JPH0322978B2 - - Google Patents

Info

Publication number
JPH0322978B2
JPH0322978B2 JP5942783A JP5942783A JPH0322978B2 JP H0322978 B2 JPH0322978 B2 JP H0322978B2 JP 5942783 A JP5942783 A JP 5942783A JP 5942783 A JP5942783 A JP 5942783A JP H0322978 B2 JPH0322978 B2 JP H0322978B2
Authority
JP
Japan
Prior art keywords
group
carrier
pigment
substituted
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5942783A
Other languages
Japanese (ja)
Other versions
JPS59184350A (en
Inventor
Yoshiaki Takei
Yoshihide Fujimaki
Hiroyuki Nomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP5942783A priority Critical patent/JPS59184350A/en
Publication of JPS59184350A publication Critical patent/JPS59184350A/en
Publication of JPH0322978B2 publication Critical patent/JPH0322978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0609Acyclic or carbocyclic compounds containing oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0618Acyclic or carbocyclic compounds containing oxygen and nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0635Heterocyclic compounds containing one hetero ring being six-membered
    • G03G5/0637Heterocyclic compounds containing one hetero ring being six-membered containing one hetero atom
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • G03G5/067Dyes containing a methine or polymethine group containing only one methine or polymethine group containing hetero rings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

