JPH03236491A - Cold rolled steel sheet excellent in phosphating property and die galling resistance and its production - Google Patents

Cold rolled steel sheet excellent in phosphating property and die galling resistance and its production

Info

Publication number
JPH03236491A
JPH03236491A JP3332090A JP3332090A JPH03236491A JP H03236491 A JPH03236491 A JP H03236491A JP 3332090 A JP3332090 A JP 3332090A JP 3332090 A JP3332090 A JP 3332090A JP H03236491 A JPH03236491 A JP H03236491A
Authority
JP
Japan
Prior art keywords
steel sheet
rolled steel
cold
cold rolled
precipitated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3332090A
Other languages
Japanese (ja)
Other versions
JPH083154B2 (en
Inventor
Susumu Masui
増井 進
Makoto Imanaka
誠 今中
Toshiyuki Kato
俊之 加藤
Hideo Abe
阿部 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2033320A priority Critical patent/JPH083154B2/en
Publication of JPH03236491A publication Critical patent/JPH03236491A/en
Publication of JPH083154B2 publication Critical patent/JPH083154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To produce a cold rolled steel sheet excellent in phosphating property and die galling resistance by subjecting a cold rolled steel sheet after pickling or annealing to cathodic electrolytic treatment in a basic aqueous solution containing the metal ions of one or more elements among Ni, Mn, Co, Mo, and Cu. CONSTITUTION:A cold rolled steel sheet after the conclusion of either or both stages of pickling and annealing is subjected to cathodic electrolytic treatment in a basic aqueous solution of >=pH8 containing the metal ions of one or more elements among Ni, Mn, Co, Mo, and Cu. By the above treatment, the above metals can be deposited by 0.5-100mg/m<2> under the conditions of <=1mum grain size and <=5mum nearest neighbor distance between deposited metals. Further, by the above deposition, a surface in which the area ratio SSr of a projecting part on the above steel sheet is regulated to 25-60% and also the average area SGr per piece of this projecting part is regulated to 0.2-0.8mum<2> is formed. By this method, phosphating property and die galling resistance as well as corrosion resistance of cold rolled steel sheet can be improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、りん酸塩処理性および対型かじり性に優れた
冷延鋼板およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a cold rolled steel sheet with excellent phosphate treatment properties and mold galling properties, and a method for producing the same.

〈従来の技術〉 加工性、とくに深絞り性を改善した冷延鋼板の主な用途
は、自動車の内・外装板である。
<Conventional technology> The main use of cold-rolled steel sheets with improved workability, especially deep drawability, is for the interior and exterior panels of automobiles.

従って、従来は、自動車用部品としてブレス底形される
場合に鋼板に要求される材料特性を満足する最適の製造
条件を得ることを前提として、主に研究が行われてきた
Therefore, in the past, research has mainly been conducted on the premise of obtaining optimal manufacturing conditions that satisfy the material properties required of steel plates when they are made into brace bottom shapes as automobile parts.

特に、自動車用鋼板の場合、多種多様なデザインに適応
させる必要上、深絞り性に対応するランクフォード値(
r値)の改善、ならびに形状凍結性の観点から低降伏応
力化、高加工硬化率化などが重要視されてきた。
In particular, in the case of automotive steel sheets, it is necessary to adapt them to a wide variety of designs, so the Lankford value (
From the viewpoint of improving shape fixability, lower yield stress, higher work hardening rate, etc. have been emphasized.

このような観点から開発されたものとして、たとえば特
開昭59−193221号公報や特開昭63−7684
8号公報などに開示の極低炭素鋼があるが、最近ではか
かる極低炭素鋼、しかもその連続焼鈍材の、冷延鋼板の
生産量に占める割合が増大してきている。
Examples of products developed from this point of view include JP-A-59-193221 and JP-A-63-7684.
There is an ultra-low carbon steel disclosed in Publication No. 8, etc., and recently, the proportion of such ultra-low carbon steel, and moreover, its continuously annealed material, in the production of cold-rolled steel sheets has been increasing.

このような潮流の中で、最近とくに自動車用鋼板のプレ
ス成形時における「型かじり」が問題となっているが、
この点に着目した技術はこれまでのところほとんど報告
されていない。
Amid this trend, "mold galling" has recently become a problem, especially during press forming of automotive steel sheets.
So far, very few technologies focusing on this point have been reported.

わずかに特公昭61−266001号公報において、所
定の有機高分子皮膜を鋼板表面に形威し、鋼板表面の摺
動性を良好にすることでプレス加工性の向上を図る技術
が提案されているに止まる。
Japanese Patent Publication No. 61-266001 proposes a technique for improving press workability by forming a predetermined organic polymer film on the surface of a steel sheet to improve the slidability of the surface of the steel sheet. Stops at.

しかしながら、自動車用鋼板は、プレス後、塗装前処理
として通常りん酸塩処理が施されるが、上記のような潤
滑処理を施した冷延鋼板は、そのりん酸塩処理性が未処
理の冷延鋼板に比べて著しく劣ることが問題として上げ
られていた。 また、有機皮膜は経時変化で変質してし
まい、有害物になってしまうおそれがある。
However, although automotive steel sheets are usually subjected to phosphate treatment as a pre-painting treatment after pressing, the phosphate treatment properties of cold-rolled steel sheets that have undergone the above-mentioned lubrication treatment are similar to those of untreated cold-rolled steel sheets. The problem was that it was significantly inferior to rolled steel sheets. Furthermore, the organic film may deteriorate over time and become a harmful substance.

