JPH03231484A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH03231484A
JPH03231484A JP2778790A JP2778790A JPH03231484A JP H03231484 A JPH03231484 A JP H03231484A JP 2778790 A JP2778790 A JP 2778790A JP 2778790 A JP2778790 A JP 2778790A JP H03231484 A JPH03231484 A JP H03231484A
Authority
JP
Japan
Prior art keywords
optical system
active layer
whose
afocal optical
excimer laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2778790A
Other languages
Japanese (ja)
Inventor
Tatsuya Asaga
浅賀 達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2778790A priority Critical patent/JPH03231484A/en
Publication of JPH03231484A publication Critical patent/JPH03231484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form the boundary between a window region and an active Iayer as a steep interface and to manufacture a semiconductor Iaser whose characteristic is stable, whose life is long and whose output is high by a method wherein an excimer laser beam is irradiated through a Kepler-type afocal optical system. CONSTITUTION:In order to form a window region, ultraviolet rays from an excimer laser 201 are magnified by using a Kepler-type afocal optical system 202 composed of two spherical convex lenses during a growth operation of an active layer; they are made to be a parallel beam; the shape of the beam is reshaped to be a square by using a cylindrical lens 204; the beam is passed through a mask 205 on which a stripe pattern has been formed; the beam is reflected by a mirror 206 and is focused on a substrate 211 by using a reducing lens 207. By this constitution, a sharp stripe pattern is obtained on the substrate 211, and a semiconductor laser whose characteristic is stable, whose life is long and whose output is high can be manufactured with good reproducibility. When a spatial filter 203 is installed at the Kepler-type afocal optical system 202, an optical component which causes a noise can be removed and only an essential parallel luminous flux can be guided to the mask 205.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、共振器端面の劣化を防止した半導体レーザの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor laser in which deterioration of a resonator end face is prevented.

[従来の技術] 従来、有機金属化学気相成長法により、m−v族化合物
半導体からなる活性層の成長中に、該活性層の共振器端
面近傍にのみエキシマレーザ光を照射し、該活性層の共
振器端面近傍に該活性層の混晶組成比と異なる混晶組成
比を有するウィンド領域を形成するウィンド型半導体レ
ーザの製造方法に於て、エキシマレーザ光の照射光学系
についてはなんら限定されていなかった。
[Prior Art] Conventionally, during the growth of an active layer made of an m-v group compound semiconductor using organometallic chemical vapor deposition, excimer laser light is irradiated only in the vicinity of the cavity end face of the active layer, and the active layer is grown. In the manufacturing method of a window type semiconductor laser in which a window region having a mixed crystal composition ratio different from that of the active layer is formed near the cavity end face of the layer, no restrictions are placed on the irradiation optical system for excimer laser light. It had not been done.

[発明が解決しようとする課題] しかし従来の技術では、エキシマレーザ光の照射光学系
に以下のような問題点がある。
[Problems to be Solved by the Invention] However, in the conventional technology, the excimer laser beam irradiation optical system has the following problems.

エキシマレーザは本来、ビームの平行度が悪いため、単
にビームを拡大縮小しマスクによって成長面に結像させ
ると、パターンがぼけてしまい、切れの良い像が得られ
なかった。したがってウィンド領域と活性層の境界が不
明瞭となり、ウィンド領域の端面劣化の抑制効果を損な
う、あるいは発振波長がずれる等の問題が起こった。本
発明はそのような課題を解決するもので、その目的とす
るところはウィンド領域と活性層の境界が急峻な特性の
良いウィンド型レーザを再現性良く製造する方法を提供
するところにある。
Excimer laser beams originally have poor parallelism, so if the beam was simply expanded or contracted and imaged onto the growth surface using a mask, the pattern would become blurred and a sharp image could not be obtained. Therefore, the boundary between the window region and the active layer becomes unclear, causing problems such as impairing the effect of suppressing end face deterioration of the window region or shifting the oscillation wavelength. The present invention is intended to solve such problems, and its purpose is to provide a method for manufacturing a window type laser with good characteristics and a sharp boundary between the window region and the active layer with good reproducibility.

[課題を解決するための手段] 上記課題を解決するため、本発明の半導体レーザの製造
方法は、 有機金属化学気相成長法により、m−v族化合物半導体
からなる活性層の成長中に、該活性層の共振器端面近傍
にのみエキシマレーザ光を照射し、該活性層の共振器端
面近傍に該活性層の混晶組成比と異なる混晶組成比を有
するウィンド領域を形成するウィンド型半導体レーザの
製造方法に於て、該エキシマレーザ光をケプラー型アフ
ォーカル光学系を通して照射することを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the method for manufacturing a semiconductor laser of the present invention includes the steps of: A window type semiconductor in which a window region having a mixed crystal composition ratio different from that of the active layer is formed near the cavity end face of the active layer by irradiating excimer laser light only in the vicinity of the cavity end face of the active layer. The method for manufacturing a laser is characterized in that the excimer laser light is irradiated through a Keplerian afocal optical system.