1 産業上の利用分野 本発明は感光体、特に電子写真感光体に関する
ものである。 2 従来技術 一般に、可視光を吸収してキヤリアを発生する
物質は、無定形セレン等のごく一部のものを除い
ては、それ自体でフイルムを形成せしめることが
困難であり、しかもその表面に与えられた電荷に
対する保持力に乏しい欠点を有している。これと
は逆に、フイルム形成能に優れ、かつ10μm程度
の厚さで500V以上の電荷を長時間に亘つて保持
し得る物質は、概して可視光の吸収による十分な
光導電性を有しない欠点を有している。 このような理由から、第1図に示す如く、基体
1上に、可視光を吸収して荷電キヤリアを発生す
る物質を含むキヤリア発生層2と、このキヤリア
発生層で発生した荷電キヤリアの正負いずれか一
方または両方の輸送を行なうキヤリア輸送層3と
の積層体4を設け、この積層体により感光層を構
成せしめることが提案された。このように、荷電
キヤリアの発生と輸送とを別個の物質に分担させ
ることによつて、材料の選択範囲が広くなり、電
子写真プロセスにおいて要求される諸特性、例え
ば電荷保持力、表面強度、可視光に対する感度及
び反復使用時における安定性等を向上又は改善せ
しめることができるようになつた。 しかしながら、製造が容易であり、十分な電子
写真特性を有し、しかも環境の変化に対して安定
性を有する優れた電子写真感光体は現在迄知られ
ていない。 例えば、キヤリア発生層を無定形セレンにより
構成する場合、真空蒸着装置を使用し、真空度並
びに蒸発源温度の制御を行ないながら製造される
が、特に、例えば長さ数百mの均一でしかも特性
の安定した蒸着膜を得ることは極めて困難であ
る。しかも、無定形セレンは熱的に不安定なた
め、50℃以上の温度下で結晶化が進行し、キヤリ
ア発生層として機能を有しなくなる。従つて、特
に導電性支持体上に無定形セレンから成るキヤリ
ア発生層を設け、この上にキヤリア輸送層を塗布
して成る電子写真感光体においては、キヤリア輸
送層を塗布後にその乾燥温度を50℃以下に保たね
ばならず、経済的な生産が不可能に近い状態であ
り、しかも生産された電子写真感光体はその保存
性に問題を有していた。 又、キヤリア発生層をペリレン系顔料により構
成する場合、真空蒸着法を用いると無定形セレン
の場合と同様に巾方向および長さ方向に対して均
一な蒸着膜を得るのが困難となる他、得られた蒸
着膜はスクラツチ性に劣るのでキヤリア輸送層塗
布時の取扱いが難しいという欠点を有している。
米国特許第3904407号明細書中にはベリレン系顔
料をバインダー樹脂中に分散せしめてキヤリア発
生層を形成する記載はあるが、蒸着法に比べ感度
等の電子写真特性が著しく劣るために実用化はさ
れていない。 キヤリア発生層中のキヤリア発生物質として有
機顔料を用い、この蒸着膜より成るキヤリア発生
層を有する電子写真感光体が知られている。この
キヤリア発生層は不純物が排除された有機顔料が
緻密に堆積されたものであるため、薄層であつて
も比較的高い光感度が得られる点では好ましいも
のである。しかし、その製造のためには大型の連
続蒸着装置が必要であり、膜厚制御が非常に困難
であつて導電性支持体の表面全体に亘つて均一な
膜厚のキヤリア発生層を形成せしめることが困難
であり、従つてコストが非常に高いものとなる。
その上、有機顔料の蒸着膜は支持体に対する接着
性が小さく、それ自体の強度も極めて小さいた
め、擦傷、引掻傷等の欠損が生じ易く、これらの
点から感光層全体の層構成にも多くの制約を受け
る。しかも当該有機顔料の特性を改善するために
は適当な添加物を加えることが有効な場合が多い
が、蒸着法では混入せしめ得る物質の種類及び量
に制限がある上、均一に混入せしめることも困難
であつて特性の改善は殆ど不可能である。上述の
如き事情から、有機顔料を用いて実際上良好な特
性を有する電子写真感光体は現在まで提供されて
いないのが現状である。 本出願人は、上記の如き状況に鑑み、可視光に
対する感度が高くて鮮明な複写画像を常に形成す
ることができ、また真空蒸着法では得られない長
尺にわたつて均一で、安価でかつ安定に製造する
ことができ、スクラツチ性に優れたキヤリア発生
層を有する電子写真感光体を特願昭54−34539号
として既に提案した。この先願発明では、アント
アントロン等の多環キノン顔料を光導電性粒子と
してポリカーボネート中に分散させることによつ
て、上記の優れた作用効果を発揮せしめている。 一方、本出願人は、電子写真特性は勿論、製造
上、並びに使用上も極めて優れた特性を有する電
子写真感光体として、昇華性を有する有機顔料を
昇華精製して得られた精製顔料を用い、これを含
有する液体を塗布することにより得られる顔料含
有層により感光層を構成せしめてなる電子写真感
光体を特願昭55−143699号として既に提案した。 本発明者は、これらの先顔発明を改良すべく検
討を加えた結果、次の如き問題があることを見出
した。 即ち、上記の多環キノン顔料として市販のもの
をそのままキヤリア発生物質として使用した場
合、顔料の結晶形が整つていない上に、多量の添
加剤が不純別として作用するために、感度が不足
したり、繰返し多数枚複写を行なつた場合に画像
地肌部の電位(白紙電位)の上昇が生じてかぶり
が発生することがある。 また、上記した昇華精製によつて、高純度で結
晶成長が可能であり、旧来の顔料をそのまま用い
た場合よりも高い感度が得られるが、昇華精製で
は数100μm〜数mmの径で結晶成長するので、これ
を単に有機溶剤中に分散させただけでは粒径の大
きな粒子しか得られない。しかも、上記したアン
トアントロン等の顔料は一般に溶剤に溶けないた
めに、そうした顔料分散液を塗布してキヤリア発
生層を形成した場合、光導電性粒子(顔料粒子)
の粒径の影響が生じてしまうことが分つた。つま
り、顔料分子の分散性があまり良くなく塗布液の
安定性が悪くなり易いと共に、第2図に拡大図示
する如く、塗布後のキヤリア発生層2中の顔料粒
子5が表面に一部突出し、これに追随してキヤリ
ア輸送層3の表面にも凸部6が形成されてしま
い、感光体表面の平滑性が悪くなる。この結果感
光体の使用時に全面帯電させる際に、上記凸部6
の位置で放電7が生じ、局所的に放電破壊が発生
し易くなる。加えて、トナー粒子8が上記凸部6
に付着してものまま残留し、いわゆるトナーフイ
ルミング現象が生じ、これが画像の黒斑点等の原
因となる。 第2図に示した現象において、キヤリア発生層
2が電子の移動度を充分にするために数μm以下
と非常に薄く形成され、かつ感度向上のために顔
料粒子を最密充填することから、顔料粒子5の粒
径及びそのばらつきの影響が感光体表面に生じ易
く、上記の如き凸部6が形成され易いことが理解
されよう。 また、本発明者は、従来の感光体においてはキ
ヤリア発生物質とキヤリア輸送物質との組合せに
ついて充分な検討がなされておらず、このために
高感度で繰返し特性の良い有機系感光層が得られ
てないことをつき止めた。 3 発明の目的 本発明の目的は、高感度であつて感色性、繰返
し使用時の動作安定性に優れ、均一かつ安定に製
造可能であり、更に表面平滑性に優れ、局所的放
電破壊やトナーフイルミングのない耐久性の良好
な感光体を提供することにある。 本発明の他の目的は、塗布液の分散性及び分散
安定性を向上させ、製造容易で低コストに得られ
る塗布型の感光体(特に、キヤリア発生層とキヤ
リア輸送層との積層構造の感光層を有する機能分
離型感光体)を提供することにある。 本発明の更に他の目的は、キヤリア発生物質と
キヤリア輸送物質との組合せを特定することによ
つて、高感度で感色性に優れ、かつ繰返し使用時
の動作安定性の良い感光体を提供することにあ
る。 4 発明の構成及びその作用効果 即ち、本発明は、下記一般式(A)、(B)又は(C)の各
多環キノン顔料からなる群より選ばれた少なくと
も1種からなりかつ昇華精製法によつて得られる
平均粒径2μm以下の光導電性粒子がキヤリア発生
層物質として使用され、かつ下記一般式(P)の
ヒドラゾン誘導体がキヤリア輸送物質として使用
されていることを特徴とする感光体。 (但、上記各式中、Xはハロゲン原子、ニトロ
基、シアノ基、アシル基又はカルボキシル基を表
わし、nは0〜4の整数、mは0〜6の整数を表
わす。) (但、上記式中、R1は置換若しくは未置換の
アリール基、置換若しくは未置換の複素環基を表
わし、R2は水素原子、置換若しくは未置換のア
ルキル基、置換若しくは未置換のアリール基を表
わし、X′は水素原子、ハロゲン原子、アルキル
基、置換アミノ基、アルコキシ基、シアノ基を表
わし、lは0又は1の整数を表わす。) 本発明によれば、光導電性粒子として上記の多
環キノン顔料を用いているために、従来の無機系
粒子やペリレン系顔料の場合に比べて高感度とな
り、均一でスクラツチ性の良い感光層を得ること
ができる。また、多環キノン顔料として昇華精製
法で作成したものを用いているから、未精製の有
機顔料を用いた感光体に比して感度が高く、しか
も反復して多数回の複写を行なつた場合にも蓄積
された残留電位が小さくて画像地肌部の電位上昇
が少ないため、カブリのない鮮明な複写画像を得
ることができる。 但、昇華精製した顔料は粒径が大きいために既
述した如き問題が生じ易い。本発明で注目される
べき構成は、昇華精製して得られた多環キノン顔
料を平均粒径2μm以下として感光層に含有せしめ
ていることである。 即ち、本発明者は、上記顔料の平均粒径(多環
キノン顔料は針状結晶であるのでその長軸長さを
以つて平均粒径とする。)を2μm以下と微細化す
ることによつてはじめて、感光体表面に対するそ
の粒径の影響を防止でき、感光体表面を平滑にで
きると共に、顔料分散液を安定化できることを見
出したのである。多環キノン顔料の平均粒径が
2μmを越えると、第2図に示した如き凸部6が表
面に生じてしまうが、2μm以下ではそうした凸部
を実質的になくし平坦な表面を実現できる上に、
分散液中の粒子の沈降を少なくして液の安定化を
図れるのである。この結果、放電破壊やトナーフ
イルミングの生じない感光体を得ることが可能に
なる。多環キノン顔料の平均粒径は2μm以下とす
るのが必須不可欠であるが、1μm以下とするのが
望ましく、0.5μm以下が更に望ましい。但、平均
粒径があまりに小さいと、却つて結晶欠陥が増え
て感度及び繰返し特性が低下し、また微細化する
上で限界があるので、平均粒径の下限を0.01μm
とするのが望ましい。 こうした平均粒径の多環キノン顔料を得るに
は、昇華精製法で結晶成長せしめた後、粒子を粉
砕装置により積極的かつ充分に粉砕するのが望ま
しい。粉砕装置としては、、例えばボールミル、
ハンマーミル、サンドグライダー、遠心ミル、コ
ロイドミル、ジエツトミル、ターボミル等が挙げ
られる。 また、本発明によれば、上記の多環キノン系の
光導電粒子と組合せて上記一般式(P)のヒドラ
ゾン誘導体をキヤリア平均粒径輸送物質として用
いているために、キヤリア輸送能が向上し、繰返
し使用における動作が安定化する。 本発明における感光層を形成するのに使用する
液は、上記の多環キノン顔料からなる平均粒径
2μm以下の光導電性粒子を適当な有機溶剤中(こ
れには接着性を高める為にバインダー樹脂を含有
せしめるのが好ましい。)に分散させることによ
つて得ることができる。また、この分散工程の前
及び/又は後で、目的に応じてキヤリア輸送物質
を添加し、これによつて光キヤリア発生層自体の
電荷輸送機能を向上させることもできる。なお、
分散方法としては、例えばボールミル、ホモジナ
イザー、サンドグラインダー、コロイドミル、超
音波等を用いる方法が適用可能である。 本発明で使用する上記一般式(A)で示されるアン
トアントロン系顔料の具体的化合物例を挙げると
次の通りである。 一般式(B)で示されるジベンズピレンキノン系顔
料の具体的化合物例を挙げると次の通りである。 一般式(C)で示されるピラントロン系顔料の具体
的化合物例を挙げると次の通りである。 更に、一般式(P)で示されるヒドラゾン誘導
体の具体的化合物例として次のものが挙げられ
る。 た、本発明で使用可能なバインダー樹脂として
は、例えばポリエチレン、ポリプロピレン、アク
リル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢
酸ビニル樹脂、エポキシ樹脂、ポリウレタン樹
脂、フエノール樹脂、ポリエステル樹脂、アルキ
ツド樹脂、ポリカーボネート樹脂、シリコン樹
脂、メラミン樹脂等の付加重合型樹脂、重付加型
樹脂、重縮合型樹脂並びにこれらの樹脂の繰返し
単位のうちの2つ以上を含む共重合体樹脂、例え
ば塩化ビニル−酢酸ビニル共重合体樹脂、塩化ビ
ニル−酢酸ビニル−無水マレイン酸共重合体樹脂
等を挙げることができる。しかしバインダー樹脂
はこれらに限定されるものではなく、斯かる用途
に一般に用いられるすべての樹脂を使用すること
ができる。 特にポリカーボネート樹脂としては下記一般式
()で示されるくり返し単位を有する線状ポリ
マーが包含される。 式中R′1およびR′2は各々水素原子、アルキル基
例えばメチル、エチル、プロピル、イソフロピ
ル、ブチル、t−ブチル、ペンチル、ヘキシル、
ヘプチル、オクチル、ノニル、デシル等、または
アリール基、例えばフエニル、ナフチル等を表わ
し、またR′1とR′2が共同で炭化水素環(シクロヘ
キシル環の如きシクロアルカン環、ノルボニル環
の如きポリシクロアルカン環を含む。)を形成し
てもよい。又、R′3,R′4,R′5およびR′6は各々水
素原子、炭素原子数1〜5のアルキル基又はハロ
ゲン原子例えば塩素原子、臭素原子、ヨウ素原子
等を表わし、
1. Industrial Application Field The present invention relates to a photoreceptor, particularly an electrophotographic photoreceptor. 2. Prior Art In general, with the exception of a few substances such as amorphous selenium, it is difficult to form a film on the surface of substances that absorb visible light and generate carriers. It has the disadvantage of poor retention of a given charge. On the contrary, materials that have excellent film-forming ability and can retain a charge of 500 V or more for a long time with a thickness of about 10 μm generally have the disadvantage of not having sufficient photoconductivity due to absorption of visible light. have. For this reason, as shown in FIG. 1, a carrier generation layer 2 containing a substance that absorbs visible light and generates charge carriers is provided on the substrate 1, and whether the charge carriers generated in this carrier generation layer are positive or negative is It has been proposed to provide a laminate 4 with a carrier transport layer 3 that transports one or both of them, and to configure the photosensitive layer with this laminate. In this way, by assigning charge carrier generation and transport to separate materials, the range of material selection is widened and the properties required in the electrophotographic process, such as charge retention, surface strength, and visible It has become possible to improve sensitivity to light and stability during repeated use. However, an excellent electrophotographic photoreceptor that is easy to manufacture, has sufficient electrophotographic properties, and is stable