また、冷延鋼板のりん酸塩処理性の向上を目的として開
発されたものとして、金属ニッケルを30〜1000m
g/m2付着させる方7去が特公昭62−30264号
公報に開示されている。  しかしながら、これは単に
りん酸塩処理性の向上を目的としたものであり、その実
施例にも記述がないことからもわかるように、耐型かじ
り性の向上を積極的に狙っているものではない。 さら
に、りん酸塩処理性の向上効果の見出されたNi付着量
は、本発明者らの詳細な実験によれば、特定の大きさ、
分布状態の場合には0. 5〜f OOmg/rn’付
着させれば十分であり、それ以上の付着ではりん酸塩処
理性の向上は見られず、逆に対型かじり性は劣化する。
In addition, as a product developed for the purpose of improving the phosphate treatment properties of cold-rolled steel sheets, metallic nickel is
A method of adhering g/m2 is disclosed in Japanese Patent Publication No. 30264/1983. However, this is merely aimed at improving phosphate treatment properties, and as can be seen from the fact that there is no description in the examples, it is not intended to actively improve mold galling resistance. do not have. Furthermore, according to detailed experiments conducted by the present inventors, the amount of Ni deposited that was found to be effective in improving phosphate treatment properties was determined by a specific size,
0 in case of distribution state. It is sufficient to deposit 5 to f OOmg/rn', and if it is more than that, no improvement in phosphate treatment property is observed, and on the contrary, anti-mold galling property is deteriorated.

〈発明が解決しようとする課題〉 加工性、特にプレス成形時の深絞り性あるいは形状凍結
性の観点からは、伸び(EA)とランクフォード値(r
値)を改善し、併せてY、 S  を低く(低Y、R,
化)するのが良いとされ、そのための製造技術が極低炭
素化によって実現された。  しかし一方で、このよう
な鋼板は従来鋼に比べて、プレス加工時における型かし
りの発生が大きいという新たな問題が生じた。
<Problem to be solved by the invention> From the viewpoint of workability, especially deep drawability or shape fixability during press forming, elongation (EA) and Lankford value (r
value) and lower Y, S (low Y, R,
It is believed that it is better to reduce the amount of carbon used, and the manufacturing technology for this has been realized through ultra-low carbonization. However, on the other hand, a new problem has arisen in that such steel sheets are more prone to deformation during press working than conventional steels.

本発明は、上記の問題を有利に解決して、りん酸塩処理
性および対型かじり性を向上させた冷延鋼板およびその
製造方法を提供することを目的とする。
An object of the present invention is to advantageously solve the above-mentioned problems and provide a cold-rolled steel sheet with improved phosphate treatment properties and mold galling properties, and a method for producing the same.

く課題を解決するための手段〉 まず、この発明の解明経緯について説明する。Means to solve problems〉 First, the background to the elucidation of this invention will be explained.

加工性、すなわちr値やEJ2を改善するには、C量の
低減が有効であり、その結果、鋼は軟X化する。 しか
しながら一方で極低炭素鋼、とくにその連続焼鈍材は、
プレス金型との摺動抵抗が従来鋼に比べて大きいことが
判明した。
In order to improve workability, that is, r value and EJ2, reducing the amount of C is effective, and as a result, the steel becomes soft X. However, on the other hand, ultra-low carbon steel, especially its continuously annealed material,
It was found that the sliding resistance with the press mold was greater than that of conventional steel.

一方、摺動抵抗が大きくなると、プレス金型のビード部
など摺動の厳しい箇所ではひどい型かじりが発生し、そ
の結果鋼板の流入が悪くなり、この流入不足が原因とな
って破断に至る場合があった。
On the other hand, if the sliding resistance increases, severe mold galling will occur at places where sliding is severe, such as the bead of a press die, resulting in poor inflow of the steel plate, and this insufficient inflow may lead to breakage. was there.

そこで本発明者らは、上記の問題を解決すべく幾多の実
験および検討を重ねた結果、焼鈍後の冷延鋼板表面にN
i、Mn、Co、Mo、Cuの群より選ばれた金属を所
定量付着させ、さらに析出金属粒子径および析出金属間
距離を調整することによって、りん酸塩処理性および耐
型かじり性、特に潤滑状態が最も悪いと考えられる脱脂
状態(完全に油がきれている状態)のときの耐型かじり
性が向上することを見出した。
In order to solve the above problem, the inventors of the present invention conducted numerous experiments and studies, and found that N
By depositing a predetermined amount of a metal selected from the group consisting of i, Mn, Co, Mo, and Cu, and further adjusting the precipitated metal particle size and the distance between the precipitated metals, phosphate treatment properties and mold galling resistance, especially It has been found that mold galling resistance is improved in the degreased state (completely degreased from oil), which is considered to be the worst lubrication state.

本発明は、上記の知見に立脚するものである。The present invention is based on the above findings.

すなわち、上記目的を達成するために本発明によれば、
Ni、Mn%Co、Mo、Cuの群より選ばれる1種ま
たは2f!以上の金属を冷延鋼板表面に0. 5〜10
0mg/m’析出させ、この析出によって生じる前記鋼
板上の凸部面積率SSrが25〜60%で、かつ前記凸
部1個当たりの平均面積SGrが0.2〜0.8−2で
あることを特徴とするりん酸塩処理性および耐型かじり
性に優れた冷延鋼板が提供される。
That is, according to the present invention, in order to achieve the above object,
One type or 2f selected from the group of Ni, Mn%Co, Mo, and Cu! The above metals are applied to the surface of the cold rolled steel sheet. 5-10
0 mg/m' precipitation, and the area ratio SSr of the convex portions on the steel plate caused by this precipitation is 25 to 60%, and the average area SGr per one convex portion is 0.2 to 0.8-2. A cold rolled steel sheet having excellent phosphate treatment properties and die galling resistance is provided.

前記析出金属の粒子径が1戸以下で、かつ最近接析出金
属間距離が5戸以下であるのが好ましい。
Preferably, the particle size of the precipitated metal is one or less, and the distance between the nearest precipitated metals is five or less.

また、本発明によれば、酸洗、焼鈍の少なくとも一工程
を終了した冷延鋼板を、N1、Mn、Co、Mo、Cu
の群より選ばれる1種または2種以上の金属イオンを含
有するPH≧8の塩基性水溶液中で陰極電解処理を行う
ことを特徴とする前記冷延鋼板の製造方法が提供される
Further, according to the present invention, a cold-rolled steel sheet that has undergone at least one process of pickling and annealing is made of N1, Mn, Co, Mo, Cu.
There is provided a method for producing the cold-rolled steel sheet, characterized in that cathodic electrolytic treatment is performed in a basic aqueous solution with a pH≧8 containing one or more metal ions selected from the group.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

まず、本発明の基礎となった実験結果から説明する。First, the experimental results that form the basis of the present invention will be explained.

