JPH03226552A - Thermal spraying material excellent in high temperature wear resistance and build-up resistance and article coated by same - Google Patents

Thermal spraying material excellent in high temperature wear resistance and build-up resistance and article coated by same

Info

Publication number
JPH03226552A
JPH03226552A JP2017933A JP1793390A JPH03226552A JP H03226552 A JPH03226552 A JP H03226552A JP 2017933 A JP2017933 A JP 2017933A JP 1793390 A JP1793390 A JP 1793390A JP H03226552 A JPH03226552 A JP H03226552A
Authority
JP
Japan
Prior art keywords
powder
oxide
resistance
thermal
metal boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017933A
Other languages
Japanese (ja)
Other versions
JPH0645863B2 (en
Inventor
Yoshitaka Iwasaki
岩崎 好孝
Junji Ohori
大堀 潤二
Shinji Sato
信治 佐藤
Nobuhiko Kawamura
河村 伸彦
Okiyoshi Sei
清 興至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Nippon Steel Corp filed Critical Showa Denko KK
Priority to JP2017933A priority Critical patent/JPH0645863B2/en
Priority to EP19910300698 priority patent/EP0440437B1/en
Priority to DE1991609140 priority patent/DE69109140T2/en
Publication of JPH03226552A publication Critical patent/JPH03226552A/en
Publication of JPH0645863B2 publication Critical patent/JPH0645863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To provide the thermal spraying material by incorporating a powdered oxidation resisting alloy and metal boride grains and specifying the content of the metal boride grains in a thermal spraying material used mainly for conveyance rolls for a high temp. material to be heat treated in a continuous heat treatment furnace. CONSTITUTION:This thermal spraying material is a composite powder or a powder mixture consisting of an alloy powder and metal boride grains and is composed of a cermet having a composition which contains 5-50vol.% metal boride grains and in which the alloy powder consists of, by weight, 15-40% Cr, 5-20% Al, and the balance one or more elements among Ni, Co, and iron. By thermally spraying this thermal spraying material, a thermally sprayed layer excellent in all the characteristics of build-up resistance, adhesive strength, thermal shock resistance, and wear resistance can be obtained. Wear resistance and build-up resistance are deteriorated when the content of the metal boride is below the lower limit, and, when it exceeds the upper limit, impact resistance, adhesive strength, and thermal shock resistance are deteriorated.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、主として連続熱処理炉内において高温の被熱
処理材の搬送ロールに使用する、高温耐摩耗性・耐ヒル
ドアツブ性に優れた溶射粉末材料およびその被覆物品に
関するものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention is directed to a thermal spray powder material with excellent high-temperature abrasion resistance and hilt abrasion resistance, which is mainly used as a conveyor roll for high-temperature heat-treated materials in a continuous heat treatment furnace. and articles covered therewith.

[従来の技術] 例えは、鋼板を連続焼鈍する場合、600〜1300℃
の酸化性または還元性の雰囲気中に通板させるか、この
鋼板を支持するために多くの耐熱ロールを配設してハー
スロールとして使用している。しかし、長時間の連続使
用により、これらのハースロールの表[njには、鋼板
上の付着酸化物または鉄粉か凝着堆積して、いわゆるヒ
ルドアツブか形成されることか多い。このヒルドアツブ
が発生すると鋼板表面の疵等品質劣化を来すため、時に
は直ちに生産操業を中断しハースロール表面の研削等の
手入れまたはハースロール交換を余イλなくされる。
[Prior art] For example, when continuously annealing a steel plate, the temperature is 600 to 1300°C.
The steel sheet is passed through an oxidizing or reducing atmosphere, or many heat-resistant rolls are provided to support the steel sheet and used as hearth rolls. However, due to long-term continuous use, oxides or iron powder deposited on the steel plate often form on the surface of these hearth rolls, forming so-called hilt stubs. When this hilt bulge occurs, it causes quality deterioration such as scratches on the surface of the steel plate, so sometimes the production operation is immediately interrupted and there is no need to perform maintenance such as grinding the surface of the hearth roll or replace the hearth roll.

