JPH02139571A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH02139571A
JPH02139571A JP31593088A JP31593088A JPH02139571A JP H02139571 A JPH02139571 A JP H02139571A JP 31593088 A JP31593088 A JP 31593088A JP 31593088 A JP31593088 A JP 31593088A JP H02139571 A JPH02139571 A JP H02139571A
Authority
JP
Japan
Prior art keywords
particles
free phthalocyanine
metal
type
electrophotographic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31593088A
Other languages
Japanese (ja)
Other versions
JP2557096B2 (en
Inventor
Toshio Enokida
年男 榎田
Satoshi Mizukami
聡 水上
Akihide Sano
佐野 彰秀
Norio Watanabe
渡辺 範夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP63315930A priority Critical patent/JP2557096B2/en
Publication of JPH02139571A publication Critical patent/JPH02139571A/en
Application granted granted Critical
Publication of JP2557096B2 publication Critical patent/JP2557096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Abstract

PURPOSE:To obtain an electrophotographic sensitive body having superior electrophotographic characteristics, high distinctness and superior gradation of picture, by adopting metal free phthalocyanine particles as charge generating material on an electroconductive base body. CONSTITUTION:The title electrophotographic sensitive material contains metal free phthalocyanine particles having either one crystal form among tau-, tau'-, eta-, and eta'-type, having >=20m<2>/g, pref. >=30m<2>/g BET specific surface area, <=0.35mum minor axial size and/or <=1mum major axial size of the particles, on an electroconductive base body. It is also characterized by that an average particle size of the metal free phthalocyanine particles is <=0.20mum and that a cumulative distribution of weight of particles having <=0.20mum average particle size of particles is >=50% in the number of the particles. Thus, an electrophotographic sensitive body having high sensitivity for a long period, stable repeatability of characteristics, and providing picture having superior distinctness and superior gradation, is obtd.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電子写真感光体に関し、詳しくは高感度、長
期にわたる繰り返し特性が安定であり1画像の鮮明性1
階調性の良好な電子写真感光体に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an electrophotographic photoreceptor, and more specifically, the present invention relates to an electrophotographic photoreceptor that has high sensitivity, stable repeatability over a long period of time, and high sharpness of one image.
This invention relates to an electrophotographic photoreceptor with good gradation.

(従来の技術) 従来、電子写真感光体は、セレン、セレン合金。(Conventional technology) Conventionally, electrophotographic photoreceptors are made of selenium or selenium alloys.

酸化亜鉛、硫化カドミウムおよび酸化チタン等の無機光
導電体を用いたものが主として使用されてきた。
Those using inorganic photoconductors such as zinc oxide, cadmium sulfide and titanium oxide have mainly been used.

近年、半導体レーザーの発展は目覚ましく、小型で安定
したレーザー発振器が安価に入手できるようになり、電
子写真用光源として用いられ始めている。
In recent years, the development of semiconductor lasers has been remarkable, and small and stable laser oscillators have become available at low cost and are beginning to be used as light sources for electrophotography.

しかし、これらの装置に短波長光を発振する半導体レー
ザーを用いるのは、寿命、出力等に問題が多いので、こ
れらの問題のない長波長光を発振する半導体レーザーが
用いられるようになり、それに従って長波長領域(78
0nn+以上)に高感度を持つ光導電材料を開発する必
要が生じてきた。最近は有機系の材料、特に長波長領域
に感度を有するフタロシアニンを使用した積層型感光体
の研究が盛んに行われている。
However, using semiconductor lasers that emit short-wavelength light in these devices has many problems in terms of lifespan, output, etc., so semiconductor lasers that emit long-wavelength light, which do not have these problems, are now being used. according to the long wavelength region (78
There has arisen a need to develop photoconductive materials with high sensitivity (more than 0nn+). Recently, research has been actively conducted on multilayer photoreceptors using organic materials, particularly phthalocyanine, which is sensitive in the long wavelength region.

本発明者らはすでに、780nm以上の波長に対して感
度を存するτ、τ′ηおよびη′型の結晶形を有する無
金属フタロシアニンを見い出している。これらの無金属
フタロシアニンを用いた電子写真感光体は、可とう性2
加工性、衛生性に優れ、長波長光への感度も良好である
が9画質、解像度および繰り返し使用時の安定性におい
て問題があることが判明した。
The inventors have already discovered metal-free phthalocyanines having crystal forms of the τ, τ′η and η′ types that are sensitive to wavelengths above 780 nm. Electrophotographic photoreceptors using these metal-free phthalocyanines have a flexibility of 2
Although it has excellent processability, hygiene, and sensitivity to long wavelength light, it has been found that there are problems with image quality, resolution, and stability during repeated use.

(発明が解決しようとする課題) 本発明の目的は、均一かつ平滑な電荷発生層を形成し、
高感度で長期にわたる繰り返し特性が安定であり9画像
の鮮明性1階調性の良好な電子写真感光体を得ることに
ある。
(Problems to be Solved by the Invention) An object of the present invention is to form a uniform and smooth charge generation layer,
The object of the present invention is to obtain an electrophotographic photoreceptor with high sensitivity, stable repeatability over a long period of time, and good clarity of nine images and one gradation property.