本発明では、鋼板表面にニッケルを0.5〜100 m
g/m2析出させることが必要である。
In the present invention, 0.5 to 100 m of nickel is applied to the surface of the steel plate.
It is necessary to deposit g/m2.

第1図に、種々の量のニッケルを付着させた冷延鋼板に
りん酸塩処理を施した時の、りん酸塩処理15秒後のり
ん酸塩結晶数とNi付着量(後述するSSr、SGrは
それぞれ25〜40%、03〜045μ2に制御)との
関係を示す。 同図から明らかなように、Ni付着量が
0.5mg/m2まではりん酸塩結晶数が急激に増加し
、それ以上Ni付着量を増加させてもりん酸塩結晶数の
増加は認められない。  また、100 mg/m”を
超えると急激に低下する。
Figure 1 shows the number of phosphate crystals and the amount of Ni deposited (SSr, which will be described later), after 15 seconds of phosphate treatment when cold-rolled steel sheets with various amounts of nickel were phosphate treated. SGr is controlled to 25-40% and 03-045μ2, respectively). As is clear from the figure, the number of phosphate crystals increases rapidly when the Ni adhesion amount reaches 0.5 mg/m2, and no increase in the number of phosphate crystals is observed even if the Ni adhesion amount is further increased. do not have. Moreover, when it exceeds 100 mg/m'', it decreases rapidly.

第2図に、各種Ni付着量におけるりん酸塩皮@重量曲
線(後述するSSr、SGrはそれぞれ45〜60%、
0.45〜o、s)m”に制御)を示す。 Ni付着量
が0. 5 mg/m2未満のときおよび100 In
g7m2を超えると、皮膜型歪曲線の立ち上がりが遅く
なり、皮膜重量が増加している。
Figure 2 shows phosphate skin @ weight curves for various Ni adhesion amounts (SSr and SGr, which will be described later, are 45 to 60%, respectively,
0.45~o,s)m"). When the Ni adhesion amount is less than 0.5 mg/m2 and 100 In
When it exceeds g7m2, the rise of the film strain curve becomes slow and the film weight increases.

第3図に、後述する方法で行った摺動試験時におけるN
i付着量と摩擦係数(後述するSSr、SGrはそれぞ
れ30〜45%、04〜0.6戸2に制御)との関係を
示す。
Figure 3 shows the N during the sliding test conducted using the method described later.
It shows the relationship between the adhesion amount and the friction coefficient (SSr and SGr, which will be described later, are controlled to 30 to 45% and 04 to 0.6 door 2, respectively).

このときの摺動試験は、試料厚さを0.7mmとし、押
さえ荷重: 100kgfの条件で行った。
The sliding test at this time was conducted under the conditions that the sample thickness was 0.7 mm and the holding load was 100 kgf.

同図より明らかなように無塗柚状態の鋼板の摩擦係数は
、0.5mg/m2のNi付着により激減している。 
また、Ni付着量が1100In/m’を超えると、摩
擦係数が増加していみ そして、さらに、本発明者らの詳細な実験により、金属
の析出によって生じる鋼板表面の凸部面積率SSrとそ
の凸部1個当りの平均面積SGrを所定の範囲に調整す
ることにより、りん酸塩処理性および耐型かじり性にす
ぐれた冷延鋼板を製造する方法を究明したのである。
As is clear from the figure, the coefficient of friction of the uncoated steel plate is drastically reduced by the adhesion of 0.5 mg/m2 of Ni.
Furthermore, when the amount of Ni deposited exceeds 1100 In/m', the friction coefficient increases, and furthermore, detailed experiments by the present inventors revealed that the area ratio SSr of convex portions on the steel plate surface caused by metal precipitation and its By adjusting the average area SGr of each convex portion within a predetermined range, the inventors have discovered a method for producing a cold rolled steel sheet with excellent phosphate treatment properties and die galling resistance.

ここで、SSrおよびSGrは下式より算出した。Here, SSr and SGr were calculated from the following formula.

Sr SGr 第4図にりん酸塩処理15秒後のりん酸塩結晶数/4x
lO−’am2 (図中に数字で示す)におよぼす凸部
面積率SSrと凸部1個当りの平均面積SGrの影響を
、第5図に摺動試験時の摩擦係数(図中に数字で示す)
におよぼす凸部面積率SSrと凸部1個当りの平均面積
SGrの影響を、それぞれ示す。 両図より明らかなよ
うに、凸部面積率SSrが25〜60%で、かつ凸部1
個当りの平均面積SGrが0.2〜0.8戸2のときに
、りん酸塩処理性および対型かじり性が向上している。
Sr SGr Figure 4 shows the number of phosphate crystals after 15 seconds of phosphate treatment/4x
Figure 5 shows the influence of the convex area ratio SSr and the average area SGr per convex part on lO-'am2 (indicated by numbers in the figure). show)
The effects of the convex area ratio SSr and the average area SGr per convex part on the are shown respectively. As is clear from both figures, the area ratio SSr of the convex portions is 25 to 60%, and the convex portions 1
When the average area SGr per piece is 0.2 to 0.8 2, the phosphate treatability and anti-mold galling properties are improved.

 なお、このときのNi付着量は10〜25 mg/m
2であった。
In addition, the amount of Ni deposited at this time is 10 to 25 mg/m
It was 2.