このため数多くのハースロール表面のヒルドアツブの防
止策か、例えば特開昭58−249839号、特開昭5
9−70712号、特開昭59−128772号、特開
昭63199857号公報等に開示されている。これら
の公報において、ハースロールヒルドアツブ防止対策と
して、AM203.5in2. ZrO2,Cr2O3
等の酸化物、Cr3C2等の炭化物、あるいはこれらの
セラミックス材に、Co、 Cr、 Ni、 AQ、 
Y、 Mo、 Zr等の金属を配合してハースロールの
表面に溶射法により被覆使用することか提案されている
For this reason, there are many measures to prevent hilts on the surface of hearth rolls, such as JP-A-58-249839 and JP-A-5.
It is disclosed in JP-A-9-70712, JP-A-59-128772, JP-A-63199857, etc. In these publications, AM203.5in2. ZrO2, Cr2O3
oxides such as Cr3C2, carbides such as Cr3C2, or these ceramic materials, Co, Cr, Ni, AQ,
It has been proposed to mix metals such as Y, Mo, and Zr and coat the surface of hearth rolls by thermal spraying.

[発明か解決しようとする課題] しかし、これらによって一応のヒルドアツブ防止の成果
は達成したものの、何れも溶射皮膜の密着性、耐熱@5
性および耐摩耗性に難点かあり、剥離を牛したり摩耗の
進行によりロール方向が極めて短いという問題かある。
[Problem to be solved by the invention] However, although these methods have achieved some results in preventing hilt and swelling, they all have problems with the adhesion and heat resistance of the thermal spray coating.
There are some problems in terms of durability and abrasion resistance, and there is also the problem that the roll direction is extremely short due to poor peeling and progression of abrasion.

本発明による解決すべき課題は、上記ハースロルにおけ
るビルドアップ防止と密着性、耐熱衝撃性および耐摩耗
性の全てを具備した被覆材料並びに被複層を見いたすこ
とにある。
The problem to be solved by the present invention is to find a coating material and a composite layer that have all of the properties of build-up prevention, adhesion, thermal shock resistance, and abrasion resistance for the hearth roll.

[課題を解決するための手段] 本発明は、いわゆる耐酸化性合金粉末と金属硼化物粒子
を含んだ粉末材料の溶射層にて、上述の課題を解決しよ
うとするものである。本組成物は、耐摩耗性を更に高め
るために、耐酸化性合金粉末と金属硼化物粒子の一部を
酸化物粒子に置き換えて溶射層全体に酸化物粒子を分散
させてもよく、または耐酸化性合金粉末中に極少量の酸
化物微粒子を均一に分散させて耐酸化性合金の分散強化
を図ったり、あるいは耐酸化性合金中にTiとCを含ま
せチタニウム炭化物析出による耐酸化性合金の析出硬化
を行わせるものでもよい。
[Means for Solving the Problems] The present invention attempts to solve the above-mentioned problems with a thermally sprayed layer of a powder material containing so-called oxidation-resistant alloy powder and metal boride particles. In order to further increase wear resistance, the present composition may also have oxide particles dispersed throughout the sprayed layer by replacing some of the oxidation resistant alloy powder and metal boride particles with oxide particles, or the oxidation resistant alloy powder and metal boride particles may be dispersed throughout the sprayed layer. Oxidation-resistant alloys can be made by uniformly dispersing a small amount of oxide particles in oxidation-resistant alloy powder to strengthen the oxidation-resistant alloy, or by incorporating Ti and C into the oxidation-resistant alloy to precipitate titanium carbide. It may also be one that undergoes precipitation hardening.

これまてハースロール等の設備部材は、耐熱鋳鋼等のX
y材の表面に、酸化物等のセラミックスを5〜95体積
%含んだサーメット被覆か溶射法により施されていた。
Until now, equipment parts such as hearth rolls are made of heat-resistant cast steel, etc.
A cermet coating containing 5 to 95% by volume of ceramics such as oxides was applied to the surface of the Y material by thermal spraying.

しかし酸化物等のセラミックス材料はヒルドアツブの防
止には優れているものの、基材の金属材料と比較してそ
の熱膨張率か非常に小さいために、熱衝軍により基材か
ら剥離しやすいと言う欠点かある。このために、被複層
に金属成分を含ませたサーメットとして使用されている
が、まだその耐熱衝撃性は不十分てあった。
However, although ceramic materials such as oxides are excellent in preventing hilt and swelling, their coefficient of thermal expansion is very small compared to the metal material of the base material, so they are easily peeled off from the base material due to thermal shock forces. There are some drawbacks. For this reason, cermets with multiple layers containing metal components have been used, but their thermal shock resistance is still insufficient.