against environmental changes has not been known to date. For example, when the carrier generation layer is composed of amorphous selenium, it is manufactured using a vacuum evaporation apparatus while controlling the degree of vacuum and the temperature of the evaporation source. It is extremely difficult to obtain a stable deposited film. Moreover, since amorphous selenium is thermally unstable, crystallization progresses at temperatures of 50° C. or higher, and it no longer functions as a carrier generation layer. Therefore, especially in an electrophotographic photoreceptor in which a carrier generation layer made of amorphous selenium is provided on a conductive support and a carrier transport layer is coated thereon, the drying temperature of the carrier transport layer after coating is set at 50°C. ℃ or below, making economical production nearly impossible, and the produced electrophotographic photoreceptors had problems with their shelf life. In addition, when the carrier generation layer is composed of a perylene pigment, if a vacuum deposition method is used, it is difficult to obtain a uniform deposited film in the width direction and length direction, as in the case of amorphous selenium. The deposited film thus obtained has a disadvantage in that it is difficult to handle when applying a carrier transport layer because of its poor scratchability.
Although there is a description in U.S. Patent No. 3904407 of dispersing berylene pigments in a binder resin to form a carrier generation layer, it has not been put to practical use because electrophotographic properties such as sensitivity are significantly inferior to vapor deposition methods. It has not been. 2. Description of the Related Art An electrophotographic photoreceptor is known that uses an organic pigment as a carrier generating substance in the carrier generating layer and has a carrier generating layer made of a vapor-deposited film of the organic pigment. Since this carrier generation layer is a densely deposited organic pigment free of impurities, it is preferable in that relatively high photosensitivity can be obtained even if it is a thin layer. However, its production requires a large continuous vapor deposition device, and it is extremely difficult to control the film thickness, and it is difficult to form a carrier generation layer with a uniform thickness over the entire surface of the conductive support. is difficult and therefore very costly.
Furthermore, the vapor-deposited organic pigment film has low adhesion to the support and has extremely low strength, so it is prone to scratches and other defects. subject to many restrictions. Moreover, in many cases it is effective to add appropriate additives to improve the properties of the organic pigment, but with the vapor deposition method, there are limits to the type and amount of substances that can be mixed in, and it is difficult to mix them uniformly. It is difficult and almost impossible to improve the characteristics. Due to the above-mentioned circumstances, to date, no electrophotographic photoreceptor has been provided that uses organic pigments and has actually good characteristics. In view of the above-mentioned circumstances, the present applicant has developed a technology that is capable of consistently forming clear copy images with high sensitivity to visible light, and that is uniform over a long length, inexpensive, and that cannot be obtained using vacuum evaporation methods. An electrophotographic photoreceptor having a carrier generation layer which can be stably produced and has excellent scratch resistance has already been proposed in Japanese Patent Application No. 34539/1983. In this prior invention, the above-mentioned excellent effects are exhibited by dispersing a polycyclic quinone pigment such as anthoanthrone in the form of photoconductive particles in polycarbonate. On the other hand, the present applicant has used a purified pigment obtained by sublimation-purifying an organic pigment with sublimation property as an electrophotographic photoreceptor that has extremely excellent properties not only in electrophotographic properties but also in manufacturing and use. An electrophotographic photoreceptor in which a photosensitive layer is constituted by a pigment-containing layer obtained by applying a liquid containing the same has already been proposed in Japanese Patent Application No. 143,699/1983. The present inventor conducted studies to improve these pioneering inventions, and as a result, discovered the following problems. In other words, if the commercially available polycyclic quinone pigment mentioned above is used as a carrier generating substance as it is, the crystal shape of the pigment is not well-organized and a large amount of additives act as impurities, resulting in insufficient sensitivity. Or, when a large number of copies are made repeatedly, the potential of the background portion of the image (blank paper potential) may rise, resulting in fogging. In addition, the above-mentioned sublimation purification makes it possible to grow crystals with high purity, resulting in higher sensitivity than when conventional pigments are used as is. Therefore, simply dispersing it in an organic solvent will only yield particles with a large particle size. Moreover, since pigments such as the above-mentioned antoanthrone are generally not soluble in solvents, when such a pigment dispersion is applied to form a carrier generation layer, photoconductive particles (pigment particles)
It was found that the influence of particle size occurs. In other words, the dispersibility of the pigment molecules is not very good and the stability of the coating solution tends to deteriorate, and as shown in an enlarged view in FIG. Following this, convex portions 6 are also formed on the surface of the carrier transport layer 3, which deteriorates the smoothness of the surface of the photoreceptor. As a result, when the entire surface of the photoconductor is charged during use, the convex portions 6
A discharge 7 occurs at the position, and local discharge breakdown is likely to occur. In addition, the toner particles 8 are attached to the convex portions 6.
Even if the toner adheres to the toner, it remains and a so-called toner filming phenomenon occurs, which causes black spots on the image. In the phenomenon shown in FIG. 2, the carrier generation layer 2 is formed to be very thin, several μm or less, to ensure sufficient electron mobility, and is packed with pigment particles closest to each other to improve sensitivity. It will be understood that the influence of the particle size of the pigment particles 5 and its variation is likely to occur on the surface of the photoreceptor, and the above-mentioned convex portions 6 are likely to be formed. Additionally, the present inventors have discovered that in conventional photoreceptors, sufficient studies have not been made on the combination of carrier-generating substances and carrier-transporting substances. I found out that it wasn't. 3. Purpose of the Invention The purpose of the present invention is to provide a material that has high sensitivity, excellent color sensitivity, excellent operational stability during repeated use, can be manufactured uniformly and stably, has excellent surface smoothness, and is free from local discharge breakdown. An object of the present invention is to provide a photoreceptor with good durability and no toner filming. Another object of the present invention is to improve the dispersibility and dispersion stability of a coating solution, and to obtain a coating-type photoreceptor that is easy to manufacture and obtainable at low cost (in particular, a photoreceptor having a laminated structure of a carrier generation layer and a carrier transport layer). An object of the present invention is to provide a functionally separated photoreceptor having layers. Still another object of the present invention is to provide a photoreceptor with high sensitivity, excellent color sensitivity, and good operational stability during repeated use by specifying a combination of a carrier-generating substance and a carrier-transporting substance. It's about doing. 