N4)膜上に塗布した。そし
てこのl5FET(8)を第2図の側面図のように、“
うるし”を塗布してゲート部か遠赤外線ヒータ(7)の
真下に位置するように遠赤外線放射装置内に投入して、
波長3〜IOμmを中心波長とする遠赤外線により1週
間照射してK”−ISFETを作製した。なお第2図に
おいて(9)は支持台である。
(Example) "Urushi" 733 is added as a material for an ion-sensitive membrane; 1 wt of tetrakis[3,5-bis(trifluoromethyl)phenylbolate potassium salt (K"TEPB) is added as a gallic agent.
Plasticizer 2-ethylhexyne phthalate containing 96 59
0■, K'' ion-sensitive substance: halinomycin lO■
A sufficiently dissolved solution was applied onto a silicon nitride (SI3N4) film, which is the gate insulating film of the 15FET. Then, as shown in the side view of Fig. 2, this l5FET (8) is
Apply lacquer and place it into the far-infrared radiation device so that it is located directly under the gate or far-infrared heater (7).
A K"-ISFET was fabricated by irradiating it with far infrared rays having a center wavelength of 3 to 10 .mu.m for one week. In FIG. 2, (9) is a support stand.

(比較例) 一方従来によるものとの比較のため実施例と同一のイオ
ン感応膜形成溶液を同一のl5FETのゲート絶縁膜上
に塗布したものを、温度25〜30°C1湿度80〜9
0%の恒温恒温炉内に投入し、硬化させてK”−rsF
ETを作製した。
(Comparative Example) On the other hand, for comparison with the conventional one, the same ion-sensitive film forming solution as in the example was applied on the gate insulating film of the same 15FET, the temperature was 25-30°C, the humidity was 80-90°C.
0% in a constant temperature oven and harden it to K”-rsF.
ET was created.

そしてこれを実施例と硬化時間、感度の変化などについ
て比較した。
This was then compared with Examples in terms of curing time, changes in sensitivity, etc.

その結果従来方法によるもの(比較例)では実施例によ
るものと同等の膜を得るのに約2週間装した。これに対
し実施例のそれは前記したように1週間であるので約1
/2の硬化時間である。従って本発明によれば取扱い操
作か簡単であって小型な装置を用いて硬化させることか
できる。
As a result, in the conventional method (comparative example), it took about two weeks to obtain a film equivalent to that in the example. On the other hand, in the example, the period is one week as mentioned above, so it is approximately 1 week.
/2 curing time. Therefore, according to the present invention, the handling operation is simple and curing can be performed using a compact device.

またソースフォロワ回路により駆動させて、従来方法に
よるK”−ISFETと、本発明によるに−ISFET
との感度の経時変化を比較したところ第3図に示す結果
を得た。図中○印は本発明によるもの、・印は従来法に
よるものである。
In addition, the K"-ISFET according to the conventional method and the K"-ISFET according to the present invention are driven by a source follower circuit.
A comparison of the changes in sensitivity over time with the results shown in Figure 3 was obtained. In the figure, the ○ marks are based on the present invention, and the * marks are based on the conventional method.

これから明らかなように作製直後は双方共に50mV/
decadeの感度を有するが、従来法によるものはl
O日日収降において急激に40mV/decade以下
に感度か低下することか観測された。これに対し本発明
によるものは感度が40mV/ decade以下にな
るのは20日月収降である。従って本発明によるものは
従来法によるものに比べて感度の低下か遥かに穏やかで
あり、従来方法に比べてより長寿命のものか得られる。
As is clear from this, immediately after fabrication, both were 50mV/
The conventional method has a sensitivity of
It was observed that the sensitivity suddenly decreased to 40 mV/decade or less in O days. On the other hand, in the case of the present invention, the sensitivity becomes 40 mV/decade or less after 20 days. Therefore, the method according to the present invention has a much milder decrease in sensitivity than the conventional method, and can provide a longer life than the conventional method.

(発明の効果) 以上のように本発明によれば、従来方法に比べて簡単、
安価、短時間に製造でき、しかも長期間安定して使用で
きる性能のよいイオン選択性電界効果型トランジス(I
SFET)を提供できる。
(Effects of the Invention) As described above, according to the present invention, the method is simpler than the conventional method.
High-performance ion-selective field-effect transistors (I
SFET).

過日数を示す実験結果図である。It is an experiment result diagram showing the number of days passed.

(1)・・・P型シリコン基板、(2)・・・ソース拡
散領域、(3)・・・ドレイン拡散領域、(4)・・・
第1ゲート絶縁膜、(5)・・・第2ゲート絶縁膜、(
6)・・・高分子液膜型イオン感応膜、(7)・・・遠
赤外線放射装置、(8)・・・l5FET、(9)・・
・支持台、(10)・・・うるし感応膜。
(1)...P-type silicon substrate, (2)...source diffusion region, (3)...drain diffusion region, (4)...
First gate insulating film, (5)... Second gate insulating film, (
6)... Polymer liquid film type ion sensitive membrane, (7)... Far infrared radiation device, (8)... 15FET, (9)...
- Support stand, (10)... Urushi sensitive membrane.