本発明は、熱膨張率が金属材料に近く且つビルドアップ
防止性に優れた金属硼化物を用いることにより、この問
題点を解決するものである。
The present invention solves this problem by using metal boride, which has a coefficient of thermal expansion close to that of metal materials and has excellent buildup prevention properties.

ビルドアップは鋼板上の付着酸化物または鉄粉か当該ハ
ースロール表面に凝着堆積して生じるが、本発明者らは
鋭意努力の結果、金属硼化物かこのビルドアップ防止に
非常に優れていることを見いたした。更に、金属硼化物
の熱膨張率か金属材料に近いことは、−数的に知られて
いる。
Build-up occurs when oxides or iron powder adhere to the steel plate or adhere to the surface of the hearth roll, but the inventors of the present invention have made extensive efforts and found that metal borides are extremely effective in preventing this build-up. I found out. Furthermore, it is numerically known that the coefficient of thermal expansion of metal borides is close to that of metallic materials.

本発明に用いる金属硼化物は、クロムホライト、ジルコ
ニウムホライト、チタニウムボライド、モリブテンホラ
イト、ニオヒウムポライト、タンタリウムホライト、タ
ングステニウムポライド、ハフニウムポライド等のいず
れであフても良い。一般に、ハースロール等を用いてい
る連続調質焼鈍ラインの雰囲気は、窒素および水素が主
体の無酸化雰囲気であるか、操業に伴う補修等の停止時
の炉の昇温降温の際には、酸化性雰囲気にさらされるこ
とか多い。従って上記金属硼化物の中でも、特に、クロ
ムボライド、ジルコニウムボライド、チタニウムポライ
ドか耐酸化性に優れるのてハースロール等の表面被覆材
料に用いるには通している。
The metal boride used in the present invention may be any of chromium phorite, zirconium holite, titanium boride, molybdenum holite, niohium porite, tantalum holite, tungstenium poride, hafnium poride, etc. good. In general, the atmosphere of a continuous temper annealing line that uses hearth rolls, etc. is a non-oxidizing atmosphere consisting mainly of nitrogen and hydrogen, or when the temperature of the furnace is raised or lowered during shutdowns for repairs or other operations. Often exposed to oxidizing atmospheres. Therefore, among the metal borides mentioned above, chromium boride, zirconium boride, and titanium poride are particularly suitable for use in surface coating materials such as hearth rolls because of their excellent oxidation resistance.

ハースロール等の鉄鋼プロセスロールの表面被覆層の損
傷原因は、前記の熱衝撃の他に摩耗による損耗かある。
The cause of damage to the surface coating layer of a steel process roll such as a hearth roll is not only the above-mentioned thermal shock but also wear due to abrasion.

本発明に用いられる金属硼化物は非常に高硬度のため、
耐摩耗性にも優れている。
Since the metal boride used in the present invention has extremely high hardness,
It also has excellent wear resistance.

しかし高硬度のために靭性に乏しい点かあり、急激な荷
重による耐衝撃性および密着性が問題となる。従って、
本発明に用いる溶射被覆層は、金属硼化物と合金のサー
メットでなければならない。
However, due to its high hardness, it has poor toughness, and there are problems with impact resistance and adhesion due to sudden loads. Therefore,
The thermal spray coating layer used in the present invention must be a cermet alloyed with a metal boride.

すなわち、その金属硼化物の含有率は5〜50体積%に
限定され、5体積%未満では耐摩耗性およびビルドアッ
プ防止性に劣り、50体積%を超えると耐衝撃性および
密着性さらには耐熱衝撃性も劣化する。好ましくは10
〜20体積%か、最も優れている。このようなサーメッ
ト被覆物は一般には、各構成成分粉末から成る混合粉末
を溶射して得られるか、個々の粒子が各構成成分が一体
結合して構成された複合粉末の方が、被覆層の均一性か
らは好ましい。
That is, the metal boride content is limited to 5 to 50% by volume; if it is less than 5% by volume, the wear resistance and build-up prevention properties will be poor, and if it exceeds 50% by volume, the impact resistance, adhesion, and even heat resistance will be poor. Impact resistance also deteriorates. Preferably 10
~20% by volume, which is the best. Such cermet coatings are generally obtained by thermal spraying a mixed powder consisting of each component powder, or a composite powder in which individual particles are integrally bonded to each component is better for forming the coating layer. It is preferable from the viewpoint of uniformity.