4 Structure of the invention and its effects That is, the present invention comprises at least one kind selected from the group consisting of each polycyclic quinone pigment of the following general formula (A), (B) or (C), and which is purified by a sublimation purification method. A photoreceptor characterized in that photoconductive particles having an average particle diameter of 2 μm or less obtained by the method are used as a carrier generation layer material, and a hydrazone derivative of the following general formula (P) is used as a carrier transport material. . (However, in each of the above formulas, X represents a halogen atom, a nitro group, a cyano group, an acyl group, or a carboxyl group, n represents an integer of 0 to 4, and m represents an integer of 0 to 6.) (However, in the above formula, R 1 represents a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, and R 2 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group) (X' represents a hydrogen atom, a halogen atom, an alkyl group, a substituted amino group, an alkoxy group, or a cyano group, and l represents an integer of 0 or 1.) According to the present invention, the photoconductive particles mentioned above Since the polycyclic quinone pigment is used, the sensitivity is higher than that of conventional inorganic particles or perylene pigments, and a photosensitive layer that is uniform and has good scratchability can be obtained. In addition, since a polycyclic quinone pigment prepared by sublimation purification is used, it has higher sensitivity than photoreceptors using unpurified organic pigments, and can be repeatedly copied many times. Even in this case, since the accumulated residual potential is small and the potential increase in the background portion of the image is small, a clear copy image without fogging can be obtained. However, since the pigment purified by sublimation has a large particle size, the above-mentioned problems tend to occur. A notable feature of the present invention is that a polycyclic quinone pigment obtained by sublimation purification is contained in the photosensitive layer with an average particle size of 2 μm or less. That is, the present inventors made the average particle size of the above pigment finer (since polycyclic quinone pigments are needle-shaped crystals, the length of their long axis is taken as the average particle size) to 2 μm or less. Only then did they discover that it was possible to prevent the influence of the particle size on the surface of the photoreceptor, to make the surface of the photoreceptor smooth, and to stabilize the pigment dispersion. The average particle size of polycyclic quinone pigment is
If the thickness exceeds 2 μm, convex portions 6 as shown in FIG. 2 will occur on the surface, but if the thickness is less than 2 μm, such convex portions can be virtually eliminated and a flat surface can be realized.
This makes it possible to stabilize the liquid by reducing sedimentation of particles in the dispersion. As a result, it is possible to obtain a photoreceptor that does not suffer from discharge breakdown or toner filming. It is essential that the average particle diameter of the polycyclic quinone pigment is 2 μm or less, preferably 1 μm or less, and more preferably 0.5 μm or less. However, if the average grain size is too small, crystal defects will increase and the sensitivity and repeatability will decrease, and there is a limit to miniaturization, so the lower limit of the average grain size should be set at 0.01 μm.
It is desirable to do so. In order to obtain a polycyclic quinone pigment having such an average particle size, it is desirable to grow the crystals by a sublimation purification method and then actively and thoroughly crush the particles using a crushing device. As a crushing device, for example, a ball mill,
Examples include hammer mills, sand gliders, centrifugal mills, colloid mills, jet mills, turbo mills, etc. Further, according to the present invention, since the hydrazone derivative of the general formula (P) is used as a carrier average particle size transport substance in combination with the polycyclic quinone type photoconductive particles, the carrier transport ability is improved. , the operation becomes stable after repeated use. The liquid used to form the photosensitive layer in the present invention has an average particle size of the above polycyclic quinone pigment.
It can be obtained by dispersing photoconductive particles of 2 μm or less in a suitable organic solvent (which preferably contains a binder resin to improve adhesiveness). Further, before and/or after this dispersion step, a carrier transport substance can be added depending on the purpose, thereby improving the charge transport function of the photocarrier generation layer itself. In addition,
As a dispersion method, for example, a method using a ball mill, a homogenizer, a sand grinder, a colloid mill, an ultrasonic wave, etc. can be applied. Specific examples of the anthrone pigment represented by the above general formula (A) used in the present invention are as follows. Specific examples of compounds of the dibenzpyrenequinone pigment represented by the general formula (B) are as follows. Specific examples of compounds of the pyranthrone pigment represented by the general formula (C) are as follows. Furthermore, the following are specific examples of the hydrazone derivative represented by the general formula (P). In addition, examples of the binder resin that can be used in the present invention include polyethylene, polypropylene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, epoxy resin, polyurethane resin, phenolic resin, polyester resin, alkyd resin, polycarbonate resin, Addition polymer resins, polyaddition resins, polycondensation resins such as silicone resins and melamine resins, and copolymer resins containing two or more repeating units of these resins, such as vinyl chloride-vinyl acetate copolymers Examples include resins, vinyl chloride-vinyl acetate-maleic anhydride copolymer resins, and the like. However, the binder resin is not limited to these, and all resins commonly used for such purposes can be used. In particular, polycarbonate resins include linear polymers having repeating units represented by the following general formula (). In the formula, R' 1 and R' 2 are each a hydrogen atom, an alkyl group such as methyl, ethyl, propyl, isofuropyl, butyl, t-butyl, pentyl, hexyl,
Heptyl, octyl, nonyl, decyl, etc., or an aryl group such as phenyl, naphthyl, etc., and R' 1 and R' 2 jointly represent a hydrocarbon ring (cycloalkane ring such as cyclohexyl ring, polycyclo (including an alkane ring). Further, R' 3 , R' 4 , R' 5 and R' 6 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a halogen atom such as a chlorine atom, a bromine atom, an iodine atom, etc.