Ni付着量の増加によるりん酸塩結晶数の増加の理由は
次のとおりと考えられる。 すなわち、鋼板の表面に金
属ニッケルを微量付着させた場合、鋼板表面上のニッケ
ルは部分的にしか付着しておらず、ニッケルと鉄が不均
一に分布した状態が形成されている。 このような表面
はニッケルと鉄の電位差のため電気的に不均一な状態が
形成されている。 ニッケルが付着している部分はカソ
ード部となり、りん酸塩の結晶成長の起点となる。
The reason for the increase in the number of phosphate crystals due to the increase in the amount of Ni deposited is considered to be as follows. That is, when a small amount of metallic nickel is deposited on the surface of a steel sheet, the nickel on the surface of the steel sheet is only partially adhered, and a state in which nickel and iron are unevenly distributed is formed. Such a surface is electrically non-uniform due to the potential difference between nickel and iron. The part to which nickel is attached becomes the cathode part, which becomes the starting point for phosphate crystal growth.

さらに、りん酸塩処理性に対して、Ni付着量に最適範
囲が存在する理由は次のとおりと考えられる。 すなわ
ち、ニッケルが鋼板上を完全に覆う状態で付着すると、
表面の電気的不均一さが得られないのと同時に、鋼板側
からの鉄の溶出が妨げられ、りん酸塩処理性の向上効果
は認められない。 従ってニッケルの付着量は鋼板表面
がニッケルと鉄が適当に分布している状態、すなわち凸
部面積率SSrが25〜60%で、かつ凸部1個当りの
平均面iii S G rが0.2〜0.8μs2の分
布状態が好ましい。
Furthermore, the reason why there is an optimal range for the Ni adhesion amount with respect to phosphate treatment properties is considered to be as follows. In other words, when nickel is deposited completely covering the steel plate,
At the same time, electrical non-uniformity on the surface cannot be obtained, and at the same time, iron elution from the steel sheet side is hindered, and no improvement in phosphate treatability is observed. Therefore, the amount of nickel deposited is determined when nickel and iron are appropriately distributed on the surface of the steel sheet, that is, when the convex area ratio SSr is 25 to 60%, and the average area per convex portion iii S G r is 0. A distribution state of 2 to 0.8 μs2 is preferable.

そして、りん酸塩処理性の向上効果が期待できるNi付
着量範囲は0.5〜l OOmg/m2である。
The Ni coating amount range in which the effect of improving phosphate treatment properties can be expected is 0.5 to 100 mg/m2.

また、耐型かじり性に対しても、Ni付着量に最適範囲
が存在する理由は次のとおりと考えられる。 すなわち
、ニッケル処理鋼板は表面上の不均一 すなわち凸部面
積率SSrが25〜60%で、かつ凸部1個当りの平均
面積SGrが0.2〜0.8μ2の分布状態で付着して
いるニッケルの硬度が鉄に比べて高いため、プレス加工
時の鋼板の平滑化がされにくく、従って鋼板とプレス金
型との接触面積が小さくなるので、摩擦係数は低下する
。  しかし、ニッケルが鋼板上を完全に覆う状態で付
着すると、逆に接触面積が大きくなり、摩擦係数が高く
なる。 従って、対型かじり性に対して、Ni付着量に
最適範囲が存在するものと考えられる。
Furthermore, the reason why there is an optimum range for the amount of Ni deposited with respect to mold galling resistance is considered to be as follows. In other words, the nickel-treated steel sheet is adhered to the surface in a non-uniform manner, that is, with a convex area ratio SSr of 25 to 60% and an average area SGr per convex part of 0.2 to 0.8 μ2. Since the hardness of nickel is higher than that of iron, it is difficult to smooth the steel plate during press working, and as a result, the contact area between the steel plate and the press die becomes smaller, resulting in a decrease in the coefficient of friction. However, if nickel completely covers the steel plate, the contact area will become larger and the coefficient of friction will increase. Therefore, it is considered that there is an optimum range for the amount of Ni deposited with respect to anti-mold galling property.

さらに、より詳細な実験によって、本発明者らは、析出
Ni粒子径と最近接析出Ni間距離とを制御することに
より、より一層のりん酸塩処理性および対型かじり性が
図られることを見出したのである。 すなわち、析出N
i粒子径を1戸以下で、かつ最近接析出Ni間距離を5
−以下の分布状態にすることにより、より一層の向上が
認められたのである。 第6図にりん酸塩処理15秒後
のりん酸塩結晶数/4X10−’cm2 (図中に数字
で示す)におよぼす析出Ni粒子径と最近接析出Ni間
距離を、第7図にNi付着量、SSr、SGrをそれぞ
れ15〜20mg/m’ 、 30〜40%、0.3〜
0.45鱗2とした場合の摺動試験時の摩擦係数(図中
に数字で示す)におよぼす析出Ni粒子径と最近接析出
Ni間距離を、それぞれ示す。 両図より明らかなよう
に、りん酸塩処理性および対型かじり性のより一層の向
上のためには析出Ni粒子径が1戸以下で、かつ最近接
析出Ni間距離が5戸以下とするのが好ましい。
Furthermore, through more detailed experiments, the present inventors found that by controlling the precipitated Ni particle size and the distance between the nearest precipitated Ni, further phosphate treatability and anti-type galling property can be achieved. I found it. That is, the precipitation N
The i particle diameter is 1 unit or less, and the distance between the nearest precipitated Ni is 5
- Further improvement was observed by using the following distribution state. Figure 6 shows the diameter of precipitated Ni particles and the distance between the nearest precipitated Ni particles depending on the number of phosphate crystals/4X10-'cm2 (indicated by numbers in the figure) after 15 seconds of phosphate treatment, and Figure 7 shows the distance between the nearest precipitated Ni particles. Adhesion amount, SSr, SGr, respectively 15-20mg/m', 30-40%, 0.3-
The diameter of the precipitated Ni particles and the distance between the nearest precipitated Ni that affect the friction coefficient (indicated by numbers in the figure) during the sliding test when the scale is 0.45 are shown, respectively. As is clear from both figures, in order to further improve phosphating properties and galling properties, the precipitated Ni particle size should be one or less, and the distance between the nearest precipitated Ni should be five or less. is preferable.

次に、種々のpHに調整したNiを含む塩基性水溶液中
で、焼鈍された鋼板を陰極として電解した後の、鋼板の
耐食性と塩基性水溶液のpHとの関係をZa図に示す。
Next, a Za diagram shows the relationship between the corrosion resistance of the steel plate and the pH of the basic aqueous solution after electrolyzing the annealed steel plate as a cathode in a basic aqueous solution containing Ni adjusted to various pH.