前述したように、ハースロール等の高温に用いられる鉄
鋼プロセスロールは、なにかしかの酸化性雰囲気にさら
されることがある。従って、耐酸化性がかならず必要且
つ重要である。耐酸化性は合金層により付与するが、本
発明に用いられるサーメットの合金成分量は金属硼化物
含有量と等しいかそれ以上とする必要がある。更に、こ
の合金成分にもビルドアップ防止性は当然必要である。
As mentioned above, steel process rolls used at high temperatures, such as hearth rolls, are sometimes exposed to some kind of oxidizing atmosphere. Therefore, oxidation resistance is absolutely necessary and important. Oxidation resistance is imparted by the alloy layer, but the amount of alloy components in the cermet used in the present invention must be equal to or greater than the metal boride content. Furthermore, this alloy component also naturally needs to have build-up prevention properties.

金属材料に耐酸化性を付与するには、その表面に薄くて
緻密な酸素拡散防止のための酸化物保護膜を形成させる
ことか必要となる。酸素拡散防止のだめの保護膜には酸
化クロムまたはアルミナが優れ、合金材料の鉄、ニッケ
ルまたはコバルト等のマトリックス中にクロムおよびア
ルミニウムか必す含まれていなければならない。クロム
は、800℃以下で酸化クロム保護服を形成し、合金中
でのその含有量がslB、1%以下てはこの効果か十分
てなく、40重量%を超えると合金層全体が脆化する。
In order to impart oxidation resistance to a metal material, it is necessary to form a thin and dense oxide protective film on its surface to prevent oxygen diffusion. Chromium oxide or alumina is preferable for the protective film of the reservoir to prevent oxygen diffusion, and chromium and aluminum must be included in the matrix of alloy materials such as iron, nickel or cobalt. Chromium forms a chromium oxide protective suit at temperatures below 800°C, and if its content in the alloy is slB, this effect is not sufficient if it is less than 1%, and if it exceeds 40% by weight, the entire alloy layer becomes brittle. .

アルミニウムは800℃以上てフ7Lミナ保護膜の形成
と800℃以丁での酸化クロム保護膜形成の促進をはか
り、合金中でのその含有量が5In量%以下ではこの効
果か十分でなく、20重量%を超えるとクロムと同様に
合金層全体が著しく脆化する。合金層全体か脆化すると
、被覆溶射層の耐熱衝撃性および密着性か著しく劣化す
る。これらの酸化クロムあるいはアルミナの保護膜は、
ヒルドア・ツブ防IE性には優わている。
Aluminum promotes the formation of a F7L Mina protective film at temperatures above 800°C and the formation of a chromium oxide protective film at temperatures below 800°C, but this effect is not sufficient when its content in the alloy is below 5In%. If it exceeds 20% by weight, the entire alloy layer becomes extremely brittle, similar to chromium. If the entire alloy layer becomes brittle, the thermal shock resistance and adhesion of the sprayed coating layer will deteriorate significantly. These chromium oxide or alumina protective films are
Superior in IE protection against Hildor and Tsubu.

このように本発明で用いるサーメット被覆層の合金成分
は、耐酸化性に優れるものであわばよく、従って前述の
クロムおよびアルミニウム以外Z、耐酸化性を改善する
ためのイツトリウム等の希土類金属あるいはシリコンな
どを含んでいてもよい。一般にこのような合金粉末は所
定の組成の合金溶湯を不活性カスアトマイズ法等により
分散させて得られるか、各成分金属粉末をメカニカルア
ロインク法により合金化して作成しても何ら問題は生じ
ない。
As described above, the alloy component of the cermet coating layer used in the present invention may be any material having excellent oxidation resistance. Therefore, in addition to the above-mentioned chromium and aluminum, Z, rare earth metals such as yttrium, or silicon to improve oxidation resistance may be used. It may also include. In general, such alloy powders can be obtained by dispersing a molten alloy of a predetermined composition by an inert cast atomization method, or by alloying each component metal powder by a mechanical alloying method without causing any problems. .