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】および[expression] and

【式】 から選ばれる二価の基を表わす。 R′1およびR′2におけるアルキル基としては、好
ましくは炭素原子数1〜22のものであり、炭化水
素環としては、好ましくは5〜7員のものであ
り、該炭化水素環の炭素原子数の総和は5〜19の
範囲が好ましい。 又、特に本発明に好ましく用いられるポリカボ
ネート樹脂としては下記一般式()で示される
くり返し単位を含む線状ポリマーが包含される。 ここにR′はフエニレン基、ハロゲン置換フエ
ニレン基、アルキル置換フエニレン基(特に炭素
原子数1〜20のアルキル置換フエニレン基)を表
わし、R′1とR′2は各々前記ポリカーボネートの一
般式()におけるR′1およびR′2と同じである。 一般式()および()において、各基およ
び各環は未置換のものに限らず、例えばハロゲン
原子(例えば塩素原子、臭素原子、ヨウ素原子
等)、アルキル基(例えば炭素原子数1〜20のア
ルキル基)、アリール基等の置換基を有するもの
も含まれる。 また、本発明で使用する有機溶媒としては、例
えばメチレンクロライド、メチレンブロマイド、
1,2−ジクロルエタン、sym−テトラクロロエ
タン、cis−1,2−ジクロルエチレン、1,1,
2−トリクロルエタン、クロロホルム、ブロモホ
ルム、ジオキサン、テトラヒドロフラン、ピリジ
ン等の単独溶媒あるいはこれらを主成分として含
有する各種混合溶媒が挙げられる。 5 実施例 以下、本発明の実施例を図面参照下に詳細に説
明する。 第3図は、キヤリア発生層2中に、平均粒径
2μm以下の上述の多環キノン顔料粒子5を含有せ
しめた機能分離型の電子写真感光体を示す。この
場合、キヤリア発生層2はバインダー樹脂を含有
せしめてもよいし、或いは含有せしめなくてもよ
い。含有せしめなくても、上層としてキヤリア輸
送層3を設けるので、多環キノン粒子5を感光層
中に保持することはできる。 キヤリア発生層2の乾燥膜厚は0.05〜10μ、好
ましくは0.1〜5μであり、通常のデイツプ塗布、
ナイフ塗布、ロール塗布又はスプレー塗布等の塗
布法により塗布される。キヤリア発生層2では、
キヤリア発生物質(多環キノン)100重量部に対
しバインダーを0〜500(望ましくは0〜200)重
量部とするのがよい。この範囲を外れ、バインダ
ーが500重量部を越えると感度不足となる。 キヤリア輸送層3に使用されるキヤリア輸送物
質は上述のヒドラゾン誘導体である。 バインダー樹脂とキヤリア輸送物質との配合割
合はバインダー樹脂100重量部当りキヤリア輸送
物質10〜300重量部、好ましくは(50〜200重量
部)であるのがよい。この範囲を外れて、キヤリ
ア輸送物質が少なすぎるとその効果が乏しく、ま
た多すぎると被膜形成能が悪くなり、かつ電荷保
持能が低下する。また、このキヤリア輸送層3の
厚さは2〜100μ、好ましくは5〜30μである。 尚、このキヤリア輸送層3には、可撓性の向
上、残留電位の低減、反復使用時の疲労低減の目
的で種々の添加剤を含有せしめることができる。
斯かる添加剤としては、ジフエニル、塩化ジフエ
ニル、o−ターフエニル、p−ターフエニル、ジ
ブチルフタレート、ジメチルグリコールフタレー
ト、ジオクチルフタレート、トリフエニル燐酸、
メチルナフタリン、ベンゾフエノン、塩素化パラ
フイン、ジラウリルチオプロピオネート、等を挙
げることができる。 第4図は、感光層4を上記の多環キノン粒子5
を上記のキヤリア輸送物質3中に分散せしめた2
相からなる物質で形成した例を示す。 この場合には、感光層4において、キヤリア発
生物質5はバインダー100重量部当り1〜200(望
ましくは10〜100)重量部とするのがよいが、こ
れは、1重量部未満では感度が悪く、200重量部
を越えると被膜形成能が悪くなるからである。ま
た、キヤリア輸送物質はバインダー100重量部当
り10〜300(望ましくは50〜200)重量部とするの
がよいが、これは、10重量部未満だと効果に乏し
く、300重量部を越えると被膜形成能及び電荷保
持能が低下するからである。 なお、上記の多環キノン顔料は、通常の染料タ
イプのものとは異なり、溶剤に溶けい難いが、耐
候性が良好であり、かつ特定の結晶構造をもつて
いるために半導体特性が著しく優れたものとなつ
ている。 また、上記のキヤリア輸送層又は感光層中に
は、疲労の低減、残留電位の上昇防止をより一層
図るために、ルイス酸を0.001〜10(望ましくは
0.01〜1)重量%添加してもよい。 使用可能なルイス酸としては、無水コハク酸、
無水マレイン酸、ジブロム無水マレイン酸、無水
フタル酸、テトラクロル無水フタル酸、テトラブ
ロム無水フタル酸、3−ニトロムスイフタル酸、
4−ニトロ無水フタル酸、無水ピロメリツト酸、
無水メリツト酸、テトラシアノエチレン、テトラ
シアノキノジメタン、o−ジニトロベンゼン、m
−ジニトロベンゼン、1,3,5−トリニトロベ
ンゼン、パラニトロベンゾニトリル、ピクリルク
ロライド、キノンクロルイミド、クロラニル、ブ
ロマニル、ジクロロジシアノパラベンゾキノン、
アントラキノン、ジニトロアントラキノン、2,
7−ジニトロフニオレノン、2,4,7−トリニ
トロフルオレノン、2,4,5,7−テトラニト
ロフルオレノン、9−フニオレニリデン−〔ジシ
アノメチレンマロノジニトリル〕、ポリニトロ−
9−フニオレニリデン−〔ジシアノメチレンマロ
ノジニトリル〕、ピクリン酸、o−ニトロ安息香
酸、p−ニトロ安息香酸、3,5−ジニトロ安息
香酸、ペンタフルオロ安息香酸、5−ニトロサリ
チル酸、3,5−ジニトロサリチル酸、フタル
酸、メリツト酸、その他の電子親和力の大きい化
合物を挙げることができる。 また、上記の基体1としては、導電性支持体が
好適であるが、絶縁性支持体表面にAl等の導電
膜を設け、この上に感光層を形成してもよい。導
電性支持体1の材料としては、例えばアルミニウ
ム、ニツケル、銅、亜鉛、パラジウム、銀、イン
ジウム、錫、白金、金、ステンレス鋼、真鍮等の
金属を用いることができる。 また、上述の各感光層は、導電性支持体上に設
けた中間層(図示せず)上に形成せしめることも
できる。この中間層は感光層の帯電時において導
電性支持体から感光層へのフリーキヤリアの注入
を阻止すると共、感光層を導電性支持体に対して
一体的に接着保持せしめる接着層としての作用を
果す。この中間層の材質としては、酸化アルミニ
ウム、酸化インジウム等の金属酸化物、アクリル
樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビ
ニル樹脂、エポキシ樹脂等の付加重合型樹脂、重
付加型樹脂、重縮合型樹脂、並びにこれらの樹脂
の繰返し単位のうちの2つ以上を含む共重合体樹
脂、例えば、塩化ビニル−酢酸ビニル共重合体樹
脂、塩化ビニル−酢酸ビニル−無水マレイン酸共
重合体樹脂等を挙げることができる。しかしここ
で用い得る樹脂はこれらに限定されるものではな
く、斯かる用途に一般に用いられる全ての樹脂を
使用することができる。 次に、本発明の具体的な実施例を説明する。 実施例 1 構造式A3で示される市販のアントアントロン
顔料「Monolite Red2Y」(ICI社製、C.I.No.
59300)を真空蒸着装置内に配置したグラフアイ
ト製の蒸発源に充填し、温度370℃で60分間昇華
せしめ、蒸発源の25cm上方に配置した基板上に沈
着させた。 得られた精製顔料30gをボールミルにて24時間
粉砕したのち、1,2−ジクロルエタン1000mlを
加えて24時間の分散処理を行ない、キヤリア発生
層形成用塗布液を得た。 次に120φのアルミドラム上に、乾燥重量が0.1
g/m2の塩化ビニル−酢酸ビニル−無水マレイン
酸共重合体樹脂の「エスレツクMF−10」(積水
化学工業主製)より成る中間層をデイツプ塗布法
によつて設けたのち、前記キヤリア発生層形成用
塗布液を同じくデイツプ塗布法によつて前記中間
層上に塗布して、乾燥重量が2.3g/m2のキヤリ
ア発生層をえた。電子顕微鏡に観察した結果、キ
ヤリア発生層は平均粒径0.3μmの顔料粒子で充填
されていた。 一方、構造式P45で示されるヒドラゾン誘導体
112.5gと、ポリカーボネート樹脂「パンラトト
L−1250」(帝人化成社製)150gと1,2−ジク
ロルエタン1000mlに溶解せしめ、得られたキヤリ
ア輸送層形成用塗布液をデイツプ塗布法により前
記キヤリア発生層上に塗布して、乾燥重量が19
g/m2のキヤリア輸送層を形成し、以つて本発明
の電子写真感光体(試料No.1)を作成した。 実施例 2 キヤリア発生層形成用塗布液調製に際し、精製
顔料を粉砕後、ポリカーボネート樹脂30gを1,
2−ジクロルエタン1000mlに溶解した溶液を用い
て分散処理を行なつた他は、実施例1と同様にし
て、乾燥重量2.1g/m2のキヤリア発生層を形成
した。電子顕微鏡にて観察した結果、キヤリア発
生層は平均粒径0.3μmの顔料粒子で充填されてい
た。更に、実施例1と同様にして、乾燥重量19
g/m2のキヤリア輸送層を形成して、本発明電子
写真感光体(試料No.2)を作成した。 実施例 3 実施例2に於けるアントアントロン顔料に替え
て、構造式B3で示されるジベンズピレンキノン
顔料「Indanthrene Golden Yellow RK」(ClNo.
59105)を用いた他は、実施例2と同様にして、
本発明電子写真感光体(試料No.3)を作成した。
電子顕微鏡観察の結果、キヤリア発生層は平均粒
径0.5μmの顔料粒子で充填されていた。 実施例 4 実施例2に於けるアントアントロン顔料に替え
て、構造式C4で示されるピラントロン顔料
「Pal:ogen Red3340」(BASF社製)を用いた他
は、実施例2と同様にして、本発明電子写真感光
体(試料No.4)を作成した。電子顕微鏡観察の結
果、キヤリア発生層は平均粒径0.4μmの顔料粒子
で充填されていた。 実施例 5 実施例1で得られた精製顔料30gをボールミル
にて24時間粉砕後、ポリカーボネート樹脂100g
及び構造式P4で示されるヒドラゾン誘導体100g
を1,2−ジクロルエタン1000mlに溶解した溶液
を加え、更に24時間の分散処理を行ない、感光層
形成用塗布液を得た。この塗布液を実施例1と同
様にして設けた中間層上にデイツプ塗布法により
塗設し、乾燥重量24g/m2の感光層を形成し、本
発明電子写真感光体(試料No.5)を作成した。電
子顕微鏡観察の結果、感光層は平均粒径0.8μmの
顔料粒子で充填されていた。 実施例 6 実施例2において、精製顔料の粒径を変化させ
た他は、実施例2と同様にして、夫々の試料No.6
を作成した。これらの試料中の光導電性粒子の平
均粒径は後述の表中に示した。 比較例 1 精製顔料の粉砕操作を省いた他は、実施例2と
同様にして、比較試料No.1を作成した。電子顕微
鏡観察の結果、キヤリア発生層中の顔料粒子の平
均粒径は2.5μmであつた。 比較例 2,3 キヤリア輸送物質として、本発明の一般式
(P) で示される化合物に替えて、1,1−ビス−〔4
−N,N−ジベンジルアミノ−2−メチルフエニ
ル〕ノルマルブタン及び2,5−ビス−〔4−ジ
エチルアミノフエニル〕−オキサジアゾールを用
いた他は、実施例2と同様にして、それぞれ比較
試料No.2及びNo.3を作成した。 比較例 4 有機顔料として、実施例1における市販の多環
キノン顔料を昇華精製しないでそのまま用いた他
は、実施例2と同様にして比較試料No.4を作成し
た。 以上の実施例及び比較例で得られた試料No.1〜
No.6及び比較試料No.1〜4をドラム試験機に装着
し、帯電電位V0及びV0を1/2に減衰せしめるのに
必要な露光量E1/2(lux・sec)を求めた。結果
を表−1に示す。 次に、各試料をU−Bix V2(小西六写真工業
社製)改造機に装着し、2成分系現像剤を用いて
1万回に亘る実写試験を行なつた。また、同時に
光学濃度1.3の黒紙及び白紙を原稿とした時の黒
紙電位V(v)及び白紙電位V(v)を「エレクト
ロスタチツクボルトメータ144D−1D型」(モン
ローエレクトロニクスインコーポレーテツド製)
を用いて測定した。 トナーフイルミング発生状況と併わせて結果を
表−2に示す。
[Formula] Represents a divalent group selected from the following. The alkyl group in R' 1 and R' 2 preferably has 1 to 22 carbon atoms, and the hydrocarbon ring preferably has 5 to 7 members, and the carbon atoms of the hydrocarbon ring are preferably 5 to 7 members. The total number is preferably in the range of 5 to 19. In addition, polycarbonate resins particularly preferably used in the present invention include linear polymers containing repeating units represented by the following general formula (). Here, R' represents a phenylene group, a halogen-substituted phenylene group, or an alkyl-substituted phenylene group (particularly an alkyl-substituted phenylene group having 1 to 20 carbon atoms), and R' 1 and R' 2 each represent the general formula () of the polycarbonate. The same as R′ 1 and R′ 2 in . In the general formulas () and (), each group and each ring are not limited to unsubstituted ones, and include, for example, halogen atoms (e.g., chlorine atom, bromine atom, iodine atom, etc.), alkyl groups (e.g., carbon atoms of 1 to 20), It also includes those having substituents such as alkyl groups) and aryl groups. Further, examples of the organic solvent used in the present invention include methylene chloride, methylene bromide,