(課題を解決するための手段) 本発明は、導電性支持体上に、電荷発生物質と。(Means for solving problems) The present invention provides a charge generating material on a conductive support.

電荷移動物質とを含む層を形成してなる電子写真感光体
において、該電荷発生物質がτ型、τ′型、η型および
η′型から選ばれる結晶形を有する無金属フタロシアニ
ン粒子であり、該粒子が2Onf/g以上好ましくは3
0m2/g以上のBET法比表面積を有することを特徴
とする電子写真感光体である。さらには、無金属フタロ
シアニン粒子の短軸径が0.35μm以下および/また
は長軸径が1μm以下であることを特徴とする電子写真
感光体である。
In an electrophotographic photoreceptor formed with a layer containing a charge transfer substance, the charge generation substance is metal-free phthalocyanine particles having a crystal form selected from τ type, τ′ type, η type, and η′ type, The particles are 2 Onf/g or more, preferably 3 Onf/g or more.
The electrophotographic photoreceptor is characterized by having a BET specific surface area of 0 m2/g or more. Furthermore, the electrophotographic photoreceptor is characterized in that the metal-free phthalocyanine particles have a minor axis diameter of 0.35 μm or less and/or a major axis diameter of 1 μm or less.

また、該無金属フタロシアニン粒子の平均粒子径が0.
201Jm以下である電子写真感光体であり、その無金
属フタロシアニン粒子の平均粒子径が遠心沈降式粒度分
布測定装置で測定され、かつメジアン径が0.20μm
以下である電子写真感光体である。さらに、該無金属フ
タロシアニン粒子の平均粒子径が遠心沈降式粒度分布測
定装置で測定され、かつ該粒子の平均粒子径0゜20μ
m以下の粒子量重量積算分布が50%以上である電子写
真感光体により、目的を達成した。
Further, the average particle diameter of the metal-free phthalocyanine particles is 0.
201 Jm or less, the average particle size of the metal-free phthalocyanine particles is measured with a centrifugal sedimentation type particle size distribution analyzer, and the median diameter is 0.20 μm.
The electrophotographic photoreceptor is as follows. Furthermore, the average particle size of the metal-free phthalocyanine particles is measured using a centrifugal sedimentation type particle size distribution analyzer, and the average particle size of the particles is 0°20μ.
The objective was achieved by using an electrophotographic photoreceptor in which the cumulative weight distribution of particles of m or less was 50% or more.

本発明において用いられる。τ型無金属フタロシアニン
は特開昭58−182639号公報に、α型無金属フタ
ロシアニンは特開昭58−183758号公報に、また
、τ′型およびη′型の無金属フタロシアニンは特開昭
60−19153号公報にそれぞれ記載されているもの
であり、原料としてのα型無金属フタロシアニンもしく
はα型無金属フタロシアニンとフタロシアニン誘導体と
を摩砕助剤、溶媒等とともに各種分散機を用いて混練す
ることにより。
Used in the present invention. τ-type metal-free phthalocyanine is described in JP-A-58-182639, α-type metal-free phthalocyanine is described in JP-A-58-183758, and τ'-type and η'-type metal-free phthalocyanine is described in JP-A-60. -19153, and the α-type metal-free phthalocyanine or α-type metal-free phthalocyanine and phthalocyanine derivative as raw materials are kneaded together with a grinding aid, a solvent, etc. using various dispersion machines. By.

所定の結晶型を有する無金属フタロシアニン粒子に結晶
転移させることができる。
Crystal transition can be carried out into metal-free phthalocyanine particles having a predetermined crystal type.

上記結晶形を有する無金属フタロシアニンは1通常、棒
状の結晶形を有しているが2本発明により。
The metal-free phthalocyanine having the above crystalline form usually has a rod-like crystalline form, but according to the present invention.

BET法比表面積が20m”/g以上の粒子が、電子写
真特性および画像の鮮明性1階調性において優れている
ことがわかった。つまり2本発明により見出された粒子
は、電子写真特性および画像の鮮明性。
It has been found that particles with a BET specific surface area of 20 m''/g or more are excellent in electrophotographic properties, image clarity, and single gradation.In other words, the particles discovered by the present invention have excellent electrophotographic properties. and image clarity.

階調性において優れていることがわかった。このような
微細な結晶粒子は、結晶転移の際、転移時間。
It was found that the gradation was excellent. Such fine crystal grains require a short transition time during crystal transition.

転移温度1分散メディアと原料の比率、摩砕助剤と原料
との比率、溶媒等の諸条件を適宜選定して得ることがで
きる。
Transition temperature 1 can be obtained by appropriately selecting various conditions such as the ratio of the dispersion media to the raw material, the ratio of the grinding aid to the raw material, and the solvent.

本発明で得られる無金属フタロシアニンは極めて微粒子
であるために塗液中における粒子の分散が良好であり、
薄膜で均一な電荷発生層を形成することができる。
Since the metal-free phthalocyanine obtained in the present invention is extremely fine particles, the particles are well dispersed in the coating liquid.
A thin and uniform charge generation layer can be formed.