このように、本発明は金属硼化物と耐酸化性合金のサー
メットから成る成分が主体であるが、その被覆溶射層の
耐熱衝撃性および密着性を劣化させない範囲で、更に耐
摩耗性を向上させるために酸化アルミニウム、酸化クロ
ム、二酸化チタン、酸化ケイ素、酸化ジルコニウム、酸
化マグネシウム、酸化イツトリウムおよび希土類酸化物
等の、硬質酸化物粒子を含むことができる。これらの硬
質酸化物粒子は、耐酸化性合金粉末と金属硼化物粒子の
一部を酸化物粒子に置き換えて溶射層全体に酸化物粒子
を分散させてもよく、その含有量は耐熱衝撃性および密
着性を劣化させないように、耐酸化性合金粉末と金属硼
化物粒子から成るサーメット成分に対して50体積%以
下に限定される。
As described above, although the present invention mainly consists of a metal boride and a cermet of an oxidation-resistant alloy, it is possible to further improve the wear resistance within the range of not deteriorating the thermal shock resistance and adhesion of the sprayed coating layer. Hard oxide particles such as aluminum oxide, chromium oxide, titanium dioxide, silicon oxide, zirconium oxide, magnesium oxide, yttrium oxide and rare earth oxides can be included for this purpose. These hard oxide particles may replace a portion of the oxidation-resistant alloy powder and metal boride particles with oxide particles to disperse the oxide particles throughout the sprayed layer, and the content thereof can improve thermal shock resistance and In order not to deteriorate adhesion, the amount is limited to 50% by volume or less based on the cermet component consisting of oxidation-resistant alloy powder and metal boride particles.

一方、このような酸化物粒子の分散性以外に耐摩耗性を
更に向上させるには、耐酸化性合金成分を靭性を劣化し
ない方法で硬化させてもよい。このためには、耐酸化性
合金中に極少量の酸化アルミニウム、酸化クロム、二酸
化チタン、二酸化ケイ素、酸化ジルコニウム、酸化マグ
ネシウム、酸化イツトリウムおよび希土類酸化物等の酸
化物微粒子を均一に分散させて、耐酸化性合金のマトリ
ックスを強化させることにより可能である。この酸化物
微粒子の耐酸化性合金中ての含有率は2体積%以下に限
定され、これ以上ては耐酸化性合金か脆化し、その結果
として溶射被覆層の耐熱衝撃性および密着性か劣化する
のて好ましくない。
On the other hand, in order to further improve wear resistance in addition to the dispersibility of such oxide particles, the oxidation-resistant alloy component may be hardened by a method that does not deteriorate toughness. To achieve this, a very small amount of fine particles of oxides such as aluminum oxide, chromium oxide, titanium dioxide, silicon dioxide, zirconium oxide, magnesium oxide, yttrium oxide, and rare earth oxides are uniformly dispersed in the oxidation-resistant alloy. This is possible by strengthening the oxidation-resistant alloy matrix. The content of these oxide fine particles in the oxidation-resistant alloy is limited to 2% by volume or less; if it exceeds this, the oxidation-resistant alloy becomes brittle, resulting in deterioration of the thermal shock resistance and adhesion of the thermal spray coating layer. It's not good to do that.

この他に、耐酸化性合金および靭性を害しないて、耐酸
化性合金の耐摩耗性を向上させる合金元素を含有させる
ことも可能である。本発明者らは鋭意努力の結果、チタ
ニウムカーバイドかこの効果に優れていることを見いた
した。すなわち、チタニウムカーバイドの析出は、耐酸
化性合金の耐酸化性およびヒルドアツブ防止効果を害す
ることなく、耐酸化性合金の硬化が可能である。この硬
化には、耐酸化性合金中で10重量%以下のチタニウム
および5重量%以下の炭素の含有か効果的てあり、これ
以上添加すると耐酸化性合金層が脆化し、被覆溶射層の
耐熱衝撃性および密着性が悪化する。
In addition, it is also possible to contain alloying elements that improve the wear resistance of the oxidation-resistant alloy without impairing the oxidation-resistant alloy and its toughness. As a result of intensive efforts, the present inventors found that titanium carbide is superior in this effect. That is, the precipitation of titanium carbide can harden the oxidation-resistant alloy without impairing the oxidation resistance and the hilt swelling prevention effect of the oxidation-resistant alloy. For this hardening, it is effective to contain 10% by weight or less of titanium and 5% by weight or less of carbon in the oxidation-resistant alloy; if more than this is added, the oxidation-resistant alloy layer becomes brittle, and the thermal sprayed coating layer becomes heat resistant. Impact resistance and adhesion deteriorate.