1,2-dichloroethane, sym-tetrachloroethane, cis-1,2-dichloroethylene, 1,1,
Examples include single solvents such as 2-trichloroethane, chloroform, bromoform, dioxane, tetrahydrofuran, and pyridine, and various mixed solvents containing these as main components. 5 Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Figure 3 shows the average particle size in the carrier generation layer 2.
This figure shows a functionally separated type electrophotographic photoreceptor containing the above-mentioned polycyclic quinone pigment particles 5 of 2 μm or less. In this case, the carrier generation layer 2 may or may not contain a binder resin. Even if they are not contained, the polycyclic quinone particles 5 can be retained in the photosensitive layer because the carrier transport layer 3 is provided as an upper layer. The dry film thickness of the carrier generation layer 2 is 0.05 to 10 μm, preferably 0.1 to 5 μm, and can be applied by ordinary dip coating,
It is applied by a coating method such as knife coating, roll coating or spray coating. In carrier generation layer 2,
The binder is preferably used in an amount of 0 to 500 (preferably 0 to 200) parts by weight per 100 parts by weight of the carrier generating substance (polycyclic quinone). Outside this range, if the binder exceeds 500 parts by weight, sensitivity will be insufficient. The carrier transport material used in the carrier transport layer 3 is the above-mentioned hydrazone derivative. The blending ratio of the binder resin and the carrier transport material is preferably 10 to 300 parts by weight, preferably (50 to 200 parts by weight), per 100 parts by weight of the binder resin. Outside this range, if the amount of the carrier transport substance is too small, the effect will be poor, and if it is too large, the film forming ability will be poor and the charge retention ability will be reduced. Further, the thickness of this carrier transport layer 3 is 2 to 100 microns, preferably 5 to 30 microns. The carrier transport layer 3 may contain various additives for the purpose of improving flexibility, reducing residual potential, and reducing fatigue during repeated use.
Such additives include diphenyl, diphenyl chloride, o-terphenyl, p-terphenyl, dibutyl phthalate, dimethyl glycol phthalate, dioctyl phthalate, triphenyl phosphate,
Examples include methylnaphthalene, benzophenone, chlorinated paraffin, dilaurylthiopropionate, and the like. In FIG. 4, the photosensitive layer 4 is replaced with the above-mentioned polycyclic quinone particles 5.
2 dispersed in the above carrier transport substance 3
An example is shown in which a substance consisting of phases is used. In this case, in the photosensitive layer 4, the carrier generating substance 5 is preferably used in an amount of 1 to 200 (preferably 10 to 100) parts by weight per 100 parts by weight of the binder; however, if it is less than 1 part by weight, the sensitivity is poor. This is because if the amount exceeds 200 parts by weight, the film-forming ability deteriorates. In addition, the carrier transport substance should be used in an amount of 10 to 300 (preferably 50 to 200) parts by weight per 100 parts by weight of the binder; however, if it is less than 10 parts by weight, the effect will be poor, and if it exceeds 300 parts by weight, the coating will form. This is because the formation ability and charge retention ability decrease. The above-mentioned polycyclic quinone pigments are different from ordinary dye-type pigments and are difficult to dissolve in solvents, but they have good weather resistance and have extremely excellent semiconductor properties because they have a specific crystal structure. It has become a common thing. In addition, in the carrier transport layer or photosensitive layer, a Lewis acid of 0.001 to 10% (preferably
It may be added in an amount of 0.01 to 1)% by weight. Lewis acids that can be used include succinic anhydride,
Maleic anhydride, dibromaleic anhydride, phthalic anhydride, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, 3-nitromsuphthalic acid,
4-nitrophthalic anhydride, pyromellitic anhydride,
Mellitic anhydride, tetracyanoethylene, tetracyanoquinodimethane, o-dinitrobenzene, m
- dinitrobenzene, 1,3,5-trinitrobenzene, paranitrobenzonitrile, picryl chloride, quinone chlorimide, chloranil, bromanil, dichlorodicyanoparabenzoquinone,
anthraquinone, dinitroanthraquinone, 2,
7-dinitrofluorenone, 2,4,7-trinitrofluorenone, 2,4,5,7-tetranitrofluorenone, 9-dinitrofluorenylidene-[dicyanomethylenemalonodinitrile], polynitro-
9-Fniolenylidene-[dicyanomethylenemalonodinitrile], picric acid, o-nitrobenzoic acid, p-nitrobenzoic acid, 3,5-dinitrobenzoic acid, pentafluorobenzoic acid, 5-nitrosalicylic acid, 3,5-dinitro Examples include salicylic acid, phthalic acid, mellitic acid, and other compounds with high electron affinity. Moreover, as the above-mentioned base 1, a conductive support is suitable, but a conductive film such as Al may be provided on the surface of the insulating support and a photosensitive layer may be formed thereon. As the material of the conductive support 1, for example, metals such as aluminum, nickel, copper, zinc, palladium, silver, indium, tin, platinum, gold, stainless steel, and brass can be used. Further, each of the photosensitive layers described above can also be formed on an intermediate layer (not shown) provided on a conductive support. This intermediate layer prevents free carriers from being injected from the conductive support into the photosensitive layer when the photosensitive layer is charged, and also functions as an adhesive layer that holds the photosensitive layer integrally bonded to the conductive support. fulfill Materials for this intermediate layer include metal oxides such as aluminum oxide and indium oxide, addition polymer resins such as acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, and epoxy resin, polyaddition resins, and polycondensation resins. resins, and copolymer resins containing two or more of the repeating units of these resins, such as vinyl chloride-vinyl acetate copolymer resins, vinyl chloride-vinyl acetate-maleic anhydride copolymer resins, etc. be able to. However, the resins that can be used here are not limited to these, and all resins that are commonly used for this purpose can be used. Next, specific examples of the present invention will be described. Example 1 Commercially available anthinthrone pigment “Monolite Red2Y” represented by structural formula A3 (manufactured by ICI, CI No.