しかしながら、無金属フタロシアニンの比表面積が20
m”/g未満の粒子になると、塗液の分散が悪くなる。
However, the specific surface area of metal-free phthalocyanine is 20
When the particle size is less than m''/g, the dispersion of the coating liquid becomes poor.

また、平均粒子径が0.20μmより大きな粒子、また
は平均粒子径0.20IIm以下の粒子量重量分布が5
0%未満である粒子を使用すると、塗液の分散性が低下
し、その結果、電荷発生層表面の平滑性が低下し、これ
が静電画像に影響を及ぼし。
In addition, particles with an average particle size larger than 0.20μm or particles with an average particle size of 0.20IIm or less whose weight distribution is 5
If less than 0% of particles are used, the dispersibility of the coating liquid will be reduced, resulting in a reduction in the smoothness of the surface of the charge generation layer, which will affect the electrostatic image.

結果として画像解像度および階調性が低下する。As a result, image resolution and gradation are reduced.

比表面積の測定方法には多くの手法がある。例えば、沈
降速度から測定する方法としては1重力沈降法、遠心沈
降法、光透過法がある。吸着量から測定する方法として
はBET法、流動法がある。透過性から測定する方法と
しては、コゼニー・カーマン法。
There are many methods for measuring specific surface area. For example, methods for measuring sedimentation velocity include a single gravity sedimentation method, a centrifugal sedimentation method, and a light transmission method. Methods for measuring the amount of adsorption include the BET method and the flow method. The method for measuring from permeability is the Kozeny-Kerman method.

クヌーセン法がある。また、浸漬熱を利用して測定する
方法もある。比表面積の測定は、前記のいずれの方法で
も良いが8本発明ではBET法にて行った。
There is the Knudsen method. There is also a method of measuring using immersion heat. The specific surface area may be measured by any of the methods described above, but in the present invention, the BET method was used.

また1粒度分布を沈降速度から測定する方法としては9
重力沈降性、遠心沈降法、光透過法等があるが1本発明
では遠心沈降式にて測定した。
In addition, as a method of measuring particle size distribution from sedimentation velocity, 9
There are gravity sedimentation methods, centrifugal sedimentation methods, light transmission methods, etc., but in the present invention, the centrifugal sedimentation method was used for measurement.

本発明における感光体の好ましい層構成は、導電性基板
上に、下引き層、電荷発生層、電荷移動層の順にて積層
されたもの、あるいは下引き層を除いて上記層を構成し
たものであるが、それらに限られるものではない。
A preferred layer structure of the photoreceptor in the present invention is one in which an undercoat layer, a charge generation layer, and a charge transport layer are laminated in this order on a conductive substrate, or one in which the above layers are constituted without the undercoat layer. Yes, but not limited to these.

各層は電荷発生物質と電荷移動物質を適切な結着剤樹脂
で分散塗布して形成することが好ましい。
Each layer is preferably formed by dispersing and coating a charge generating material and a charge transporting material with a suitable binder resin.

上記結着剤樹脂としては、シリコン樹脂、ケトン樹脂、
ポリ塩化ビニル樹脂、アクリル樹脂、ポリエステル樹脂
、ポリカーボネート樹脂、ポリビニルブチラール樹脂な
どの絶縁性樹脂があるがこれらに限定されるものではな
い。
The above-mentioned binder resin includes silicone resin, ketone resin,
Insulating resins include, but are not limited to, polyvinyl chloride resin, acrylic resin, polyester resin, polycarbonate resin, and polyvinyl butyral resin.

電荷発生層は1本発明の無金属フタロシアニン粒子を塗
膜重量で10〜80重量%含有し、上記樹脂の溶剤を加
えた塗液を、スピンコーター、アプリケ−V−、スプレ
ーコーター、バーコーター、tltMコーター、ドクタ
ーブレード、ローラーコーター、カーテンコーター、ビ
ードコーター等の塗工装置を用いて乾燥後膜厚として、
0.05〜5μm、望ましくは0.1〜0.5μmにな
るように形成する。
The charge generation layer is prepared by applying a coating solution containing 10 to 80% by weight of the metal-free phthalocyanine particles of the present invention and adding a solvent of the above resin to a spin coater, applicator-V-, spray coater, bar coater, or the like. As the film thickness after drying using coating equipment such as tltM coater, doctor blade, roller coater, curtain coater, bead coater, etc.
It is formed to have a thickness of 0.05 to 5 μm, preferably 0.1 to 0.5 μm.

電荷移動層は、電荷移動物質の単層または電荷移動物質
を結着剤樹脂溶液に熔解分散させた塗液を乾燥塗膜厚と
して5〜50μm、望ましくは10〜30μmの厚さで
形成したものである。電荷移動物質としては電子移動物
質と正孔移動性物質があるかいずれも使用することがで
きる。好ましい電荷移動剤としては、オキサゾール誘導
体、カルバゾール誘導体、ヒドラゾン誘導体、スチリル
色素系、シアニン色素系、オキサジアゾール誘導体、ピ
ラゾリン誘導体、トリフェニルメタン系化合物、トリフ
ェニルアミン系化合物、ニトロフルオレノン類等の正孔
移動物質がある。
The charge transfer layer is formed by forming a single layer of a charge transfer substance or a coating liquid in which a charge transfer substance is melted and dispersed in a binder resin solution to a dry coating thickness of 5 to 50 μm, preferably 10 to 30 μm. It is. As the charge transfer substance, either an electron transfer substance or a hole transfer substance can be used. Preferred charge transfer agents include positive charge transfer agents such as oxazole derivatives, carbazole derivatives, hydrazone derivatives, styryl dyes, cyanine dyes, oxadiazole derivatives, pyrazoline derivatives, triphenylmethane compounds, triphenylamine compounds, and nitrofluorenones. There are pore-moving substances.