このような本発明の溶射材料組成物は、ハースロール等
の基材表面に、デトネーションガン等の爆発溶射法また
はジェットコートやタイヤモントシェット等の超音速火
炎溶射法またはプラズマ溶射法等の一般の溶射技術によ
り被覆して使用される。しかし、本発明の溶射材料組成
物には金属硼化物等の熱分解性物質か含まれているので
、爆発溶射法または超音速火炎溶射法により形成された
被覆か諸特性に優れ、特に爆発溶射法により形成された
被覆が最も好ましい。
Such a thermal spraying material composition of the present invention can be applied to the surface of a base material such as a hearth roll by a general method such as an explosive thermal spraying method using a detonation gun, a supersonic flame spraying method such as a jet coat or a tire mont chette, or a plasma spraying method. Used by coating with thermal spraying technology. However, since the thermal spraying material composition of the present invention contains thermally decomposable substances such as metal borides, the coating formed by explosive thermal spraying or supersonic flame spraying has excellent properties, especially explosive thermal spraying. Most preferred are coatings formed by methods.

[実施例コ まず、本発明に用いた溶射材料粉末組成物の調合方法を
説明する。本発明は金属硼化物および耐酸化性合金を主
体とし、必要により酸化物から構成されるが、本発明溶
射材料粉末はこれら各成分の粉末の単独の混合粉末でも
あるいは、個々の粒子かこれらの各成分粉末粒子の結合
体から構成された複合粉末でもよい。試験に用いた金属
硼化物粉末、耐酸化性混合粉末および酸化物粉末、更に
、比較例のために使用した炭化物粉末について以丁に説
明する。
[Example 1] First, a method for preparing a thermal spray material powder composition used in the present invention will be explained. The present invention mainly consists of metal borides and oxidation-resistant alloys, and optionally oxides, but the thermal spray material powder of the present invention may be a single mixed powder of each of these component powders, or individual particles or these. A composite powder composed of a combination of component powder particles may also be used. The metal boride powder, oxidation-resistant mixed powder, and oxide powder used in the test, as well as the carbide powder used for the comparative example, will be explained in detail.

金属硼化物粉末・・・・・・A 粒径か30〜5μmのジルコニウムホライト粉末(Zr
B2)て、B=19重量%、残部がZrから成る。
Metal boride powder・・・・・・A Zirconium holite powder (Zr
B2), B=19% by weight, the balance being Zr.

金属硼化物粉末・・・・・・B 粒径か30〜5umのクロムホライト粉末((:rL)
て、B=29重ff1%、残部がCrから成る。
Metal boride powder...B Chrome holite powder with a particle size of 30-5um ((:rL)
So, B=29 layers ff1%, and the remainder is Cr.

金属硼化物粉末・・・・・・C 粒径か30〜5umのチタニウムボライド粉末(ゴIB
2)で、B=31重量%、残部がTiから成る。
Metal boride powder...C Titanium boride powder with a particle size of 30 to 5 um (Go IB
2), B = 31% by weight, the remainder being Ti.

酸化物粉末・・・・・・D 粒径か25〜5μmの酸化アルミニウム粉末(A交、0
3)。
Oxide powder...D Aluminum oxide powder with a particle size of 25 to 5 μm (A, 0
3).

酸化物粉末・・・・・・E 粒径が25〜5μmの酸化クロム粉末(Cr2O+)。Oxide powder...E Chromium oxide powder (Cr2O+) with a particle size of 25-5 μm.

酸化物粉末・・・・・・F 粒径が25〜5μmのイツトリア安定化ジルコニア粉末
(Zr(h ・Y2O38重量%)。
Oxide powder...F Itria-stabilized zirconia powder (Zr(h.Y2O38% by weight) with a particle size of 25 to 5 μm).

酸化物粉末・・・・・・G 粒径が25〜5μmのスピネル粉末(At120y・M
g024重量%)6 炭化物粉末・・・・・・H 粒径か45〜10μmのクロムカーバイト粉末(Cr5
Cz )て、C=13重量%、残部がCrから成る。
Oxide powder...G Spinel powder with a particle size of 25 to 5 μm (At120y・M
g024% by weight) 6 Carbide powder...H Chromium carbide powder (Cr5
Cz), C=13% by weight, the balance being Cr.