同図より明らかなように塩基性水溶液のpHが8を境と
して、鋼板の耐食性が改善されている。 すなわち、p
H≧8では、鋼板表面はエツチングされず、表面の活性
点の消失がないので、鋼板の耐食性が劣化しないと考え
られる。 pHが8未満の場合、鋼板表面がエツチング
されることにより必要以上の凹凸が付与されてしまい、
後述するNi付着後のSSrとSGrが本発明範囲を満
足しないことを究明した。  したがって、水溶液のp
)lは8以上とした。
As is clear from the figure, the corrosion resistance of the steel sheet is improved when the pH of the basic aqueous solution reaches 8. That is, p
When H≧8, the steel plate surface is not etched and active points on the surface do not disappear, so it is considered that the corrosion resistance of the steel plate does not deteriorate. If the pH is less than 8, the surface of the steel plate will be etched, resulting in more unevenness than necessary.
It was found that SSr and SGr after Ni adhesion, which will be described later, do not satisfy the scope of the present invention. Therefore, p of the aqueous solution
)l was set to be 8 or more.

水溶液としては、水酸化ナトリウム、りん酸ソーダ、珪
酸ソーダなど、水に容易に溶解する塩基性物質を用いれ
ばよい。
As the aqueous solution, a basic substance that easily dissolves in water, such as sodium hydroxide, sodium phosphate, or sodium silicate, may be used.

電解の条件は鋼板を陰極とする必要がある。 陰極電解
により、鋼板表面にニッケルが析出し、この部分がカソ
ード部となり、りん酸塩の結晶成長の起点となる。 こ
れにより、りん酸塩処理性が向上すると考えられる。 
陽極電解した場合は、鋼板表面にりん酸塩の結晶成長の
起点となるカソード部、すなわちニッケルの析出が起こ
らず、りん酸塩処理性の向上が望めない。 装置の設計
上、交番電流を使用する必要があるときは、電解の最終
段階で鋼板が陰極となるようにすれば電解の効果は失わ
れない。
The conditions for electrolysis require that a steel plate be used as the cathode. Due to cathodic electrolysis, nickel is deposited on the surface of the steel plate, and this part becomes the cathode part, which becomes the starting point for phosphate crystal growth. This is thought to improve phosphate treatment properties.
In the case of anodic electrolysis, the cathode region, which is the starting point for phosphate crystal growth, does not occur on the steel sheet surface, that is, the precipitation of nickel does not occur, and no improvement in phosphate treatment properties can be expected. If the design of the device requires the use of alternating current, the effect of electrolysis will not be lost if the steel plate serves as the cathode in the final stage of electrolysis.

電流密度は、短時間のうちに電解の効果を出現させるた
めには0. 7  A/ddの以上とすることが好まし
い。 また、電解時間は、電流密度が0.7  A/d
m’以上であれば0.5秒以上で効果があられれ、1秒
以上行えば十分である。
The current density should be set to 0.00 to produce the electrolytic effect in a short time. 7 A/dd or more is preferable. In addition, the electrolysis time is such that the current density is 0.7 A/d.
If the temperature is m' or more, the effect can be achieved in 0.5 seconds or more, and it is sufficient to perform it for 1 second or more.

さらに、Ni以外のMn、Co、Mo、Cuの金属につ
いても同様の結果を得た。
Furthermore, similar results were obtained for metals other than Ni, such as Mn, Co, Mo, and Cu.

本発明者らは、上記した基礎的データに基づき、研究を
重ねた結果、以下のようにNi、Mn%C01M01C
uの群より選ばれた金属の付着量およびその分布状態を
制御することによって、りん酸塩処理性および耐型かじ
り性にすぐれた冷延鋼板が得られることを究明したので
ある。
As a result of repeated research based on the above-mentioned basic data, the present inventors found that Ni, Mn%C01M01C
The inventors have discovered that a cold-rolled steel sheet with excellent phosphate treatment properties and die galling resistance can be obtained by controlling the deposited amount and distribution state of metals selected from the group u.

この発明によれば、Ni、Mn、Co、Mo、Cuの群
より選ばれた金属の付着量が0.5〜100 B/+n
2であることが必要である。  Ni、Mn、Co、M
o、Cuの群より選ばれた金属の付着量が0.5〜10
0 mg/m2であることが必要である。 Ni、Mn
According to this invention, the amount of deposited metal selected from the group of Ni, Mn, Co, Mo, and Cu is 0.5 to 100 B/+n.
It is necessary to be 2. Ni, Mn, Co, M
o, the adhesion amount of metal selected from the group of Cu is 0.5 to 10
It is necessary that it be 0 mg/m2. Ni, Mn
.

Co、Mo、Cuの群より選ばれた金属の付着量が、0
.5mg/m’未満の場合、および100mg7m”を
こえる場合では、優れたりん酸塩処理性および対型かじ
り性を得ることができない。
The adhesion amount of metal selected from the group of Co, Mo, and Cu is 0.
.. If it is less than 5 mg/m' or more than 100 mg/m'', excellent phosphate treatment properties and anti-mold galling properties cannot be obtained.

さらに、そのときの分布状態は、凸部面積率SSrが2
5〜60%で、かつ凸部1個当たりの平均面積SGrが
0.2〜0.8JjJ11’である必要がある。 凸部
面積率SSrが25%未満または60%を超え、また、
凸部1個当たりの平均面積SGrが0.2μs2未満ま
たは0.8戸2を超える場合では、優れたりん酸塩処理
性および対型かじり性を得ることができない。
Furthermore, the distribution state at that time has a convex area ratio SSr of 2
5 to 60%, and the average area SGr per convex portion needs to be 0.2 to 0.8 JjJ11'. The convex area ratio SSr is less than 25% or more than 60%, and
If the average area SGr per convex portion is less than 0.2 μs2 or more than 0.8 μs2, excellent phosphate treatment properties and anti-mold galling properties cannot be obtained.