下引き層としては、ナイロン610.共重合ナイロン、
アルコキシメチル化ナイロンなどのアルコール可溶性ポ
リアミド、カゼイン、ポリビニルアルコール、ニトロセ
ルロース、エチレン−アクリル酸コポリマー、ゼラチン
、ポリウレタン、ポリビニルブチラールおよび酸化アル
ミニウムなどの金属酸化物を0.1〜20μm、望まし
くは0.1−1 p mとなるように形成したものであ
る。また、酸化亜鉛、酸化チタン等の金属酸化物、窒化
ケイ素、炭化ケイ素やカーボンブランクなどの導電性お
よび誘電性粒子を樹脂中に含有させて調整することもで
きる。
Nylon 610. copolymerized nylon,
Alcohol-soluble polyamides such as alkoxymethylated nylon, casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymers, gelatin, polyurethane, polyvinyl butyral and metal oxides such as aluminum oxide, preferably 0.1 to 20 μm, preferably 0.1 -1 pm. Further, conductive and dielectric particles such as metal oxides such as zinc oxide and titanium oxide, silicon nitride, silicon carbide, and carbon blanks can be incorporated into the resin for adjustment.

上記各層を形成するべき導電性支持体としては。As the conductive support on which each of the above layers is to be formed.

アルミニウム、アルミニウムと他種金属との合金。Aluminum, alloys of aluminum and other metals.

鋼、鉄、銅、ニッケル等の金属の他に導電性プラスチッ
クおよびプラスチック、紙、ガラス等に導電性を付与し
たものを用いることができる。
In addition to metals such as steel, iron, copper, and nickel, conductive plastics and plastics, paper, glass, etc. that have been imparted with conductivity can be used.

プリンター用デジタル光源としては、レーザーの他、L
EDも使用できる。可視光領域のLEDも使われている
が、一般に実用化されているものは、650nrn以上
、標準的には660部mの発振波長を持っている。また
、当該無金属フタロシアニン化合物は、650部m前後
に吸収ピークを持つため、LED用材料としても有効な
材料として使用できる。
In addition to lasers, digital light sources for printers include L
ED can also be used. LEDs in the visible light range are also used, but those that are generally put into practical use have an oscillation wavelength of 650 nrn or more, typically 660 parts m. Further, since the metal-free phthalocyanine compound has an absorption peak around 650 parts m, it can be used as an effective material for LEDs.

以下1本発明の実施例について説明する。例中で部とは
9重量部を示す。
An embodiment of the present invention will be described below. In the examples, parts refer to 9 parts by weight.

(実 施 例) 参考例1 (α型無金属フタロシアニンの製造)アミノ
イミノイソインドレニン14.5部をトリクロロベンゼ
ン50部中で200℃にて2時間加熱し反応後、水蒸気
蒸溜で溶媒を除き、2%塩酸水溶液。
(Example) Reference Example 1 (Production of α-type metal-free phthalocyanine) 14.5 parts of aminoiminoisoindolenine was heated at 200°C for 2 hours in 50 parts of trichlorobenzene, and after reaction, the solvent was removed by steam distillation. , 2% aqueous hydrochloric acid solution.

続いて2%水酸化ナトリウム水溶液で精製した後。After subsequent purification with a 2% aqueous sodium hydroxide solution.

水で十分洗浄後、乾燥することによって無金属フタロシ
アニン8.8部(収率70%)を得た。このようにして
得た無金属フタロシアニンはβ型の結晶形を有している
。β型からα型への転移は次の操作で製造される。10
℃以下の98%硫酸10部の中に1部のβ型無金属フタ
ロシアニンを少しずつ溶解し。
After thorough washing with water, 8.8 parts of metal-free phthalocyanine (yield 70%) was obtained by drying. The metal-free phthalocyanine thus obtained has a β-type crystal form. The transition from β type to α type is produced by the following operation. 10
1 part of β-type metal-free phthalocyanine was dissolved little by little in 10 parts of 98% sulfuric acid at a temperature below ℃.

その混合物を約2時間の間、5℃以下の温度を保ちなが
ら攪拌する。続いて硫酸溶液を200部の氷水中に注入
し、析出した結晶をろ過する。結晶を酸が残留しなくな
るまで蒸留水で洗浄し、乾燥すると0゜95部のα型無
金属フタロシアニンが得られる。
The mixture is stirred for about 2 hours while maintaining the temperature below 5°C. Subsequently, the sulfuric acid solution is poured into 200 parts of ice water, and the precipitated crystals are filtered. The crystals are washed with distilled water until no acid remains and are dried to obtain 0.95 parts of α-type metal-free phthalocyanine.