59300) was filled into a graphite evaporation source placed in a vacuum evaporation apparatus, sublimated at a temperature of 370°C for 60 minutes, and deposited on a substrate placed 25 cm above the evaporation source. After pulverizing 30 g of the obtained purified pigment in a ball mill for 24 hours, 1000 ml of 1,2-dichloroethane was added and a dispersion treatment was carried out for 24 hours to obtain a coating solution for forming a carrier generation layer. Next, the dry weight is 0.1 on a 120φ aluminum drum.
g/m 2 of vinyl chloride-vinyl acetate-maleic anhydride copolymer resin "Eslec MF-10" (manufactured by Sekisui Chemical Co., Ltd.) by a dip coating method, and then apply the carrier. A layer-forming coating solution was applied onto the intermediate layer by the same dip coating method to obtain a carrier generation layer having a dry weight of 2.3 g/m 2 . As a result of observation using an electron microscope, the carrier generation layer was filled with pigment particles having an average particle size of 0.3 μm. On the other hand, hydrazone derivatives represented by structural formula P45
112.5 g of polycarbonate resin "Panrato L-1250" (manufactured by Teijin Kasei) and 1000 ml of 1,2-dichloroethane were dissolved. to a dry weight of 19
A carrier transport layer of g/m 2 was formed, and an electrophotographic photoreceptor (sample No. 1) of the present invention was prepared. Example 2 When preparing a coating solution for forming a carrier generation layer, after pulverizing the purified pigment, 30 g of polycarbonate resin was mixed with 1.
A carrier generating layer having a dry weight of 2.1 g/m 2 was formed in the same manner as in Example 1, except that the dispersion treatment was carried out using a solution dissolved in 1000 ml of 2-dichloroethane. As a result of observation using an electron microscope, the carrier generation layer was filled with pigment particles having an average particle size of 0.3 μm. Furthermore, in the same manner as in Example 1, dry weight 19
An electrophotographic photoreceptor of the present invention (sample No. 2) was prepared by forming a carrier transport layer of g/m 2 . Example 3 In place of the anthanthrone pigment in Example 2, a dibenzpyrene quinone pigment "Indanthrene Golden Yellow RK" (ClNo.
59105) was used in the same manner as in Example 2,
An electrophotographic photoreceptor of the present invention (sample No. 3) was prepared.
As a result of electron microscopic observation, the carrier generation layer was filled with pigment particles with an average particle size of 0.5 μm. Example 4 The present invention was carried out in the same manner as in Example 2, except that a pyranthrone pigment “Pal:ogen Red 3340” (manufactured by BASF) represented by the structural formula C4 was used in place of the anthorone pigment in Example 2. An invention electrophotographic photoreceptor (sample No. 4) was prepared. As a result of electron microscopic observation, the carrier generation layer was filled with pigment particles with an average particle size of 0.4 μm. Example 5 After pulverizing 30 g of the purified pigment obtained in Example 1 in a ball mill for 24 hours, 100 g of polycarbonate resin was prepared.
and 100 g of hydrazone derivative represented by structural formula P4
A solution prepared by dissolving 1,2-dichloroethane in 1000 ml was added thereto, and a dispersion treatment was further carried out for 24 hours to obtain a coating solution for forming a photosensitive layer. This coating solution was applied by a dip coating method onto the intermediate layer provided in the same manner as in Example 1 to form a photosensitive layer with a dry weight of 24 g/m 2 , and an electrophotographic photoreceptor of the present invention (sample No. 5) It was created. As a result of electron microscopic observation, the photosensitive layer was filled with pigment particles with an average particle size of 0.8 μm. Example 6 Each sample No. 6 was prepared in the same manner as in Example 2, except that the particle size of the purified pigment was changed.
It was created. The average particle size of the photoconductive particles in these samples is shown in the table below. Comparative Example 1 Comparative sample No. 1 was prepared in the same manner as in Example 2, except that the pulverizing operation of the purified pigment was omitted. As a result of electron microscopic observation, the average particle size of the pigment particles in the carrier generation layer was 2.5 μm. Comparative Example 2, 3 As a carrier transport substance, 1,1-bis-[4
Comparative samples were prepared in the same manner as in Example 2, except that -N,N-dibenzylamino-2-methylphenyl]n-butane and 2,5-bis-[4-diethylaminophenyl]-oxadiazole were used. No. 2 and No. 3 were created. Comparative Example 4 Comparative sample No. 4 was prepared in the same manner as in Example 2, except that the commercially available polycyclic quinone pigment in Example 1 was used as the organic pigment without sublimation purification. Sample No. 1~ obtained in the above Examples and Comparative Examples
No. 6 and comparative samples No. 1 to 4 were mounted on a drum testing machine, and the exposure amount E1/2 (lux sec) required to attenuate the charged potential V 0 and V 0 to 1/2 was determined. . The results are shown in Table-1. Next, each sample was mounted on a modified U-Bix V2 (manufactured by Konishiroku Photo Industry Co., Ltd.), and an actual photographic test was conducted 10,000 times using a two-component developer. At the same time, when black paper and white paper with an optical density of 1.3 are used as manuscripts, the black paper potential V (v) and the white paper potential V (v) are measured using an "electrostatic voltmeter model 144D-1D" (manufactured by Monroe Electronics Incorporated).
Measured using The results are shown in Table 2 along with the occurrence of toner filming.