なお、金属の付着方法としては、電気めっき、置換めっ
き、蒸着めっき等のいずれの方法を用いても良く、要は
金属付着量およびその分布状態を前述した適正範囲に収
めることが重要である。 その方法としては以下のもの
がある。
Note that any method such as electroplating, displacement plating, or vapor deposition plating may be used as the method for depositing the metal, and it is important to keep the amount of metal deposited and its distribution within the above-mentioned appropriate range. The following methods are available.

(1)あらかしめ鋼板表面の粗度を制御しておく方法 (2)所望の分布状態の穴を有するスリット越しにメツ
キする方法。
(1) A method of controlling the roughness of the roughened steel plate surface. (2) A method of plating through a slit having holes with a desired distribution.

〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.

(実施例1) 板厚0.8mmの冷延鋼板をp)(−t 1.0 、 
15 mol/Ilの濃度のNaOH水溶液(温度50
℃)中で、種々の分布状態の穴を有するスリットを用い
て2秒の電解を行った。 電解電流密度は、0.5  
A/dm2〜20  A/dm’の範囲で変化させて行
った。 極性は鋼板を陽極あるいは陰極として、極性の
違いによる差も調べた。 次いで、電解しなかったもの
もあわせて、りん酸塩処理の試験に供した。 りん酸塩
処理は、下記により施した。
(Example 1) A cold-rolled steel plate with a plate thickness of 0.8 mm is p) (-t 1.0,
NaOH aqueous solution with a concentration of 15 mol/Il (temperature 50
℃), electrolysis was carried out for 2 seconds using slits with various distributions of holes. Electrolytic current density is 0.5
The temperature was varied within the range of A/dm2 to 20 A/dm'. Differences in polarity were also investigated using a steel plate as an anode or a cathode. Next, the samples that were not electrolyzed were also subjected to a phosphate treatment test. The phosphate treatment was performed as follows.

処理液:日本バーカライジング社製 パルボンド L 3020処理液 処理方法: FLILL DIP方式 処理条件=42℃で120秒間浸漬 評価方法:りん酸塩結晶密度、 pH12のNaOH水溶液中での酸素 還元電流値 ここで、りん酸塩結晶密度が高いほうがりん酸塩処理性
が良好であり、NaOH水溶液中でカソード分極し、 
 550 mVvss、c、E、になった時に流れる電
流値、すなわち酸素還元電流値が低い方が欠陥が少ない
皮膜が形成されていると言える。
Treatment liquid: Palbond L 3020 manufactured by Nihon Vercalizing Co., Ltd. Treatment method: FLILL DIP method Treatment conditions = immersion at 42°C for 120 seconds Evaluation method: Phosphate crystal density, oxygen reduction current value in NaOH aqueous solution of pH 12 Here , the higher the phosphate crystal density, the better the phosphate treatment properties, and the cathodically polarized in NaOH aqueous solution,
It can be said that a film with fewer defects is formed when the current value flowing when the temperature reaches 550 mVvss, c, E, that is, the oxygen reduction current value is lower.

また、裸鋼板の耐食性を調べるため、湿潤(50℃、相
対湿度98%)30分、乾燥(20℃相対湿度50%)
30分を1サイクルとして、4サイクルの発錆試験を行
い、錆の発生を目視で5段階評価した。 電解条件とと
もに実験結果を表1に示す。 その評価方法は次の通り
である。
In addition, in order to investigate the corrosion resistance of bare steel sheets, we conducted a wet test (50°C, relative humidity 98%) for 30 minutes and a drying test (20°C relative humidity 50%).
A 4-cycle rusting test was conducted, with each cycle being 30 minutes, and the occurrence of rust was visually evaluated in 5 grades. Table 1 shows the experimental results along with the electrolytic conditions. The evaluation method is as follows.

1・・・・・・発錆面積O% 2・・・・・・発錆面積O%超〜25%以下3・・・・
・・発錆面積25%超〜50%以下4・・・・・・発錆
面積50%超〜75%以下5・・・・・・発錆面積75
%超 また、脱脂状態で摺動試験を行い、その時の摩擦係数の
値も表1に示す。 ここで、摺動試験方法について示す
a  第9a図に示す摺動性測定装置により、チャック
4に挟持した試験片5を引き抜くときの引き抜き荷重を
引張試験機1により測定した。 シリンダー3によるポ
ンチ2の押さえ荷重は100 kgfとした。 試験片
5は無塗油のものについて、20mmX300mmx0
.8mmのものを用意した。
1...Rusted area 0% 2...Rusted area more than 0% to 25% or less 3...
...Rusted area more than 25% to less than 50%4...Rusted area more than 50% to less than 75%5...Rusted area 75
In addition, a sliding test was conducted in a degreased state, and the friction coefficient values at that time are also shown in Table 1. Here, the sliding test method will be explained using the sliding property measuring device shown in FIG. The pressing load of the punch 2 by the cylinder 3 was 100 kgf. Test piece 5 is unoiled, 20mm x 300mm x 0
.. An 8mm one was prepared.

また、試験片5を引き抜く速度は500mm/min、
摺動距離は50mmとした。
In addition, the speed at which the test piece 5 is pulled out is 500 mm/min,
The sliding distance was 50 mm.

なお、第9b図に示す形状でDが15mm、hが1■の
ポンチ2で、試験片5に垂直荷重N(kgf)をかけ、
上方向へ引き抜く時の荷重F(kgf)を測定し、F/
2Nから、摩擦係数を求めた。
In addition, a vertical load N (kgf) was applied to the test piece 5 using a punch 2 with a shape shown in Fig. 9b, D of 15 mm, and h of 1 mm.
Measure the load F (kgf) when pulling upward, and calculate F/
The friction coefficient was determined from 2N.