参考例2(τ型無金属フタロシアニンの製造)α型無金
属フタロシアニン10部に2食塩30部。
Reference Example 2 (Production of τ-type metal-free phthalocyanine) 30 parts of di-salt was added to 10 parts of α-type metal-free phthalocyanine.

ポリエチレングリコール8部をニーグーに入れ、80℃
で35時間ニーディングし、サンプングして。
Add 8 parts of polyethylene glycol to Nigu and heat to 80℃.
Kneaded for 35 hours and sampled.

X線回折図でτ型に転移したことを確認の後、ニーダ−
より取り出し、水およびメタノールで磨砕助剤。
After confirming the transition to τ type using the X-ray diffraction diagram, the kneader
Remove from water and methanol as a grinding aid.

溶媒を洗浄除去後、2%の希硫酸水溶液中で攪拌。After washing and removing the solvent, stir in a 2% dilute sulfuric acid aqueous solution.

精製し、ゐ過、水洗、乾燥して鮮明な色相の青色結晶を
得た。これらの結晶は赤外線吸収スペクトルの測定」こ
よってもτ型無金属フタロシアニンであることが確認さ
れた。
After purification, filtration, washing with water, and drying, blue crystals with a clear hue were obtained. These crystals were confirmed to be τ-type metal-free phthalocyanine by measurement of infrared absorption spectra.

参考例3 (τ°型−無金属フタロシアニンの製造)α
型態金属フタロシアエフ10部1食塩300部。
Reference example 3 (τ° type - production of metal-free phthalocyanine) α
Type metal phthalocyanin 10 parts 1 salt 300 parts.

エチレングリコール300部をサンドミルに入れ。Place 300 parts of ethylene glycol in a sand mill.

100℃で35時間ミリングした。サンプリングして、
X線回折図でτ′型(変形τ型)に転移したことを確認
の後、ニーダ−より取り出し、参考例2と同様にして青
色結晶を得た。この結晶は赤外線吸収スペクトルの測定
によってもτ′型型金金属フタロシアニンあることがi
’i認された。
Milling was carried out at 100°C for 35 hours. sample and
After confirming the transition to the τ' type (modified τ type) using an X-ray diffraction diagram, it was taken out from the kneader and the same procedure as in Reference Example 2 was carried out to obtain blue crystals. This crystal was also confirmed to be a τ' type gold metal phthalocyanine by measurement of infrared absorption spectrum.
'I was recognized.

参考例4(η型態金属フタロシアニンの製造)無金属フ
タロシアニン100部、ジエチルアミノメチル銅フタロ
シアニン(ジエチルアミノエチル基を平均1.1個含有
)10部を氷冷した98%硫酸に溶解し、この溶液を水
中に投入し、沈澱物をろ過。
Reference Example 4 (Production of η-type metal phthalocyanine) 100 parts of metal-free phthalocyanine and 10 parts of diethylaminomethyl copper phthalocyanine (containing 1.1 diethylaminoethyl groups on average) were dissolved in ice-cooled 98% sulfuric acid. Pour into water and filter the sediment.

水洗、乾燥することによって均一な混合物を得た。A homogeneous mixture was obtained by washing with water and drying.

この混合物100部、粉砕食塩300部およびポリエチ
レングリコール80部をニーダーに入れ、90℃で35
時間ニーディングした。サンプリングして。
100 parts of this mixture, 300 parts of ground salt and 80 parts of polyethylene glycol were placed in a kneader, and heated to 90°C for 35 minutes.
Kneaded for hours. Sample it.

X線回折図でη型に転移したことを確認の後、ニーダ−
より取り出し、水およびメタノールで磨砕助剤。
After confirming the transition to η type using the X-ray diffraction diagram, the kneader
Remove from water and methanol as a grinding aid.

溶媒を洗浄除去後、2%の希硫酸水溶液中で攪拌。After washing and removing the solvent, stir in a 2% dilute sulfuric acid aqueous solution.

精製し、参考例2と同様にして青色結晶を得た。この結
晶は赤外線吸収スペクトルの測定によってもη型態金属
フタロシアニンであることが確認された。
It was purified in the same manner as in Reference Example 2 to obtain blue crystals. This crystal was also confirmed to be η type metal phthalocyanine by measurement of infrared absorption spectrum.

参考例5(η′型型金金属フタロシアニン製造)α型=
金Xフタロシアニン100部、フタロシアニン誘導体P
C(COCH2NHCaH+Jz、+(Pcは無金属フ
タロシアニン残基を表す。)15部、粉砕食塩300部
およびポリエチレングリコール80部をニーダーに入れ
、100℃で25時間ニーディングした。サンプリング
して、X&91回折図でη′型(変形η型)に転移した
ことを確認の後、ニーダ−より取り出し、参考例2と同
様にして青色結晶を得た。この結晶は赤外線吸収スペク
トルの測定によってもη′型型金金属フタロシアニンあ
ることが確認された。
Reference example 5 (η′ type gold metal phthalocyanine production) α type =
Gold X phthalocyanine 100 parts, phthalocyanine derivative P
15 parts of C (COCH2NHCaH+Jz, + (Pc represents a metal-free phthalocyanine residue)), 300 parts of ground salt, and 80 parts of polyethylene glycol were placed in a kneader and kneaded at 100°C for 25 hours. After confirming that the crystal had transformed to the η' type (modified η type), it was removed from the kneader and a blue crystal was obtained in the same manner as in Reference Example 2.This crystal was also confirmed to be of the η' type by measurement of the infrared absorption spectrum. The presence of gold metal phthalocyanine was confirmed.