Claims (1)

【特許請求の範囲】[Claims] うるし,可塑剤,添加剤及び検出目的とするイオンに応
じたイオン感応物質を含む溶液から、高分子液膜型イオ
ン感応膜を形成する電界効果型イオンセンサの製造方法
において、前記溶液中の膜材料となるうるしの乾燥及び
硬化を、波長3〜10μmの遠赤外線により行うことを
特徴とするイオンセンサの製造方法。
In a method for manufacturing a field-effect ion sensor in which a polymer liquid film type ion-sensitive membrane is formed from a solution containing lacquer, a plasticizer, an additive, and an ion-sensitive substance corresponding to an ion to be detected, the membrane in the solution is A method for manufacturing an ion sensor, characterized in that drying and curing of lacquer as a material is performed using far infrared rays with a wavelength of 3 to 10 μm.
JP2031528A 1990-02-14 1990-02-14 Ion sensor manufacturing method Expired - Lifetime JPH0752172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2031528A JPH0752172B2 (en) 1990-02-14 1990-02-14 Ion sensor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2031528A JPH0752172B2 (en) 1990-02-14 1990-02-14 Ion sensor manufacturing method

Publications (2)

Publication Number Publication Date
JPH03237352A true JPH03237352A (en) 1991-10-23
JPH0752172B2 JPH0752172B2 (en) 1995-06-05

Family

ID=12333696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2031528A Expired - Lifetime JPH0752172B2 (en) 1990-02-14 1990-02-14 Ion sensor manufacturing method

Country Status (1)

Country Link
JP (1) JPH0752172B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675024A (en) * 2012-09-08 2014-03-26 台湾积体电路制造股份有限公司 Direct sensing BioFET and methods of manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675024A (en) * 2012-09-08 2014-03-26 台湾积体电路制造股份有限公司 Direct sensing BioFET and methods of manufacture
CN103675024B (en) * 2012-09-08 2018-02-13 台湾积体电路制造股份有限公司 Directly sense BioFET and manufacture method

Also Published As

Publication number Publication date
JPH0752172B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
Sudhölter et al. Modification of ISFETs by covalent anchoring of poly (hyroxyethyl methacrylate) hydrogel. Introduction of a thermodynamically defined semiconductor-sensing membrane interface
US8243249B2 (en) Method of manufacturing liquid crystal device
Munoz et al. Photosensitive polyurethanes applied to the development of CHEMFET and ENFET devices for biomedical sensing
JPS61165656A (en) Formation of immobilized enzyme membrane
Bidinger et al. Highly stable PEDOT: PSS electrochemical transistors
KR970077123A (en) Coating film forming method and coating film forming apparatus
Shen et al. Surface acoustic wave gas monitor for ppm ammonia detection
CN112147204B (en) Chlorpyrifos molecular imprinting photoelectrochemical sensor and preparation method thereof
ATE87740T1 (en) METHOD OF MANUFACTURING A MULTIPLE, ION-SELECTIVE DIAPHRAGM SENSOR.
Van der Wal et al. Universal approach for the fabrication of Ca2+-, K+-and NO3−-sensitive membrane ISFETs
JPH03237352A (en) Production of ion sensor
JPS63135853A (en) Solid reference electrode
JP2770783B2 (en) Method for manufacturing biosensor element
Park et al. Effect of membrane structure on the performance of field-effect transistor potassium-sensitive sensor
Covington et al. Recent advances in microelectronic ion-sensitive devices (ISFETs). The operational transducer
Hailin et al. Characterization of a chemoresistor pH sensor based on conducting polypyrrole
US6077350A (en) System and method for curing polymeric/photoresist coatings
Althagafi et al. A membrane-free cation selective water-gated transistor
Puig-Lleixà et al. Potentiometric pH sensors based on urethane–acrylate photocurable polymer membranes
Pan et al. High-k Tm2O3 Sensing Membrane-Based Electrolyte− Insulator− Semiconductor for pH Detection
JPS62163960A (en) Preparation of electric field effect type semiconductor sensor
SU487789A1 (en) The method of obtaining a layered material
JPS6254155A (en) Formation of enzyme immobilized film for semiconductor biosensor
Pan et al. Label-free detection of uric acid using a disposable poly-N-isopropylacrylamide as an encapsulating enzyme material based on high-κ Eu2Ti2O7 electrolyte–insulator–semiconductor devices
JP2946913B2 (en) Method for producing immobilized enzyme membrane and protein immobilized membrane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080605

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 15