また、SSr、SGrは、鋼板表面に画像処理を施して
、処理後の写真の色の濃淡の面積比率から算出した。 
析出金属粒径および最近接析出粒子間距離については、
画像処理後の写真から直接測定して求めた。 ともに、
測定面積は5mmX5mm、n数5で行った。
Further, SSr and SGr were calculated from the area ratio of color shading in a photograph after image processing was performed on the surface of the steel plate.
Regarding the precipitated metal particle size and the distance between the nearest precipitated particles,
It was determined by direct measurement from a photograph after image processing. Together,
The measurement area was 5 mm x 5 mm, and the number of samples was 5.

表1より明らかなように、本発明例は、いずれも、比較
例に比べて優れたりん酸塩処理性と対型かじり性を示し
ている。
As is clear from Table 1, all of the examples of the present invention exhibit superior phosphate treatment properties and anti-mold galling properties compared to the comparative examples.

さらに、金属付着量、SSr、SGrがそれぞれ30〜
50mg/[11235〜50%、0.35〜0.5戸
’の場合の金属粒子径および最近接析出金属間距離を変
えた結果を表2に示す。 表2より、析出金属粒子径を
1μs以下で、かつ最近接析出金属間距離を5μ以下に
することにより、より一層のりん酸塩処理性および耐型
かじり性の向上が図られることがわかる。
Furthermore, the metal adhesion amount, SSr, and SGr are each 30~
Table 2 shows the results of varying the metal particle diameter and the distance between the nearest precipitated metals in the case of 50 mg/[11235 to 50% and 0.35 to 0.5'. Table 2 shows that by setting the precipitated metal particle diameter to 1 μs or less and the distance between the nearest precipitated metals to 5 μm or less, the phosphate treatability and mold galling resistance can be further improved.

〈発明の効果〉 本発明は以上説明したように構成されているので、本発
明の冷延鋼板はりん酸塩処理性と対型かじり性の両者に
優れ、たとえば自動車用鋼板などの用途に用いて好適で
ある。
<Effects of the Invention> Since the present invention is configured as described above, the cold rolled steel sheet of the present invention has excellent both phosphate treatment properties and mold galling properties, and can be used for applications such as steel plates for automobiles. It is suitable.

また、本発明の製造方法によれば、りん酸塩処理性と耐
型かじり性に優れ、かつ耐食性に優れた冷延鋼板を製造
することができる。
Moreover, according to the manufacturing method of the present invention, it is possible to manufacture a cold-rolled steel sheet that has excellent phosphate treatment properties, mold galling resistance, and corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Niを付着させた冷延鋼板に15秒間りん酸
塩処理を施したときの、Ni付着量とりん酸塩結晶数と
の関係を示すグラフである。 第2図は、各fiNi付着量におけるりん酸塩処理時間
と皮膜重量との関係を示すグラフである。 第3図は、摺動時における鋼板上のNi付着量と摩擦係
数との関係を示すグラフである。 第4図は、りん酸塩処理15秒後のりん酸塩結晶数にお
よぼす凸部面積率SSrと凸部1個当りの平均面積SG
rの影響を示す図である。 第5図は、摺動試験時の摩擦係数におよぼす凸部面積率
SSrと凸部1個当りの平均面積SGrの影響を示す図
である。 第6図は、りん酸塩処理15秒後のりん酸塩結晶数にお
よぼす析出金属粒子径と最近接析出金属間距離の影響を
示す図である。 第7図は、摺動試験時の摩擦係数におよぼす析出金属粒
子径と最近接析出金属間距離の影響を示す図である。 第8図は、鋼板の耐食性と塩基性水溶液のpHとの関係
を示すグラフである。 第9a図および第9b図は、それぞれ摺動性測定装置の
模式図およびそれに用いるポンチの説明図である。 符号の説明 1・・・引張試験機、 2・・・ポンチ、 3・・・シリンダー 4・・・チャック、 5・・・試験片 FIG、1 Ni付1量(m9/ml) FIG、2 す、り、酸塩拠王!埼間(sec ) FIG、4 SGr ()1m’) FIG、3 Ni付、IF t (mg/m2) FIG、5 SGr ()1m” ) F I G、 6 オ斤土−tJも孝ユイワ右1(pm) FIG、8 ま東基・1生べ溶ンinp口 FIG7 斬土金属粒子経 0、+m) F I G、 9a F I G、 9b
FIG. 1 is a graph showing the relationship between the amount of Ni deposited and the number of phosphate crystals when a cold rolled steel sheet to which Ni was deposited was subjected to phosphate treatment for 15 seconds. FIG. 2 is a graph showing the relationship between phosphate treatment time and film weight for each amount of fiNi deposited. FIG. 3 is a graph showing the relationship between the amount of Ni deposited on the steel plate and the coefficient of friction during sliding. Figure 4 shows the effect of the convex area ratio SSr on the number of phosphate crystals after 15 seconds of phosphate treatment and the average area SG per convex part.
It is a figure showing the influence of r. FIG. 5 is a diagram showing the influence of the convex area ratio SSr and the average area per convex part SGr on the friction coefficient during the sliding test. FIG. 6 is a diagram showing the influence of the precipitated metal particle diameter and the distance between the nearest precipitated metals on the number of phosphate crystals after 15 seconds of phosphate treatment. FIG. 7 is a diagram showing the influence of the precipitated metal particle diameter and the distance between the nearest precipitated metals on the friction coefficient during a sliding test. FIG. 8 is a graph showing the relationship between the corrosion resistance of a steel plate and the pH of a basic aqueous solution. FIG. 9a and FIG. 9b are a schematic diagram of a slidability measuring device and an explanatory diagram of a punch used therein, respectively. Explanation of symbols 1...Tensile tester, 2...Punch, 3...Cylinder 4...Chuck, 5...Test piece FIG, 1 1 amount with Ni (m9/ml) FIG, 2 , ri, acid base king! Saima (sec) FIG, 4 SGr ()1m') FIG, 3 With Ni, IF t (mg/m2) FIG, 5 SGr ()1m'') FIG, 6 Okoto-tJ is also Takayuiwa right 1 (pm) FIG, 8 Toki 1 raw inp mouth FIG 7 Zando metal particle diameter 0, +m) FIG, 9a FIG, 9b