実施例1〜8 参考例1〜5の方法により作製した無金属フタロシアニ
ンの結晶型、比表面積、平均粒子径および平均粒子径0
.20μm以下の粒子量重量積算分布を第1表に示す。
Examples 1 to 8 Crystal type, specific surface area, average particle size, and average particle size of metal-free phthalocyanine produced by the method of Reference Examples 1 to 5
.. Table 1 shows the cumulative weight distribution of particles of 20 μm or less.

なお、比表面積はBET法により測定した。平均粒子径
等は粒子をテトラヒドロフラン中で分散した後に島津製
作所■製遠心沈降式粒度分布測定装置5A−CPa形に
より回転速度5000rpmで行った。また1本実施例
の粒子の平均長軸径はlpm以下、平均短軸径は0.3
5μm以下であった。
Note that the specific surface area was measured by the BET method. After dispersing the particles in tetrahydrofuran, the average particle diameter was determined using a centrifugal sedimentation type particle size distribution analyzer model 5A-CPa manufactured by Shimadzu Corporation at a rotation speed of 5000 rpm. In addition, the average major axis diameter of the particles of this example was 1pm or less, and the average minor axis diameter was 0.3
It was 5 μm or less.

第   1   表 次に、電子写真感光体の作製方法を記述する。Chapter 1 Table Next, a method for producing an electrophotographic photoreceptor will be described.

アルミニウム蒸着したポリエチレンテレフタレトシート
(75μm)のアルミニウム面にポリビニルアルコール
(ケン化度86〜89%)10部を混合し、エタノール
500部を加えてボールミルで3時間分散した塗液をワ
イヤーバーで塗布し、70’Cで3時間加熱乾燥させ、
膜厚0.5μmの下引き層を形成した。
Mix 10 parts of polyvinyl alcohol (saponification degree 86-89%) on the aluminum surface of an aluminum-deposited polyethylene terephthalate sheet (75 μm), add 500 parts of ethanol, and disperse in a ball mill for 3 hours. Apply the coating liquid using a wire bar. and heat dried at 70'C for 3 hours.
A subbing layer having a thickness of 0.5 μm was formed.

次に第1表に示した無金属フタロシアニンを3部。Next, add 3 parts of metal-free phthalocyanine shown in Table 1.

塩ビー酢ビ共重合体樹脂(ユニオンカーバイド社製商品
名VMCH)3部を、テトラヒドロフラン94部ととも
に、ボールミルで2時間分散した。この分散液を下引き
層上に塗布し、100℃で2時間乾燥させた後、0.2
5μmの電荷発生層を形成した。
Three parts of a vinyl chloride-vinyl acetate copolymer resin (trade name VMCH, manufactured by Union Carbide) was dispersed with 94 parts of tetrahydrofuran in a ball mill for 2 hours. This dispersion was applied onto the undercoat layer, dried at 100°C for 2 hours, and then 0.2
A charge generation layer of 5 μm was formed.

次に電荷移動剤として、1−フェニル−1,2゜3.4
−テトラヒドロキノリン−6−カルポキシアルデヒドー
1’、1’−ジフェニルヒドラゾンlO部、ポリエステ
ル樹脂(東洋紡株式会社製商品名バイロン200)10
部を塩化メチレン100重量部に溶かした液を電荷発生
層上に塗布、乾燥し、15μmの電荷移動層を形成した
Next, as a charge transfer agent, 1-phenyl-1,2°3.4
-Tetrahydroquinoline-6-carpoxyaldehyde 1',1'-diphenylhydrazone 10 parts, polyester resin (trade name: Vylon 200, manufactured by Toyobo Co., Ltd.) 10
A solution obtained by dissolving 100 parts by weight of methylene chloride was applied onto the charge generation layer and dried to form a charge transfer layer with a thickness of 15 μm.

上記で作成した電子写真感光体を川口電気製静電複写紙
試験装置5P−428により−5,4K Vでコロナ帯
電し9表面型位および5fuxの白色光を照射して帯電
量が1/2まで減少する時間から白色光半減露光量感度
(E〃)を調べた。
The electrophotographic photoreceptor prepared above was corona charged at -5.4 KV using an electrostatic copying paper tester 5P-428 manufactured by Kawaguchi Electric, and irradiated with white light at 9 surface types and 5 fux to reduce the amount of charge to 1/2. The white light half-reduction exposure sensitivity (E〃) was investigated from the time it takes for the white light to decrease to 50%.