炭化物粉末・・・・・・I 粒径か45〜10μmのチタニウムカーバイト粉末(T
ic )で、C=20重量%、残部がTiから成る。
Carbide powder...I Titanium carbide powder (T
ic), C=20% by weight, and the balance consists of Ti.

炭化物粉末・・・・・・J 粒径か45〜10μmのタンクステンカーバイド粉末(
WC)て、C=6重量%、残部がWから成る。
Carbide powder...J Tanksten carbide powder with a particle size of 45 to 10 μm (
WC), C = 6% by weight, the balance being W.

耐酸化性合金粉末・・・・・・に 不活性カスアトマイズ法により得られた粒径20μ■以
Fの合金粉末で、組成(重量%)は、Cr=20、AM
= 7、残部がNiより成る。
Oxidation-resistant alloy powder: An alloy powder with a particle size of 20 μι or smaller obtained by an inert cast atomization method, with a composition (wt%) of Cr=20, AM
= 7, the remainder consists of Ni.

耐酸化性合金粉末・・・・・・L 不活性カスアトマイズ法により得られた粒径20IJI
11以下の合金粉末で、組成(重量%)は、(:r= 
25、Ai= 10、Y=0.5、残部がNiより成る
Oxidation-resistant alloy powder...L Particle size 20IJI obtained by inert cast atomization method
11 or less alloy powder, the composition (wt%) is (:r=
25, Ai=10, Y=0.5, the remainder consists of Ni.

耐酸化性合金粉末・・・・・・M メカニカルアロインク法により得られた粒径204II
+以下の合金粉末で、組成11%)は、Cr= 20、
A党= 8、Y=0.8.5i=1.5、残部かCOよ
り成る。メカニカルアロインクは井三池製アトライター
MA−1型を用い、粒径か10μm以下のCo粉末、粒
径か150μ0以下のCr粉末、粒径か451.1m以
下のA立−5i40%合金粉末、粒径か200um以下
のCo −Y 40%合金粉末を所定の比率で2Kgを
混合し、アルゴン雰囲気中てエチルアルコールを30c
c加えて40時間粉砕攪拌して行なった。その後、10
−3torrの真空中にて1150℃で30時間の焼鈍
後、粉砕分゛級を繰り返して所定の粒度の粉末を得た。
Oxidation-resistant alloy powder...M Particle size 204II obtained by mechanical alloy ink method
+ or less alloy powder, composition 11%) is Cr = 20,
Party A = 8, Y = 0.8.5i = 1.5, and the remainder consists of CO. For the mechanical alloy ink, Imiike's Attritor MA-1 type was used. Co powder with a particle size of 10 μm or less, Cr powder with a particle size of 150 μm or less, A-5i 40% alloy powder with a particle size of 451.1 m or less, Mix 2 kg of Co-Y 40% alloy powder with a particle size of 200 um or less in a predetermined ratio, and add 30 c of ethyl alcohol in an argon atmosphere.
c and then pulverized and stirred for 40 hours. After that, 10
After annealing at 1150° C. for 30 hours in a vacuum of −3 torr, pulverization and classification were repeated to obtain a powder with a predetermined particle size.

耐酸化性合金粉末・−−−−−N メカニカルアロインク法により得られた粒径201以下
の合金粉末で、組成(重量%)は、Cr=  2 5 
、 八9= 12、 Y=0. 5 、5i=1.2Y
20.、=0. 2、残部がCoより成る。メカニカル
アロインクは三井三池製アトライターMA−1型を用い
、粒径か10μm以下のCo粉末、粒径が150μI以
下のCr粉末、粒径が45μm以下のA2Si40%合
金粉末、粒径が200μm以下のC。
Oxidation-resistant alloy powder -----N Alloy powder with a particle size of 201 or less obtained by the mechanical alloy ink method, and the composition (weight %) is Cr = 2 5
, 89=12, Y=0. 5, 5i=1.2Y
20. ,=0. 2. The remainder consists of Co. Mechanical alloy ink uses Mitsui Miike's Attritor MA-1 type, Co powder with a particle size of 10 μm or less, Cr powder with a particle size of 150 μI or less, A2Si 40% alloy powder with a particle size of 45 μm or less, and particle size of 200 μm or less. C.