【表】【table】

【表】【table】

【表】【table】

【表】 * ブレークダウン電位:帯電電位を変えた場合に画
像に白点が生じ始める電位をブレークダウン
電位とした。
但、上記表中、各画像電位の上段は黒電位V
(v)を、下段( )内は白紙電位V(v)を示
す。なお変動量の+は増加を、−は減少を示す。 上記の結果から、本発明に基づいて、多環キノ
ン顔料粒子(光導電性粒子)の平均粒径を2.0μm
以下(望ましくは1.0μm以下、更に望ましくは
0.5μm以下)とした場合、及び電荷輸送物質とし
てヒドラゾン誘導体を用いた場合には、高感度を
維持しつつ、繰返し使用に耐え、画質の安定し
た、しかもブレークダウンし難く、トナナーフイ
ルミングの生じ難い感光体を得ることができる。
[Table] *Breakdown potential: The potential at which white spots begin to appear on the image when the charging potential is changed is defined as the breakdown potential.
However, in the above table, the upper row of each image potential is the black potential V.
(v), and the blank paper potential V(v) is shown in parentheses at the bottom. Note that + in the variation amount indicates an increase, and - indicates a decrease. From the above results, based on the present invention, the average particle diameter of polycyclic quinone pigment particles (photoconductive particles) was set to 2.0 μm.
or less (preferably 1.0 μm or less, more preferably
(0.5 μm or less) and when a hydrazone derivative is used as a charge transport material, high sensitivity can be maintained, it can withstand repeated use, stable image quality, and is difficult to break down, and can be used to improve toner filming. It is possible to obtain a photoreceptor that is unlikely to cause this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電子写真感光体の断面図、第2
図はその概略拡大断面図であ。第3図〜第4図は
本発明の実施例を示すものであつて、第3図、第
4図は各種電子写真感光体の各概略拡大断面図で
ある。 なお、図面に示された符号において、1……基
板、2……キヤリア発生層、3……キヤリア輸送
層(相)、4……感光層、5……光導電性粒子、
である。
Figure 1 is a cross-sectional view of a conventional electrophotographic photoreceptor;
The figure is a schematic enlarged cross-sectional view. 3 and 4 show examples of the present invention, and FIGS. 3 and 4 are schematic enlarged sectional views of various electrophotographic photoreceptors. In addition, in the symbols shown in the drawings, 1...substrate, 2...carrier generation layer, 3...carrier transport layer (phase), 4...photosensitive layer, 5...photoconductive particles,
It is.

Claims (1)

【特許請求の範囲】 1 下記一般式(A)、(B)又は(C)の各多環キノン顔料
からなる群より選ばれた少なくとも1種からなり
かつ昇華精製法によつて得られる平均粒径2μm以
下の光導電性粒子が、キヤリア発生層物質として
使用され、かつ下記一般式(P)のヒドラゾン誘
導体がキヤリア輸送物質として使用されているこ
とを特徴とする感光体。 (但、上記各式中、Xはハロゲン原子、ニトロ
基、シアノ基、アシル基又はカルボキシル基を表
わし、nは0〜4の整数、mは0〜6の整数を表
わす。) (但、上記式中、R1は置換若しくは未置換の
アリール基、置換若しくは置換の複素環基を表わ
し、R2は水素原子、置換若しくは未置換のアル
キル基、置換若しくは未置換のアリール基を表わ
し、X′は水素原子、ハロゲン原子、アルキル基、
置換アミノ基、アルコキシ基、シアノ基を表わ
し、lは0又は1の整数を表わす。) 2 キヤリア発生物質を主成分として含有するキ
ヤリア発生層と、キヤリア輸送物質を主成分とし
て含有するキヤリア輸送層との積層構造によつて
感光層が形成されている、特許請求の範囲の第1
項に記載した感光体。 3 キヤリア輸送物質を主成分として含有するキ
ヤリア輸送相中にキヤリア発生物質を分散せしめ
た二相構造によつて感光層が形成されている、特
許請求の範囲の第1項に記載した感光体。
[Scope of Claims] 1. Average particles consisting of at least one selected from the group consisting of each polycyclic quinone pigment of the following general formula (A), (B) or (C) and obtained by a sublimation purification method. 1. A photoreceptor, characterized in that photoconductive particles having a diameter of 2 μm or less are used as a carrier generation layer material, and a hydrazone derivative of the following general formula (P) is used as a carrier transport material. (However, in each of the above formulas, X represents a halogen atom, a nitro group, a cyano group, an acyl group, or a carboxyl group, n represents an integer of 0 to 4, and m represents an integer of 0 to 6.) (However, in the above formula, R 1 represents a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, and R 2 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group. In the expression, X' is a hydrogen atom, a halogen atom, an alkyl group,
It represents a substituted amino group, alkoxy group, or cyano group, and l represents an integer of 0 or 1. ) 2 The photosensitive layer is formed by a laminated structure of a carrier generation layer containing a carrier generation substance as a main component and a carrier transport layer containing a carrier transport substance as a main component.
Photoreceptor described in section. 3. The photoreceptor according to claim 1, wherein the photosensitive layer is formed of a two-phase structure in which a carrier generating substance is dispersed in a carrier transport phase containing a carrier transporting substance as a main component.
JP5942783A 1983-04-05 1983-04-05 Photosensitive body Granted JPS59184350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5942783A JPS59184350A (en) 1983-04-05 1983-04-05 Photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5942783A JPS59184350A (en) 1983-04-05 1983-04-05 Photosensitive body

Publications (2)

Publication Number Publication Date
JPS59184350A JPS59184350A (en) 1984-10-19
JPH0322978B2 true JPH0322978B2 (en) 1991-03-28

Family

ID=13112948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5942783A Granted JPS59184350A (en) 1983-04-05 1983-04-05 Photosensitive body

Country Status (1)

Country Link
JP (1) JPS59184350A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295535A (en) * 1985-10-22 1987-05-02 Konishiroku Photo Ind Co Ltd Photosensitive body
JPS62127843A (en) * 1985-11-29 1987-06-10 Mita Ind Co Ltd Electrophotographic organic sensitive body
JPS63184759A (en) * 1987-01-28 1988-07-30 Konica Corp Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPS59184350A (en) 1984-10-19

Similar Documents

Publication Publication Date Title
JP2567483B2 (en) Method for manufacturing electrophotographic image forming member
JP3586742B2 (en) Electrophotographic photoconductor containing fluorenyl-azine derivative as charge transfer additive
JPH0252257B2 (en)
JP2006085172A (en) Photoconductive imaging member
JPH0257300B2 (en)
JP3981461B2 (en) Electrophotographic photoreceptor
JPH0322978B2 (en)
JPH0325778B2 (en)
JPH0325777B2 (en)
JPH09171263A (en) Photoconductive member for electrophotography used together with liquid toner
JP2625868B2 (en) Manufacturing method of electrophotographic photoreceptor
JPS59184349A (en) Photosensitive body
JP2756788B2 (en) Electrophotographic photoreceptor
JP2004045991A (en) Method for preparing photosensitive layer coating solution and monolayer electrophotographic photoreceptor
JPS59184353A (en) Photosensitive body
JP3063439B2 (en) Laminated electrophotographic photoreceptor and paint for charge generation layer
JP2658201B2 (en) Electrophotographic photoreceptor
JP2956405B2 (en) Laminated electrophotographic photoreceptor and paint for charge generation layer
JPH0437860A (en) Electrophotographic sensitive body
JPH0357471B2 (en)
JPS59184352A (en) Photosensitive body
JPS59184348A (en) Photosensitive body
JPH02139571A (en) Electrophotographic sensitive body
JP2591654B2 (en) Electrophotographic photoreceptor
JPS6024552A (en) Photosensitive body