次に、この感光体を、コロナ帯電器、露光部、転写帯電
部、除電露光部およびクリーナーを持つ電子写真方式の
複写機のドラムに張り付けた。この複写機の暗部電位を
一650V、明部電位を一150■に設定し、5ooo
枚の繰り返し耐久試験の後1画像を比較し、下記の基準
で5段階評価した。
Next, this photoreceptor was attached to the drum of an electrophotographic copying machine having a corona charger, an exposure section, a transfer charging section, a static eliminating exposure section, and a cleaner. The dark potential of this copying machine was set to -650V, the light potential to -150V, and 5ooo
After the repeated durability test of the sheets, each image was compared and evaluated in five stages according to the following criteria.

◎・・・非常に良い ○・・・良い Δ・・・普通 X・・・悪い ××・・・非常に悪い 分光感度は前記静電帯電試験装置を用いて、感光体に−
5,4K Vのコロナ帯電をさせた後、soowのキセ
ノンランプを光源とし、モノクロメータ−で単色光とし
て照射し、帯電露光時の光減衰を測定することにより得
た。
◎...Very good ○...Good Δ...Normal
After corona charging at 5.4 KV, the sample was irradiated with monochromatic light using a monochromator using a SOOW xenon lamp as a light source, and the light attenuation during charging exposure was measured.

結果を第2表に示す。The results are shown in Table 2.

(以下余白) 第   2   表 第   3   表 比較例1〜4 参考例1〜5の方法により作製した。比表面積の小さい
無金属フタロシアニンの結晶型と比表面積。
(The following is a blank space) Table 2 Table 3 Comparative Examples 1 to 4 Produced by the method of Reference Examples 1 to 5. Crystal type and specific surface area of metal-free phthalocyanine with small specific surface area.

平均粒子径および平均粒子径0.20μm以下の粒子量
重量積算分布を第3表に示す。なお、比表面積は。
Table 3 shows the average particle size and the cumulative weight distribution of particles with an average particle size of 0.20 μm or less. Furthermore, the specific surface area is.

BET法により測定した。Measured by BET method.

実施例1〜8と同様の方法で電子写真感光体を作製し1
画像を比較した。結果を第4表に示す。
Electrophotographic photoreceptors were prepared in the same manner as in Examples 1 to 8.
The images were compared. The results are shown in Table 4.

第   4   表 実施例1〜8および比較例1〜4の結果より、τ。Table 4 From the results of Examples 1 to 8 and Comparative Examples 1 to 4, τ.

τ′、ηおよびη′型型金金属フタロシアニン、比表面
積の大きい粒子で、平均粒子径0.2μm以下であり、
平均粒子径0.2μm以下の粒子の粒子量重量積算分布
が50%以上の粒子をを電荷発生剤とじて使用した方が
、感光体の表面電位、感度などの電子写真特性が優れ9
画質も良好であることがわかった。
τ′, η and η′ type gold metal phthalocyanine, particles with a large specific surface area and an average particle size of 0.2 μm or less,
Electrophotographic properties such as the surface potential and sensitivity of the photoreceptor are better when particles with an average particle size of 0.2 μm or less and an integrated particle weight distribution of 50% or more are used as a charge generating agent9.
The image quality was also found to be good.

これは、比表面積の大きい、さらには平均粒子径の小さ
い無金属フタロシアニン粒子の方が、電荷発生効率が優
れ、電荷発生層中に発生したキャリアの移動が容易であ
るためと推測した。
This is presumed to be because metal-free phthalocyanine particles with a larger specific surface area and a smaller average particle diameter have better charge generation efficiency and facilitate the movement of carriers generated in the charge generation layer.

(発明の効果) 本発明の無金属フタロシアニン粒子により、電子写真特
性および画像の鮮明性9階調性の優れた感光体を得るこ
とが出来た。
(Effects of the Invention) By using the metal-free phthalocyanine particles of the present invention, it was possible to obtain a photoreceptor with excellent electrophotographic characteristics, image clarity, and nine-tone gradation.

Claims (1)

【特許請求の範囲】 1、導電性支持体上に、電荷発生物質と電荷移動物質と
を含む層を形成してなる電子写真感光体において、該電
荷発生物質がτ型、τ′型、η型およびη′型から選ば
れる結晶形を有する無金属フタロシアニン粒子であり、
該粒子が20m^2/g以上のBET法比表面積を有す
ることを特徴とする電子写真感光体。 2、請求項1記載の無金属フタロシアニン粒子が30m
^2/g以上のBET法比表面積を有することを特徴と
する電子写真感光体。 3、無金属フタロシアニン粒子の短軸径が0.35μm
以下であることを特徴とする請求項1または2記載の電
子写真感光体。 4、無金属フタロシアニン粒子の長軸径が1μm以下で
あることを特徴とする請求項1〜3いずれか記載の電子
写真感光体。 5、請求項1記載の無金属フタロシアニン粒子の平均粒
子径が0.20μm以下であることを特徴とする電子写
真感光体。 6、請求項1記載の無金属フタロシアニン粒子の平均粒
子径が遠心沈降式粒度分布測定装置で測定され、かつ該
粒子のメジアン径が0.20μm以下であることを特徴
とする電子写真感光体。 7、請求項1記載の無金属フタロシアニン粒子の平均粒
子径が遠心沈降式粒度分布測定装置で測定され、かつ該
粒子の平均粒子径0.20μm以下の粒子量重量積算分
布が50%以上であることを特徴とする電子写真感光体
[Scope of Claims] 1. An electrophotographic photoreceptor comprising a layer containing a charge-generating substance and a charge-transfer substance formed on a conductive support, wherein the charge-generating substance is τ-type, τ′-type, η-type. metal-free phthalocyanine particles having a crystal form selected from type and η′ type,
An electrophotographic photoreceptor characterized in that the particles have a BET specific surface area of 20 m^2/g or more. 2. The metal-free phthalocyanine particles according to claim 1 are 30 m
An electrophotographic photoreceptor characterized by having a BET specific surface area of ^2/g or more. 3. Short axis diameter of metal-free phthalocyanine particles is 0.35 μm
The electrophotographic photoreceptor according to claim 1 or 2, characterized in that: 4. The electrophotographic photoreceptor according to any one of claims 1 to 3, wherein the long axis diameter of the metal-free phthalocyanine particles is 1 μm or less. 5. An electrophotographic photoreceptor, wherein the metal-free phthalocyanine particles according to claim 1 have an average particle diameter of 0.20 μm or less. 6. An electrophotographic photoreceptor, wherein the average particle diameter of the metal-free phthalocyanine particles according to claim 1 is measured using a centrifugal sedimentation type particle size distribution analyzer, and the median diameter of the particles is 0.20 μm or less. 7. The average particle diameter of the metal-free phthalocyanine particles according to claim 1 is measured using a centrifugal sedimentation type particle size distribution analyzer, and the particle weight integrated distribution of the particles having an average particle diameter of 0.20 μm or less is 50% or more. An electrophotographic photoreceptor characterized by:
JP63315930A 1988-07-04 1988-12-14 Electrophotographic photoreceptor Expired - Lifetime JP2557096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63315930A JP2557096B2 (en) 1988-07-04 1988-12-14 Electrophotographic photoreceptor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16656888 1988-07-04
JP63-166568 1988-07-04
JP63315930A JP2557096B2 (en) 1988-07-04 1988-12-14 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH02139571A true JPH02139571A (en) 1990-05-29
JP2557096B2 JP2557096B2 (en) 1996-11-27

Family

ID=26490883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315930A Expired - Lifetime JP2557096B2 (en) 1988-07-04 1988-12-14 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2557096B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405725A (en) * 1991-10-08 1995-04-11 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US6696214B2 (en) 1999-09-03 2004-02-24 Sharp Kabushiki Kaisha Electrophotographic photoreceptor, process for production thereof, and image-forming apparatus using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019154A (en) * 1983-07-13 1985-01-31 Hitachi Ltd Electrophotographic sensitive body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019154A (en) * 1983-07-13 1985-01-31 Hitachi Ltd Electrophotographic sensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405725A (en) * 1991-10-08 1995-04-11 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US6696214B2 (en) 1999-09-03 2004-02-24 Sharp Kabushiki Kaisha Electrophotographic photoreceptor, process for production thereof, and image-forming apparatus using same

Also Published As

Publication number Publication date
JP2557096B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
JP3569422B2 (en) Crystalline oxotitanyl phthalocyanine, electrophotographic photoreceptor using the same, and image forming method
JP5522128B2 (en) Phthalocyanine composition, photoconductive material using the same, electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2657836B2 (en) Electrophotographic photoreceptor
JPH0598181A (en) New crystal of chlorogallium phthalocyanine, photoconductive material composed of the same new crystal and electrophotographic photoreceptor using the same
JPH0560863B2 (en)
JP2007316099A (en) Multilayer electrophotographic photoreceptor and image forming apparatus
JPH09157540A (en) Phthalocyanine composition, its production, and electrophotographic photoreceptor and coating fluid for charge generation layer each using the same
JP5181410B2 (en) Phthalocyanine composition, photoconductive material using the same, electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JPH02139571A (en) Electrophotographic sensitive body
JP2000007933A (en) Crystal type oxotitanyl phthalocyanine, electrophotographic sensitive material and its preparation
JPH0560864B2 (en)
JPH01123868A (en) Quasi-noncrystalline titanium phthalocyanine compound, its production and electrophotographic material
JP2554360B2 (en) Electrophotographic photoreceptor
JPH11311873A (en) New phthalocyanine mixture crystal, its production and electrophotographic photoreceptor using the same
JP3268464B2 (en) Titanyl phthalocyanine crystal dispersion
JPH0518424B2 (en)
JP2976312B2 (en) Electrophotographic photoreceptor
JPH10307411A (en) Electrophotographic photoreceptor and its production
JPH10232500A (en) Electrophotographic photoreceptor
JPH10293407A (en) Electrophotographic photoreceptor and its manufacture
JPS62275272A (en) Material for photosemiconductor and electrophotographic sensitive body using same
JPH10213914A (en) Electrophotographic photoreceptor
JPH04253065A (en) Electrophotographic sensitive body, electrophotographic apparatus and facsimile using same
JPH0477906B2 (en)
JP2001033999A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13