前記ケプラー型アフォーカル光学系がスペーシャルフィ
ルターを具備することを特徴とする。
The Keplerian afocal optical system is characterized in that it includes a spatial filter.

[実 施 例] 第1図(a)、 (b)は、本発明の実施例に於けるウ
ィンド型半導体レーザの(a)斜視図、(t+) A−
A’断面図である。 (102)n型GaAs基板上に
、(103)n型GaAsバッファ層、(104)n型
A 1 e、aG a 6,6A sクラッド層、 (
109)  A 1 ay+sG aa、ssA s活
性層、 (105)p型A 1 s、4G a @、6
A sクラッド層、 (106)I)型GaAsコンタ
クト層を順次有機金属化学気相成長法で積層形成する。
[Example] FIGS. 1(a) and 1(b) are (a) perspective view and (t+) A- of a window type semiconductor laser in an example of the present invention.
It is an A' sectional view. (102) n-type GaAs substrate, (103) n-type GaAs buffer layer, (104) n-type A 1 e, aGa 6,6A s cladding layer, (
109) A 1 ay+sG aa, ssA s active layer, (105) p-type A 1 s, 4G a @, 6
An As cladding layer and a (106)I) type GaAs contact layer are sequentially laminated by metalorganic chemical vapor deposition.

このときの基板温度は700°C1成長圧力は100T
orrである。活性層を形成するときには、へき開面近
傍に紫外光を照射する。光照射部では有機金属化学気相
成長法の■族原料であるTMG()ツメチルガリウム)
、及びTMA(トリメチルアルミニウム)等の有機金属
の分解効率が非照射部と異なるため、へき開面近傍のみ
にアルミニウム含有料の多い(110) A I L2
G a s、sA sウィンド領域が形成できる。有機
金属化学気相成長法による半導体層の成長後エッチング
工程により逆メサ状のリブを形成し、再び有機金属化学
気相成長法により(11z)ZnSe層を成長しツブ脇
を埋め込む。さらに熱CVD法により(107)SiO
2層を形成し、メサ上をストライブ状にエツチングして
から(108)I)型オーミック電極を蒸着する。 (
102)基板側にも(101)n型オーミック電極を蒸
着形成する。
At this time, the substrate temperature was 700°C, and the growth pressure was 100T.
It is orr. When forming the active layer, ultraviolet light is irradiated near the cleavage plane. In the light irradiation part, TMG (trimethylgallium), which is a group III raw material for organometallic chemical vapor deposition, is used.
Since the decomposition efficiency of organic metals such as
Gas, sA s window regions can be formed. After the semiconductor layer is grown by metal-organic chemical vapor deposition, an etching process is performed to form an inverted mesa-shaped rib, and a (11z)ZnSe layer is grown again by metal-organic chemical vapor deposition to fill the sides of the protrusions. Furthermore, by thermal CVD method, (107)SiO
After forming two layers and etching the mesa in a stripe shape, a (108) I type ohmic electrode is deposited. (
102) A (101) n-type ohmic electrode is also formed on the substrate side by vapor deposition.

第2図に本発明の実施例に於ける有機金属化学気相成長
装置の主要構成図を示す。 (209)の原料ガス導入
系から(210)の反応管中に原料ガスを入れ、 (2
11)の加熱された基板上に流して化合物半導体薄膜を
成長する。ウィンド領域の形成には、活性層成長中に、
 (201)のエキシマレーザからの紫外光を、2枚の
球面凸レンズからなる(202)ケプラー型アフォーカ
ル光学系と(203)スペーシャルフィルターで、拡大
すると共に平行光にする。(204)のシリンドリカル
レンズでビーム形状を正方形に整形して(205)のス
トライブパターンを形成したマスクを通し、 (206
)のミラーで反射させ、 (207)の縮小レンズで基
板上にストライプ状くターンの焦点を結ばせる。この際
、 (203)スペーシャルフィルターによりノイズと
なるような光成分はカットされ必要な平行光束のみがマ
スクへ導かれる。従って(211)基板上にはシャープ
なストライブパターンが得られる。
FIG. 2 shows a main configuration diagram of an organometallic chemical vapor deposition apparatus in an embodiment of the present invention. The raw material gas is introduced into the reaction tube (210) from the raw material gas introduction system (209), and (2
11) to grow a compound semiconductor thin film on the heated substrate. To form the window region, during active layer growth,
The ultraviolet light from the excimer laser (201) is expanded and made into parallel light by a Keplerian afocal optical system (202) consisting of two spherical convex lenses and a spatial filter (203). The beam shape is shaped into a square using a cylindrical lens (204), and passed through a mask with a stripe pattern (205).
) is reflected by the mirror, and the reduction lens (207) focuses the turns in a stripe pattern on the substrate. At this time, the (203) spatial filter cuts out light components that would cause noise, and only the necessary parallel light flux is guided to the mask. Therefore, a sharp stripe pattern can be obtained on the (211) substrate.

第3図は本発明の実施例に於ける基板上のエキシマレー
ザの照射光強度パターンを示した図である。図の横軸は
基板上に照射されたストライブに対し垂直方向の距離を
示している。この場合基板上では100μm幅の照射領
域が200μm間隔になるよう光学系及びマスクを設計
しである。(302)の破線で示したガリレオ盟アフォ
ーカル光学系を使用した場合の照射光強度ノくターンと
比べ(301)の実線で示したケプラー型アフォーカル
光学系とスペーシャルフィルターを使用した場合の照射
光強度パターンは非常に切れの良い設計通りのストライ
プパターンとなっていることがわかる。
FIG. 3 is a diagram showing an intensity pattern of excimer laser irradiation light on a substrate in an embodiment of the present invention. The horizontal axis of the figure indicates the distance in the vertical direction to the stripe irradiated onto the substrate. In this case, the optical system and mask are designed so that irradiation areas of 100 μm width are spaced at intervals of 200 μm on the substrate. Compared to the irradiation light intensity curve when using the Galilean afocal optical system shown by the broken line in (302), the curve when using the Keplerian afocal optical system and the spatial filter shown by the solid line in (301) It can be seen that the irradiated light intensity pattern is a very sharp striped pattern as designed.

[発明の効果コ 以上述べたように本発明の半導体レーザの製造方法によ
れば、以下のような効果が得られる。
[Effects of the Invention] As described above, according to the method of manufacturing a semiconductor laser of the present invention, the following effects can be obtained.

ウィンド領域成長のためストライプ状にエキシマレーザ
−光を基板に照射する場合、従来は、ストライプパター
ンの照射部と非照射部の境界がぼけてしまうので、成長
層に於いてもウィンド領域と活性層の遷移領域が長くな
り、半導体レーザの共振器長の大部・分を占め、本来活
性層であるべき場所が遷移領域にとられてしまうが、本
発明のケプラー型アフォーカル光学系とスペーシャルフ
ィルターを使用した光学系により、遷移幅が数十μmと
なり共振器要約300μmと比べ十分急峻な界面が得ら
れるので、特性の安定した長寿命で高出力の半導体レー
ザを再現性良く製造できる。またウェハ内の光照射強度
のばらつきが抑制されるため半導体レーザの特性のばら
つきがなくなり歩留まりが向上する。
Conventionally, when a substrate is irradiated with excimer laser light in a stripe pattern for window region growth, the boundary between the irradiated and non-irradiated areas of the stripe pattern becomes blurred, so even in the growth layer, the window region and active layer are separated. The transition region becomes longer, occupies most of the cavity length of the semiconductor laser, and the transition region takes up the place that should normally be the active layer. However, the Keplerian afocal optical system of the present invention and the spatial An optical system using a filter has a transition width of several tens of micrometers, which provides a sufficiently steep interface compared to the 300 micrometers of a resonator, making it possible to manufacture a high-output semiconductor laser with stable characteristics, long life, and high reproducibility. Further, since variations in the light irradiation intensity within the wafer are suppressed, variations in the characteristics of semiconductor lasers are eliminated and the yield is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)は、本発明の実施例に於けるウ
ィンド型半導体レーザの(a)斜視図、 (b)A−A
’断面図。 第2図は、本発明の実施例に於る有機金属化学気相成長
装置の主要構成図。 第3図は本発明の実施例に於ける基板上のエキシマレー
ザの照射光強度パターンを示した図。 (101)   ・・・n型オーミック電極(102)
−−・・n型GaAs基板 (103)・・・・n型GaAsバッファ層(104) n型A I 14G a s、eA sクラッド層(1
05)  ・ ・ ・ p型A 111.aG a e、sA sクラッド層(
106)  ・・・・p型GaA、sコンタクト層(1
07)・・・・SiO2層 (108)  ・・・・p型オーミック電極(109)
 ・・・・AIs、+sGa@、esAs活性層(11
0)  ・ ・ ・ A I @、2G a s、eA s ’5インド領域
(201)・・・・エキシマレーザ (202)  ・・・ケプラー型アフォーカル光学系(
203)  ・・・・スペーシャルフィルター(204
) ・・・・シリンドリカルレンズ(205)  ・・
・・マスク (206)   ・  ・  ・  ・  ミ ラ −
(207)−−・e縮小レンズ (208)  ・・・・高周波発振器 (209)・・・・原料ガス導入系 (210)・・・・反応管 (211)−−・−GaAs基板 (212)・・・・ガス排気系 以上
FIGS. 1(a) and 1(b) are (a) a perspective view of a window type semiconductor laser in an embodiment of the present invention, and (b) A-A.
'Cross section. FIG. 2 is a main configuration diagram of an organometallic chemical vapor deposition apparatus in an embodiment of the present invention. FIG. 3 is a diagram showing an excimer laser irradiation light intensity pattern on a substrate in an embodiment of the present invention. (101) ... n-type ohmic electrode (102)
--...n-type GaAs substrate (103)...n-type GaAs buffer layer (104) n-type AI 14Gas, eAs cladding layer (1
05) ・ ・ ・ p-type A 111. aG a e, sA s cladding layer (
106) ...p-type GaA, s contact layer (1
07)...SiO2 layer (108)...p-type ohmic electrode (109)
...AIs, +sGa@, esAs active layer (11
0) ・ ・ ・ AI @, 2G a s, eA s '5 Indian region (201) ... Excimer laser (202) ... Keplerian afocal optical system (
203) ...Spatial filter (204
)... Cylindrical lens (205)...
・・Mask (206) ・ ・ ・ ・ Mira −
(207) ---e reduction lens (208) ... High frequency oscillator (209) ... Raw material gas introduction system (210) ... Reaction tube (211) ---GaAs substrate (212) ...More than gas exhaust system

Claims (2)

【特許請求の範囲】[Claims] (1)有機金属化学気相成長法により、III−V族化合
物半導体からなる活性層の成長中に、該活性層の共振器
端面近傍にのみエキシマレーザ光を照射し、該活性層の
共振器端面近傍に該活性層の混晶組成比と異なる混晶組
成比を有するウインド領域を形成するウインド型半導体
レーザの製造方法に於て、該エキシマレーザ光をケプラ
ー型アフォーカル光学系を通して照射することを特徴と
する半導体レーザの製造方法。
(1) During the growth of an active layer made of a III-V compound semiconductor using organometallic chemical vapor deposition, excimer laser light is irradiated only in the vicinity of the resonator end face of the active layer, and the resonator of the active layer is A method for manufacturing a window semiconductor laser in which a window region having a mixed crystal composition ratio different from that of the active layer is formed near the end face, the excimer laser beam being irradiated through a Keplerian afocal optical system. A method for manufacturing a semiconductor laser characterized by:
(2)前記ケプラー型アフォーカル光学系がスペーシャ
ルフィルターを具備することを特徴とする請求項1記載
の半導体レーザの製造方法。
(2) The method of manufacturing a semiconductor laser according to claim 1, wherein the Keplerian afocal optical system includes a spatial filter.
JP2778790A 1990-02-07 1990-02-07 Manufacture of semiconductor laser Pending JPH03231484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2778790A JPH03231484A (en) 1990-02-07 1990-02-07 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2778790A JPH03231484A (en) 1990-02-07 1990-02-07 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH03231484A true JPH03231484A (en) 1991-10-15

Family

ID=12230689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2778790A Pending JPH03231484A (en) 1990-02-07 1990-02-07 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH03231484A (en)

Similar Documents

Publication Publication Date Title
US6677173B2 (en) Method of manufacturing a nitride semiconductor laser with a plated auxiliary metal substrate
US6411636B1 (en) Nitride semiconductor laser and method of fabricating the same
JPH03231484A (en) Manufacture of semiconductor laser
JPH0821756B2 (en) Semiconductor laser manufacturing method
JP2545233B2 (en) Method for manufacturing semiconductor laser
JPH03123092A (en) Semiconductor laser
JPH0271574A (en) Semiconductor laser and manufacture thereof
JPS5992522A (en) Method for crystal growth
US6631148B1 (en) Semiconductor laser and a manufacturing method for the same
KR100278623B1 (en) Semiconductor laser device and manufacturing method
KR0141057B1 (en) A method of manufacturing semiconductor laser
JPH03126285A (en) Manufacture of semiconductor laser
JP2629190B2 (en) Manufacturing method of semiconductor laser
JPH0653609A (en) Manufacture of optical semiconductor element
JPH03126284A (en) Manufacture of semiconductor laser
JPH02260588A (en) Semiconductor laser and manufacture thereof
KR960014733B1 (en) Manufacturing method of surface emitting semiconductor laser diode using substrate with mesa pattern
JP2699671B2 (en) Semiconductor laser
JPS63227090A (en) Semiconductor laser device and manufacture thereof
JPH0574217B2 (en)
JPH02230785A (en) Manufacture of semiconductor laser
JPH0680860B2 (en) Method for manufacturing semiconductor crystal
JPH0265286A (en) Semiconductor laser
JPH0521907A (en) Manufacture of semiconductor laser element
JPH04181788A (en) Semiconductor laser and manufacture thereof