Claims (3)

【特許請求の範囲】[Claims] (1)Ni、Mn、Co、Mo、Cuの群より選ばれる
1種または2種以上の金属を冷延鋼板表面に0.5〜1
00mg/m^2析出させ、この析出によって生じる前
記鋼板上の凸部面積率 SSrが25〜60%で、かつ前記凸部1個当たりの平
均面積SGrが0.2〜0.8μm^2であることを特
徴とするりん酸塩処理性および耐型かじり性に優れた冷
延鋼板。
(1) One or more metals selected from the group of Ni, Mn, Co, Mo, and Cu are applied to the surface of the cold-rolled steel sheet in an amount of 0.5 to 1
00 mg/m^2 is precipitated, and the convex area ratio SSr on the steel plate caused by this precipitation is 25 to 60%, and the average area SGr per convex part is 0.2 to 0.8 μm^2. A cold-rolled steel sheet with excellent phosphate treatment properties and mold galling resistance.
(2)前記析出金属の粒子径が1μm以下で、かつ最近
接析出金属間距離が5μm以下である請求項1記載のり
ん酸塩処理性および耐型かじり性に優れた冷延鋼板。
(2) The cold-rolled steel sheet with excellent phosphate treatment properties and mold galling resistance according to claim 1, wherein the particle size of the precipitated metal is 1 μm or less, and the distance between the nearest precipitated metals is 5 μm or less.
(3)酸洗、焼鈍の少なくとも一工程を終了した冷延鋼
板を、Ni、Mn、Co、Mo、Cuの群より選ばれる
1種または2種以上の金属イオンを含有するpH≧8の
塩基性水溶液中で陰極電解処理を行うことを特徴とする
請求項1に記載の冷延鋼板の製造方法。
(3) A cold-rolled steel sheet that has undergone at least one process of pickling and annealing is treated with a base of pH≧8 containing one or more metal ions selected from the group of Ni, Mn, Co, Mo, and Cu. 2. The method for producing a cold-rolled steel sheet according to claim 1, wherein the cathodic electrolytic treatment is performed in a neutral aqueous solution.
JP2033320A 1990-02-14 1990-02-14 Cold-rolled steel sheet with excellent phosphatability and mold galling resistance Expired - Fee Related JPH083154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033320A JPH083154B2 (en) 1990-02-14 1990-02-14 Cold-rolled steel sheet with excellent phosphatability and mold galling resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033320A JPH083154B2 (en) 1990-02-14 1990-02-14 Cold-rolled steel sheet with excellent phosphatability and mold galling resistance

Publications (2)

Publication Number Publication Date
JPH03236491A true JPH03236491A (en) 1991-10-22
JPH083154B2 JPH083154B2 (en) 1996-01-17

Family

ID=12383269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033320A Expired - Fee Related JPH083154B2 (en) 1990-02-14 1990-02-14 Cold-rolled steel sheet with excellent phosphatability and mold galling resistance

Country Status (1)

Country Link
JP (1) JPH083154B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647585A (en) * 1979-09-28 1981-04-30 Kawasaki Steel Corp Manufacture of surface treated metal plate with excellent corrosion resistance and paintability
JPS6230264A (en) * 1985-08-01 1987-02-09 Konishiroku Photo Ind Co Ltd Copying machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647585A (en) * 1979-09-28 1981-04-30 Kawasaki Steel Corp Manufacture of surface treated metal plate with excellent corrosion resistance and paintability
JPS6230264A (en) * 1985-08-01 1987-02-09 Konishiroku Photo Ind Co Ltd Copying machine

Also Published As

Publication number Publication date
JPH083154B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
KR102246752B1 (en) Method for producing a part from a steel sheet coated with a metallic coating based on aluminum
US10316381B2 (en) Method for producing hot-pressed member
US4464232A (en) Production of one-side electroplated steel sheet
CN102782193B (en) Surface-treated metal sheet and process for producing formed article from the surface-treated metal sheet
US5336567A (en) Nickel alloy electroplated cold-rolled steel sheet excellent in press-formability and phosphating-treatability
JP4238153B2 (en) High-strength electrogalvanized steel sheet excellent in uniform appearance and method for producing the same
JPH04247849A (en) Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture
JPS59232275A (en) Cold rolled steel sheet having excellent phosphate treatability and its production
JPH03236491A (en) Cold rolled steel sheet excellent in phosphating property and die galling resistance and its production
JP2006299351A (en) Steel sheet having excellent galling resistance and chemical conversion treatability
WO2021065025A1 (en) Surface-treated galvanized steel plate and method for production thereof
US5316652A (en) Method for manufacturing iron-zinc alloy plated steel sheet having two plating layers and excellent in electropaintability and pressformability
JP2013136825A (en) Method for producing chemical conversion-treated electrolytic galvanized steel sheet with excellent appearance
JPH0429742B2 (en)
EP0562115B1 (en) Aluminum alloy plate with excellent formability and production thereof
JPS59159994A (en) Surface-treated steel sheet withsuperior suitability to chemical conversion treatment
JPH0663113B2 (en) Method for producing Zn-based electroplated steel sheet having excellent chemical conversion treatability
JPH11200091A (en) Production of tin-free steel excellent in corrosion resistance
JPH02101200A (en) Cold-rolled steel sheet having excellent corrosion resistance and property to be phosphated
JPH07166371A (en) Zn-ni based alloy plated steel sheet excellent in corrosion resistance, powdering resistance, low temperature impact peeling resistance, slidability and phosphating property
JP3183630B2 (en) Electrogalvanized steel sheet
JPH02225652A (en) Manufacture of high image clarity steel sheet
JP4638619B2 (en) Al alloy plate excellent in press formability and manufacturing method thereof
KR100299455B1 (en) SURFACE TREATMENT AGENT AND METHOD FOR TREATING SURFACE OF Fe-Zn BASED ALLOY PLATED STEEL SHEET USING THE SAME
JPH0247269A (en) Cold rolled steel sheet having excellent mold galling resistance and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees