JPH03229806A - Manufacture of metal fine particles - Google Patents

Manufacture of metal fine particles

Info

Publication number
JPH03229806A
JPH03229806A JP2525290A JP2525290A JPH03229806A JP H03229806 A JPH03229806 A JP H03229806A JP 2525290 A JP2525290 A JP 2525290A JP 2525290 A JP2525290 A JP 2525290A JP H03229806 A JPH03229806 A JP H03229806A
Authority
JP
Japan
Prior art keywords
rosin
metal
fine particles
copper
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2525290A
Other languages
Japanese (ja)
Inventor
Tetsuya Tsutsumi
哲也 堤
Tetsunori Kawakami
河上 哲徳
Hisashi Kondo
寿 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Chemical Inc
Original Assignee
Harima Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Chemical Inc filed Critical Harima Chemical Inc
Priority to JP2525290A priority Critical patent/JPH03229806A/en
Publication of JPH03229806A publication Critical patent/JPH03229806A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable mass-production of metal fine particles having uniform quality with an extremely simple equipment by raising temp. of solution of high b.p. rosin metal salt, stirring, holding and precipitating the metal fine particles. CONSTITUTION:As the raw material rosin, tall oil rosin, gum rosin, wood rosin, etc., and single or mixed material of abietic acid, etc., as the refining material of these rosins, and further, dismutating rosin, hydrogen-additional rosin, rosin maleate, rosin fumarate, etc., as the derivative of these rosins, can be used. Particularly, the latter two materials are advantageous, because the metal content is the rosin metal salt is increased and three carboxylic acids is made to the metal salt by induced calboxylic acid. For example, copper abietate is dissolved into 2-(2-batoxy ethoxy) ethanol, and the solution is heated in oil bath at 200 deg.C and after stirring, natural cooling is executed and the precipitated material is filtrated, washed with ethanol and dried to obtain the copper fine particles.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電子材料用その他の用途における汎用が期
待されている超微粒金属粉体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing ultrafine metal powder, which is expected to be widely used in electronic materials and other uses.

[従来技術と問題点] 従来、金属微粒子の製法として、ガス中蒸発法と水素ア
ークプラズマ法があり、また最近は気相化学反応法、あ
るいはレーザー光による製造法も開示されている。
[Prior Art and Problems] Conventionally, methods for producing metal fine particles include in-gas evaporation method and hydrogen arc plasma method, and recently, a gas phase chemical reaction method and a method for producing using laser light have also been disclosed.

しかし、これらの既知の方法のいずれにも金属または、
その化合物を気化させる必要があるのであり、その工業
化においては、設備的にも、また熱エネルギー的にも甚
だ不利である。
However, none of these known methods involve metal or
It is necessary to vaporize the compound, and its industrialization is extremely disadvantageous in terms of equipment and thermal energy.

還元剤を使用して金属塩水溶液から金属微粒子を析出さ
せ、沈殿させて分離する方法が知られているが、この方
法では、金属塩溶液と還元剤溶液それぞれの濃度、反応
温度、pHなど制御の対象とすべき因子の相互関連が複
雑微妙であり、製造過程の管理と制御が極めて困難であ
る。
A method is known in which fine metal particles are precipitated from an aqueous metal salt solution using a reducing agent and separated by precipitation, but this method requires control of the concentration, reaction temperature, pH, etc. of the metal salt solution and the reducing agent solution. The interrelationships among the factors that should be considered are complex and delicate, making it extremely difficult to manage and control the manufacturing process.

有機酸金属塩、例えば、ロジン以外の有機カルボン酸の
金属塩の焼成によっても、金属は遊離し析出させられる
が、焼成は当然高温を伴うために焼成により生成した金
属微粒子が相互に融着する欠点がある。
Metals can also be liberated and precipitated by firing organic acid metal salts, such as metal salts of organic carboxylic acids other than rosin, but since firing naturally involves high temperatures, the metal fine particles generated by firing fuse together. There are drawbacks.

[発明が解決しようとする課題] この発明の目的は、簡便な製造設備による利用が可能で
あり、大量生産への応用にも有利である金属微粒子の製
造方法を提供することである。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method for producing metal fine particles that can be used with simple production equipment and is advantageous for application to mass production.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の方法は、高沸点の溶媒中に溶解しているロジ
ン金属塩を、溶液を加熱し昇温させて、その温度に維持
し攪拌しつつ保持する7ことにより溶液中に最小粒径0
.05〜0.1μmの範囲内の均質な金属の微粒子を析
出させ得るという発明者らが新たに発見した現象を利用
するものである。
In the method of the present invention, a rosin metal salt dissolved in a high boiling point solvent is heated to raise the temperature of the solution, and maintained at that temperature while stirring.
.. This method utilizes a phenomenon newly discovered by the inventors that homogeneous metal fine particles within the range of 0.05 to 0.1 μm can be precipitated.

この発明の方法のための原材料のロジンとしては、トー
ル油ロジン、ガムロジン、ウッドロジンなどが好適に使
用され得るのであって、これらのロジンの精製物である
アビエチン酸、あるいはデヒドロアビエチン酸などが単
独、または混合されて使用され得る。
As the raw material rosin for the method of this invention, tall oil rosin, gum rosin, wood rosin, etc. can be suitably used, and abietic acid or dehydroabietic acid, which is a purified product of these rosins, can be used alone, or may be used in combination.

更に、これらロジンの誘導体の不均化ロジン、水素添加
ロジン、マレイン化ロジン、フマール化ロジンなども使
用され得る。
Further, derivatives of these rosins such as disproportionated rosin, hydrogenated rosin, maleated rosin, and fumarated rosin may also be used.

特に、マレイン化ロジン、あるいはフマール化ロジンは
、ロジンがマレイン化、またはフマール化されることに
よりカルボン酸が導入されて三つのカルボン酸が金属塩
となることにより、ロジン金属塩の金属含有量が増大さ
せられ得るのであり一層有利である。
In particular, in maleated rosin or fumarized rosin, when the rosin is maleated or fumarized, a carboxylic acid is introduced and the three carboxylic acids become metal salts, so the metal content of the rosin metal salt is reduced. This is even more advantageous.

ロジン金属塩は、検相樹脂酸と金属酸化物との混合物を
加熱する溶融法、あるいは検相樹脂酸のアルカリ金属塩
と無機金属塩の反応による複分解法のいずれかにより製
造される。
Rosin metal salts are produced either by a melting method in which a mixture of a phase-checking resin acid and a metal oxide is heated, or by a double decomposition method in which an alkali metal salt of a phase-checking resin acid reacts with an inorganic metal salt.

ロジン金属塩を構成する金属として、金、銀、銅、鉄、
ニッケル、コバルトなどが使用される。
The metals that make up the rosin metal salt include gold, silver, copper, iron,
Nickel, cobalt, etc. are used.

樹脂酸としては、アビエチン酸では金属を析出させる速
度が大きく、飽和のテトラヒドロアビエチン酸、または
デヒドロアビエチン酸では、金属析出速度が小さくなる
As the resin acid, abietic acid has a high metal deposition rate, and saturated tetrahydroabietic acid or dehydroabietic acid has a low metal deposition rate.

これは、加熱によりアビエチン酸が脱水素反応を生起さ
せ易いために、反応に際し生成した水素が、金属還元の
作用をしていることによるものと考えられる。 これに
対して、テトラヒドロアビエチン酸、あるいはデヒドロ
アビエチン酸では、脱水素反応が生起し難いために、金
属の析出速度が小さくなるものと考えられる。
This is considered to be because abietic acid tends to cause a dehydrogenation reaction when heated, and the hydrogen generated during the reaction acts as a metal reduction. On the other hand, with tetrahydroabietic acid or dehydroabietic acid, the dehydrogenation reaction is difficult to occur, so it is thought that the metal precipitation rate becomes low.

析出速度が大きい金属塩であればある程、生成する金属
微粒子粒径が小さくなる傾向があることが認められるの
であり、アビエチン酸塩が最小の金属微粒子を与えるこ
とが、発明者らの実験結果として見出された。
It is recognized that the higher the precipitation rate of the metal salt, the smaller the size of the metal fine particles produced, and the inventors' experimental results show that abietate gives the smallest metal fine particles. was found as.

高沸点溶媒としては、ロジン金属塩を溶解させ得るもの
であって、金属の析出温度以上の沸点を有するものであ
ればよい。 例えば、銀塩の場合はトルエン、キシレン
、酢酸ブチル、2−(2−ブトキシエトキシ)エタノー
ル、銅塩の場合には、2−(2−ブトキシエトキシ)エ
タノール、スクワレン、トリエチレングリコール、鉄塩
とニッケル塩では、スクワレン、トリエチレングリコー
ルが好ましい。
The high boiling point solvent may be one that can dissolve the rosin metal salt and has a boiling point higher than the metal precipitation temperature. For example, silver salts include toluene, xylene, butyl acetate, 2-(2-butoxyethoxy)ethanol, and copper salts include 2-(2-butoxyethoxy)ethanol, squalene, triethylene glycol, and iron salts. Among the nickel salts, squalene and triethylene glycol are preferred.

金属微粒子の析出に必要な加熱温度と所要時間は金属の
種類によって異なるのであり、銀塩では90〜120℃
、1〜3時間、銅塩では180〜250℃、0.5〜3
時間、鉄塩とニッケル塩では270〜300℃、2〜4
時間の範囲内とすれば、高収率を以て金属微粒子が生成
することが実験的に見出された。
The heating temperature and time required to precipitate fine metal particles vary depending on the type of metal, and for silver salts it is 90 to 120°C.
, 1-3 hours, 180-250℃ for copper salt, 0.5-3
time, 270-300℃ for iron salt and nickel salt, 2-4
It has been experimentally found that metal fine particles can be produced with a high yield within the time range.

ロジン金属塩溶液中に金属微粒子を生成させるためには
、ロジン金属塩溶液の加熱昇温のみでも充分であるが、
更に、析出を促進するために有機スルホン酸、ジヒドロ
キシ芳香族化合物、または三価以上の多価ヒドロキシ芳
香族化合物などから選択される少なくとも一種を添加す
ることが効果的であることも判明した。 例えば、p−
t−ルエンスルホン酸、ヒドロキノン、2,6−ジヒト
ロキシナフタレンなどが析出促進剤として使用できる。
In order to generate metal fine particles in the rosin metal salt solution, heating the rosin metal salt solution alone is sufficient;
Furthermore, it has been found that it is effective to add at least one selected from organic sulfonic acids, dihydroxy aromatic compounds, and polyvalent hydroxy aromatic compounds of trivalent or higher valence to promote precipitation. For example, p-
T-toluenesulfonic acid, hydroquinone, 2,6-dihydroxynaphthalene, and the like can be used as precipitation accelerators.

これらの添加剤の効果はp−トルエンスルホン酸の場合
、アビエチン酸の不均化反応が促進されることにより生
じる。
In the case of p-toluenesulfonic acid, the effects of these additives are produced by promoting the disproportionation reaction of abietic acid.

ヒドロキノン、2.6−シヒドロキシナフレタンの場合
、それ自体が還元剤として作用して、金属の析出を促進
しているものと考えられる。
In the case of hydroquinone and 2,6-dihydroxynafretane, it is thought that they themselves act as reducing agents and promote metal precipitation.

次に、この発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained using examples.

[実施例1] 純度95%アビエチン酸100gを、水酸化ナトリウム
 13.2gと水450gからなる水溶液に加えて、9
0〜95℃に保持して20分間、攪拌混合した。 この
鹸化水溶液に、塩化第二銅二水和物287gを水240
0gに溶解させた溶液を加え、40℃以下において20
分間、攪拌して均質なスラリーを得た。 得られたスラ
リーにトルエンを加えて抽出処理を行った。  トルエ
ン相を分離して水洗した後、溶剤のトルエンを蒸発させ
て分離し蒸発完了後に、緑色の固体のアビエチン酸銅塩
をほぼ化学量論的に得た。  アビエチン酸銅塩10g
と2−(2−ブトキシエトキシ)エタノール40gとを
、フラスコに入れて溶解させた後、フラスコを200°
Cのオイルバスに浸漬し、90分間、内容物を攪拌した
。 その後、フラスコ内容物を放置して冷却させ、メン
ブランフィルタ−を使用して析出物を濾別し、エタノー
ルを以て洗浄し、乾燥させて、0、81gの銅微粒子を
得た。    この銅微粒子は走査型電子顕微鏡写真に
より、その粒径がO1〜0.2μmの範囲内にあること
が確認された。
[Example 1] 100 g of 95% pure abietic acid was added to an aqueous solution consisting of 13.2 g of sodium hydroxide and 450 g of water.
The mixture was stirred and mixed for 20 minutes at a temperature of 0 to 95°C. To this saponified aqueous solution, 287 g of cupric chloride dihydrate was added to 240 g of water.
Add the solution dissolved in 0g and heat at 40°C or less for 20
Stir for 1 minute to obtain a homogeneous slurry. Toluene was added to the obtained slurry for extraction treatment. After the toluene phase was separated and washed with water, the solvent toluene was evaporated and separated, and after the evaporation was completed, a green solid copper salt of abietate was obtained almost stoichiometrically. Abietic acid copper salt 10g
and 40 g of 2-(2-butoxyethoxy)ethanol were put into a flask and dissolved, then the flask was heated at 200°
C and the contents were stirred for 90 minutes. Thereafter, the contents of the flask were left to cool, and the precipitate was filtered out using a membrane filter, washed with ethanol, and dried to obtain 0.81 g of fine copper particles. It was confirmed by a scanning electron microscope photograph that the copper fine particles had a particle size in the range of 01 to 0.2 μm.

[実施例2コ 実施例1で得たアビエチン酸銅塩10gと2−(2ブト
キシエトキシ)エタノール40gとをフラスコに入れて
溶解させた溶液にp−トルエンスルホン酸0.1gを加
えて200℃のオイルバスにフラスコを浸漬して、30
分間、攪拌を行い、その後、放置して冷却させ、メンブ
ランフィルタ−を使用して析出物を濾別し、エタノール
により洗浄し、乾燥させて、0.86gの銅微粒子を得
た。 この均質な銅微粒子は走査型電子顕微鏡写真によ
って、その粒径が01μmであることが確認された。
[Example 2] 10 g of the abietic acid copper salt obtained in Example 1 and 40 g of 2-(2-butoxyethoxy)ethanol were placed in a flask, and 0.1 g of p-toluenesulfonic acid was added to the solution, and the mixture was heated at 200°C. Soak the flask in an oil bath for 30 minutes.
The mixture was stirred for 1 minute, then left to cool, and the precipitate was filtered out using a membrane filter, washed with ethanol, and dried to obtain 0.86 g of fine copper particles. It was confirmed by a scanning electron microscope photograph that the homogeneous copper fine particles had a particle size of 01 μm.

[実施例3] 実施例1て得たアビエチン酸銅塩10gと2− (2−
ブトキシエトキシ)エタノール40gをフラスコに入れ
て溶解させた溶液に、ヒドロキノン0.1gを加えた。
[Example 3] 10 g of abietic acid copper salt obtained in Example 1 and 2- (2-
0.1 g of hydroquinone was added to a solution in which 40 g of ethanol (butoxyethoxy) was placed in a flask and dissolved.

 フラスコを200℃のオイルバスに浸漬し、30分間
、内容物を攪拌した。 次いて内容物を放冷し、メンブ
ランフィルタ−により析出物を濾別し、エタノールによ
り洗浄し、乾燥させた後086gの銅微粒子を得た。 
この均質な銅微粒子は、走査型電子顕微鏡写真により、
粒径が0.1μであることが確認された。
The flask was immersed in a 200°C oil bath and the contents were stirred for 30 minutes. Next, the contents were allowed to cool, and the precipitate was filtered out using a membrane filter, washed with ethanol, and dried to obtain 086 g of copper fine particles.
Scanning electron micrographs show that these homogeneous copper particles are
It was confirmed that the particle size was 0.1μ.

[実施例4] 実施例1のアビエチン酸銅塩の調整の際のアビエチン酸
に代えて、純度96%のデヒドロアビエチン酸を使用す
ること以外の事項は、実施例1と同様として、デヒドロ
アビエチン酸銅塩を化学量論的に得た。  このデヒド
ロアビエチン酸銅塩10gと、 2−(2−ブトキシエ
トキシ)エタノール40gをフラスコに入れて溶解させ
た溶液にヒドロキノン0.1gを加えた。  フラスコ
を200℃のオイルバスに浸漬し、その内容物を1時間
、攪拌した。   その後、内容物を放冷しメンブラン
フィルタ−を使用して内容物中の析出物を濾別しエタノ
ールを以て洗浄し、乾燥させて、0.43gの銅微粒子
を得た。  この銅微粒子は走査型電子顕微鏡写真によ
り、粒径0.5〜1.0μmの銅微粒子であることが確
認された。
[Example 4] Dehydroabietic acid The copper salt was obtained stoichiometrically. 0.1 g of hydroquinone was added to a solution in which 10 g of this dehydroabietic acid copper salt and 40 g of 2-(2-butoxyethoxy)ethanol were put into a flask and dissolved. The flask was immersed in a 200°C oil bath and its contents were stirred for 1 hour. Thereafter, the contents were allowed to cool, and precipitates in the contents were filtered out using a membrane filter, washed with ethanol, and dried to obtain 0.43 g of copper fine particles. This copper fine particle was confirmed by a scanning electron micrograph to be a copper fine particle having a particle size of 0.5 to 1.0 μm.

[実施例5] 実施例1のアビエチン酸銅塩の調整の際のアビエチン酸
に代えて、酸価169の中国産ガムロジンを使用するこ
と以外の事項は、実施例1と同様として、ガムロジン酸
銅塩を化学量論的に得た。
[Example 5] The same procedure as in Example 1 was made except that gum rosin produced in China with an acid value of 169 was used in place of abietic acid in the preparation of copper abietic acid salt in Example 1. The salt was obtained stoichiometrically.

このガムロジン銅塩10gと、2−(2−ブトキシエト
キシ)エタノール40gをフラスコに入れて溶解させた
溶液に、ヒドロキノン0.1gを加えた。
0.1 g of hydroquinone was added to a solution prepared by dissolving 10 g of this gum rosin copper salt and 40 g of 2-(2-butoxyethoxy)ethanol in a flask.

フラスコを200℃のオイルバスに浸漬し、その内容物
を1時間攪拌した。 その後に、内容物を放冷しメンブ
ランフィルタ−を使用して析出物を濾別し、エタノール
により洗浄し、乾燥させて、0.64gの銅微粒子を得
た。    この銅微粒子は走査型電子顕微鏡写真によ
り、粒径0.1〜0.2−の銅微粒子であることが確認
された。
The flask was immersed in a 200°C oil bath and its contents were stirred for 1 hour. Thereafter, the contents were allowed to cool, and precipitates were filtered out using a membrane filter, washed with ethanol, and dried to obtain 0.64 g of copper fine particles. This copper fine particle was confirmed by a scanning electron microscope photograph to be a copper fine particle having a particle size of 0.1 to 0.2-.

[実施例6] 凝縮器、水抜き管、温度計、および攪拌機付の4つロフ
ラスコに、酸価169の中国産ガムロジン300gを装
入し、マントルヒーター上で攪拌しつつ加熱して内容物
を溶融させた。 溶融が完了した後、溶融物を180℃
にまで冷却して、これに無水マレイン酸57gを添加し
て加熱し、 190〜200℃の範囲内に2時間保持し
てマレイン化反応を続行させて、鹸化価324のマレイ
ン化ロジンを得た。
[Example 6] 300 g of Chinese gum rosin with an acid value of 169 was charged into a four-bottle flask equipped with a condenser, a water drain pipe, a thermometer, and a stirrer, and the contents were heated while stirring on a mantle heater. Melted. After melting is complete, heat the melt to 180°C.
57 g of maleic anhydride was added thereto, heated, and kept in the range of 190 to 200°C for 2 hours to continue the maleation reaction to obtain a maleated rosin with a saponification value of 324. .

次に、マレイン化ロジン100gを、水酸化ナトリウム
18gと水450gからなる水溶液に加えて、90〜9
5℃の範囲内に昇温させて、 20分間攪拌し混合させ
た。 この鹸化水溶液に、塩化第二銅の二水和物40.
3gを、水2400gに溶解させた溶液を加えて、これ
を40℃以下に保持して、20分間攪拌して均質なスラ
リーを得た。  このスラリー中の固形分を濾別し水洗
し脱水した後、乾燥させてマレイン化ロジン銅塩を化学
量論的に得た。
Next, 100 g of maleated rosin was added to an aqueous solution consisting of 18 g of sodium hydroxide and 450 g of water.
The temperature was raised to within 5°C and stirred for 20 minutes to mix. Add 40% cupric chloride dihydrate to this saponified aqueous solution.
A solution of 3 g dissolved in 2400 g of water was added, and the mixture was kept at 40° C. or lower and stirred for 20 minutes to obtain a homogeneous slurry. The solid content in this slurry was separated by filtration, washed with water, dehydrated, and then dried to obtain maleated rosin copper salt in a stoichiometric manner.

このマレイン化ロジン銅塩10gと、2−(2−ブトキ
シエトキシ)エタノール40gとを、フラスコに入れて
溶解させた溶液に、ヒドロキノン0.1gを加えた。
0.1 g of hydroquinone was added to a solution in which 10 g of this maleated rosin copper salt and 40 g of 2-(2-butoxyethoxy)ethanol were dissolved in a flask.

フラスコを200℃のオイルバスに浸漬し、その内容物
を1時間攪拌した。 その後に、内容物を放冷してメン
ブランフィルタ−を使用して析出物を濾別し、エタノー
ルを以て洗浄し、乾燥させて1、47gの銅微粒子を得
た。 この銅の微粒子は、走査型電子顕微鏡写真により
粒径0.5〜0.7μmの範囲内の均質銅微粒子である
ことが確認された。
The flask was immersed in a 200°C oil bath and its contents were stirred for 1 hour. Thereafter, the contents were allowed to cool, and precipitates were filtered out using a membrane filter, washed with ethanol, and dried to obtain 1.47 g of copper fine particles. It was confirmed by a scanning electron microscope photograph that the copper fine particles were homogeneous copper fine particles with a particle size in the range of 0.5 to 0.7 μm.

[実施例7コ 実施例1のアビエチン酸銅塩の調整の際に無機塩として
硝酸銀59.2gを使用すること以外の事項は、実施例
1と同様にして、アビエチン酸銀塩を茶褐色の固体とし
て得た。  アビエチン酸銀塩10gと、2−(2−ブ
トキシエトキシ)エタノール40g、をフラスコに入れ
て溶解させ、フラスコを100℃のオイルバスに浸漬し
て、内容物を3時間攪拌し、次に、放冷し、メンブラン
フィルタ−により内容物中の析出物を濾別して、エタノ
ールにより洗浄し乾燥させ、2.11gの銀微粒子を得
た。
[Example 7] Abietate silver salt was prepared as a brown solid in the same manner as in Example 1 except that 59.2 g of silver nitrate was used as the inorganic salt in preparing the abietate copper salt in Example 1. obtained as. 10 g of abietic acid silver salt and 40 g of 2-(2-butoxyethoxy)ethanol were placed in a flask and dissolved, the flask was immersed in a 100°C oil bath, the contents were stirred for 3 hours, and then allowed to stand. After cooling, the precipitate in the contents was filtered out using a membrane filter, washed with ethanol, and dried to obtain 2.11 g of fine silver particles.

この銀微粒子は電子顕微鏡写真によって粒径か0.05
〜0,15μmの範囲内にある球状銀微粒子であること
が確認された。
The particle size of these silver particles was determined by electron micrographs to be 0.05.
It was confirmed that the particles were spherical silver particles within the range of ~0.15 μm.

[実施例8] 実施例7で得たアビエチン酸銀塩10gと2−(2ブト
キシエトキシ)エタノール40gをフラスコに入れて溶
解させた溶液に、ヒドロキノン0.1gを加えて、10
0℃の油浴により保温しつつ、1時間攪拌を行い、次い
で、放置して冷却しメンブランフィルタ−を使用して、
析出物を濾別して、エタノールにより洗浄し、乾燥させ
て、2.13gの銀の微粒子を得た。 この銀微粒子は
電子顕微鏡写真によって粒径0.05戸の均質な球状の
銀微粒子であることが確認された。
[Example 8] To a solution in which 10 g of the abietic acid silver salt obtained in Example 7 and 40 g of 2-(2-butoxyethoxy)ethanol were put into a flask and dissolved, 0.1 g of hydroquinone was added.
The mixture was stirred for 1 hour while being kept warm in a 0°C oil bath, and then left to cool, using a membrane filter.
The precipitate was filtered, washed with ethanol, and dried to obtain 2.13 g of fine silver particles. These fine silver particles were confirmed by electron micrographs to be homogeneous spherical silver particles with a particle size of 0.05 mm.

[実施例9] 実施例1のアビエチン酸銅塩の調整に際して、無機塩と
して、34.5gの塩化第二鉄・四水塩を使用すること
以外の事項は、全て実施例1と同様にしてアビエチン酸
鉄塩を黒色固体として得た。
[Example 9] When preparing the abietic acid copper salt in Example 1, all matters were the same as in Example 1 except for using 34.5 g of ferric chloride tetrahydrate as the inorganic salt. Abietate iron salt was obtained as a black solid.

このアビエチン酸鉄塩10gと、2−(2−ブトキシエ
トキシ)エタノール40gを、フラスコに入れて溶解さ
せた溶液に、ヒドロキノン0.1gを添加し285℃の
油浴にフラスコを浸漬して、フラスコの内容物を2時間
攪拌し、次いで、放冷して、メンブランフィルタ−を使
用して、内容物中の析出物を濾別し、エタノールにより
洗浄し、乾燥させて067gの鉄微粒子を得た。
10 g of this iron abietate and 40 g of 2-(2-butoxyethoxy) ethanol were put into a flask and dissolved. 0.1 g of hydroquinone was added, and the flask was immersed in an oil bath at 285°C. The contents were stirred for 2 hours, then allowed to cool, and precipitates in the contents were filtered out using a membrane filter, washed with ethanol, and dried to obtain 0.67 g of iron fine particles. .

この鉄微粒子は電子顕微鏡写真によって粒径が0.5μ
mの均質な球状の鉄微粒子であることが確認された。
This iron fine particle has a particle size of 0.5μ according to an electron microscope photograph.
It was confirmed that the particles were homogeneous spherical iron fine particles of m.

[実施例10] 実施例1のアビエチン酸銅塩の調整に際して、無機塩と
して、塩化ニッケル(II) 22.6gを使用するこ
と以外は、実施例1と同様にして、アビエチン酸ニッケ
ル塩を黒色固体として得た。
[Example 10] In the preparation of the copper abietate salt of Example 1, the nickel salt of abietate was blackened in the same manner as in Example 1, except that 22.6 g of nickel (II) chloride was used as the inorganic salt. Obtained as a solid.

このアビエチン酸ニッケル塩の10gと、2−(2−ブ
トキシエトキシ)エタノール40gとをフラスコに入れ
て溶解させた溶液に、ヒドロキノン0,1gを添加し、
285℃の油浴中にフラスコを浸漬して内容物を2時間
攪拌し、その後、放置して冷却し、内容物中の析出物を
メンブランフィルタ−を使用して濾別しエタノールを以
て洗浄し、乾燥させて0、68gのニッケル微粒子を得
た。
0.1 g of hydroquinone was added to a solution in which 10 g of this nickel abietate salt and 40 g of 2-(2-butoxyethoxy)ethanol were dissolved in a flask.
The flask was immersed in an oil bath at 285°C and the contents were stirred for 2 hours, and then left to cool. The precipitates in the contents were filtered out using a membrane filter and washed with ethanol. It was dried to obtain 0.68 g of nickel fine particles.

このニッケル微粒子は電子顕微鏡写真によって粒径が0
.5μmの球状のニッケル微粒子であることが確認され
た。 表1は実施例を総括して示す。
This nickel fine particle has a particle size of 0 according to an electron micrograph.
.. It was confirmed that the particles were 5 μm spherical nickel fine particles. Table 1 summarizes the examples.

[発明の効果] この発明によれば、高沸点溶媒にロジン金属塩を溶解さ
せて溶液とし、この溶液を比較的に低温と云うべき温度
にまで昇温させ、その温度に維持して攪拌しつつ保持し
て、生成した金属微粒子を分離し回収することのみによ
り均質な金属微粒子を製造することが可能である。 こ
の発明の方法は、従来法に比較して、極めて簡便な設備
の使用によって実施され得るのであり、大量生産も容易
である金属微粒子の製造法を提供する。
[Effects of the Invention] According to the present invention, a rosin metal salt is dissolved in a high boiling point solvent to form a solution, this solution is heated to a relatively low temperature, and the solution is maintained at that temperature and stirred. It is possible to produce homogeneous metal fine particles only by holding the metal particles while holding them, and then separating and collecting the generated metal fine particles. The method of the present invention can be carried out using extremely simple equipment compared to conventional methods, and provides a method for producing metal fine particles that can be easily mass-produced.

この発明の目的と同様に、金属微粒子の析出を必須要件
とする無電解鍍金においては、一般に、金属塩以外に、
還元剤に加えて、還元効率を改善し鍍金層の耐久性の向
上を目的として種々の化学薬品の添加が行われているが
、この発明の方法においてはロジン金属塩自体が還元に
所要の水素を供給するのであり、この発明の方法を利用
すれば添加剤を必須物質としないことによる利益も享受
し得るのである。
Similar to the purpose of this invention, in electroless plating that requires precipitation of metal fine particles, generally, in addition to metal salts,
In addition to the reducing agent, various chemicals are added to improve the reduction efficiency and the durability of the plating layer. By using the method of the present invention, it is possible to enjoy the benefits of not requiring additives as essential substances.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例3において製造された銅微粒子の電子顕
微鏡写真であり、第2図は同様に実施例8において製造
された銀微粒子の電子顕微鏡写真である。 これらの写
真の拡大倍率は、2万倍である。
FIG. 1 is an electron micrograph of fine copper particles produced in Example 3, and FIG. 2 is an electron micrograph of fine silver particles similarly produced in Example 8. The magnification of these photographs is 20,000 times.

Claims (3)

【特許請求の範囲】[Claims] (1)高沸点の溶媒に、ロジン金属塩を溶解させて得ら
れる溶液を昇温し、その温度に維持して攪拌しつつ保持
し、溶液中に金属微粒子を析出させ、析出する金属微粒
子を分離し回収することを特徴とする金属微粒子の製造
方法。
(1) A solution obtained by dissolving a rosin metal salt in a high boiling point solvent is heated, maintained at that temperature while stirring, and precipitated metal fine particles are precipitated in the solution. A method for producing fine metal particles, characterized by separating and recovering them.
(2)析出促進剤として有機スルホン酸、ジヒドロキシ
芳香族化合物、または三価以上の多価ヒドロキシ芳香族
化合物からなる群から選択された一種以上を溶液に添加
する請求項1記載の方法。
(2) The method according to claim 1, wherein one or more selected from the group consisting of organic sulfonic acids, dihydroxy aromatic compounds, and polyvalent hydroxy aromatic compounds of trivalent or higher valence is added to the solution as a precipitation promoter.
(3)ロジン金属塩は銅、銀、鉄、およびニッケルから
なる群から選択される一種、または混在する二種以上の
金属からなる請求項1、または2記載の方法。
(3) The method according to claim 1 or 2, wherein the rosin metal salt consists of one metal selected from the group consisting of copper, silver, iron, and nickel, or two or more metals mixed together.
JP2525290A 1990-02-06 1990-02-06 Manufacture of metal fine particles Pending JPH03229806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2525290A JPH03229806A (en) 1990-02-06 1990-02-06 Manufacture of metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2525290A JPH03229806A (en) 1990-02-06 1990-02-06 Manufacture of metal fine particles

Publications (1)

Publication Number Publication Date
JPH03229806A true JPH03229806A (en) 1991-10-11

Family

ID=12160809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2525290A Pending JPH03229806A (en) 1990-02-06 1990-02-06 Manufacture of metal fine particles

Country Status (1)

Country Link
JP (1) JPH03229806A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063580A (en) * 2005-08-29 2007-03-15 Osaka City Silver nanoparticle and production method therefor
JP2008521591A (en) * 2004-11-26 2008-06-26 ソウル ナショナル ユニバーシティー インダストリー ファンデーション New mass production method of monodisperse nanoparticles
CN104478705A (en) * 2014-11-11 2015-04-01 柳州市惠农化工有限公司 Copper abietate raw drug and preparation method and application thereof
JP2019123933A (en) * 2018-01-17 2019-07-25 Dowaエレクトロニクス株式会社 Silicon oxide-coated iron powder, method for producing the same, and molded product for inductor and inductor each using the same
WO2019142727A1 (en) * 2018-01-17 2019-07-25 Dowaエレクトロニクス株式会社 Silicon oxide-coated iron powder and manufacturing method therefor, molded body for inductor using said iron powder, and inductor
JP2019163400A (en) * 2018-03-20 2019-09-26 横浜ゴム株式会社 Cobalt compound and rubber composition for tires

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521591A (en) * 2004-11-26 2008-06-26 ソウル ナショナル ユニバーシティー インダストリー ファンデーション New mass production method of monodisperse nanoparticles
JP2011224558A (en) * 2004-11-26 2011-11-10 Seoul National Univ Industry Foundation New process for large-scale production of monodisperse nanoparticles
JP2007063580A (en) * 2005-08-29 2007-03-15 Osaka City Silver nanoparticle and production method therefor
JP4662829B2 (en) * 2005-08-29 2011-03-30 地方独立行政法人 大阪市立工業研究所 Silver nanoparticles and method for producing the same
CN104478705A (en) * 2014-11-11 2015-04-01 柳州市惠农化工有限公司 Copper abietate raw drug and preparation method and application thereof
JP2019123933A (en) * 2018-01-17 2019-07-25 Dowaエレクトロニクス株式会社 Silicon oxide-coated iron powder, method for producing the same, and molded product for inductor and inductor each using the same
WO2019142727A1 (en) * 2018-01-17 2019-07-25 Dowaエレクトロニクス株式会社 Silicon oxide-coated iron powder and manufacturing method therefor, molded body for inductor using said iron powder, and inductor
KR20200106181A (en) * 2018-01-17 2020-09-11 도와 일렉트로닉스 가부시키가이샤 Silicon oxide-coated iron powder, manufacturing method thereof, and molded article and inductor for inductor using same
JP2019163400A (en) * 2018-03-20 2019-09-26 横浜ゴム株式会社 Cobalt compound and rubber composition for tires

Similar Documents

Publication Publication Date Title
KR101609803B1 (en) PROCESS FOR THE COMPREHENSIVE RECOVERY OF METAL COBALT, RUTHENIUM AND ALUMINUM FROM WASTE CATALYST Co-Ru/Al2O3 IN FISCHER-TROPSCH SYNTHESIS
JP2022529477A (en) Method for Preparing Precursor Compound for Lithium Battery Positive Electrode
JP2013503803A (en) Concentrated titanium hydrochloric acid extraction residue, its use and method for preparing titanium pigment
AU2020102028A4 (en) Method for transforming arsenic sulfide slag and curing and stabilizing resulting compound by means of microencapsulation
WO2015057189A1 (en) Recovery of high purity lead oxide from lead acid battery paste
CN115072810B (en) Green synthesis method of nano ruthenium oxide
JPH03229806A (en) Manufacture of metal fine particles
CN100554204C (en) The preparation method of nanometer grade indium tin oxide composite powder
CN103451435A (en) Method for recovering metal silver from waste in silver pulp screen printing process
CN111218572B (en) Method for preparing high-density ammonium polyvanadate by heat preservation of calcified roasting pickle liquor
KR100360559B1 (en) Process for the production of extra fine powder of Cobalt
FR2681850A1 (en) PROCESS FOR PREPARING METAL OXIDE PARTICLES.
KR20040089324A (en) A vanadium oxide flake recovery method from diesel oil fly ash or orimulsion oil fly ash
CN115011809A (en) Method for separating and recovering lead and bismuth from lead-bismuth alloy
JPH10183208A (en) Production of silver powder
CN113479921A (en) Preparation method of high-purity calcium hydroxide
JP2910364B2 (en) Method for producing 2,9-dimethylquinacridone pigment
JP2621915B2 (en) Method for producing ultrafine copper powder
CN1118433C (en) Process for preparing magnesium carbonate and magnesium oxide from natural alkali and magnesium chloride
CN1203197C (en) Method for preparing nickel and aluminium chemical product from catalyst refuse containing nickel and AL2O3
CN115304074B (en) Preparation method of anhydrous lithium tetraborate
JPH08291346A (en) Method for recovering rare earth element from scrap and production of rare earth-transition metal alloy powder
CN111547768A (en) Preparation method for preparing rare earth ammonium dimolybdate by nano doping
US3004832A (en) Process for producing titanium carbide
JPH0270028A (en) Manufacture of ta or nb