−740%合金粉末、中心粒径が0.1 μmのY2O
3粉末を所定の比率で2Kgを混合し、アルゴン雰囲気
中てエチルアルコールを30cc加えて40時間粉砕攪
拌して行った。その後、1O−3torrの真空中にて
1150℃で30時間の焼鈍後、粉砕分級を繰り返して
所定の粒度の粉末を得た。
-740% alloy powder, Y2O with a center particle size of 0.1 μm
2 kg of the three powders were mixed at a predetermined ratio, 30 cc of ethyl alcohol was added in an argon atmosphere, and the mixture was pulverized and stirred for 40 hours. Thereafter, after annealing at 1150° C. for 30 hours in a vacuum of 1 O −3 torr, pulverization and classification were repeated to obtain powder with a predetermined particle size.

耐酸化性合金粉末・・・・・・O メカニカルアロイング法により得られた粒径20μm以
下の合金粉末で、組成(重量%)は、Cr−20、AQ
= 10、Y=0.5.5i=1.5AQ203= 0
 、 5、残部がNiより成る。メカニカルアロイング
は三井三池性アトライターMA−1型を用い、粒径か1
0μm以下のNi粉末、粒径が150μm以下のCr粉
末、粒径が45μm以下のAfL−5i40%合金粉末
、粒径が200μ0以下のN1Y40%合金粉末、中心
粒径が0.05μmのAu203粉末を所定の比率で2
Kgを混合し、アルゴン雰囲気中でエチルアルコールを
30cc加えて40時間粉砕攪拌して行なった。その後
、10−3torrの真空中にて1150℃で30時間
の焼鈍後、粉砕分級を繰り返して所定の粒度の粉末を得
た。
Oxidation-resistant alloy powder・・・O Alloy powder with a particle size of 20 μm or less obtained by mechanical alloying method, composition (weight %) of Cr-20, AQ
= 10, Y=0.5.5i=1.5AQ203=0
, 5. The remainder consists of Ni. For mechanical alloying, Mitsui Miike Attritor MA-1 type was used, and the particle size was 1.
Ni powder with a particle size of 0 μm or less, Cr powder with a particle size of 150 μm or less, AfL-5i 40% alloy powder with a particle size of 45 μm or less, N1Y 40% alloy powder with a particle size of 200 μm or less, and Au203 powder with a center particle size of 0.05 μm. 2 at a given ratio
Kg was mixed, 30 cc of ethyl alcohol was added in an argon atmosphere, and the mixture was pulverized and stirred for 40 hours. Thereafter, after annealing at 1150° C. for 30 hours in a vacuum of 10 −3 torr, pulverization and classification were repeated to obtain powder with a predetermined particle size.

耐酸化性合金粉末・−−−−−p 不活性カスアトマイズ法により得られた粒径が20IJ
I[l以下の合金粉末で、組成(重量%)は、Cr= 
25、AM= 10、Y=0.5、Si= 1、Ti=
5、C=2、残部がCoより成る。
Oxidation-resistant alloy powder---p Particle size obtained by inert cast atomization method is 20IJ
I[l or less alloy powder, the composition (wt%) is Cr=
25, AM=10, Y=0.5, Si=1, Ti=
5, C=2, remainder consisting of Co.

本発明の溶射材料はすべて複合粉末形態に加工して使用
し、複合粉末は、これらの個々の粉末を表−1に示す割
合で所定量混合し、三井三池製アトライターMA−1型
に2Kg投入し、アルゴン雰囲気中で3時間混合粉砕後
、攪拌造粒法により作製した。攪拌造粒は通常の攪拌型
ミキサーを用い、前記粉砕物にポリビニールアルコール
を2重量%加え、約10〜30分間攪拌した。このよう
にして得られた造粒物を、大気中150℃で2時間乾燥
後、粉砕と分級を縁り返して45〜10umの粒径に調
整して、各組成の複合粉末を得た。試験に用いた各粉末
の組成(体積%)を表−1に示す。
All of the thermal spraying materials of the present invention are processed into a composite powder form, and the composite powder is prepared by mixing a predetermined amount of these individual powders in the proportions shown in Table 1, and placing 2 kg of the composite powder in a Mitsui Miike Attritor MA-1 model. After mixing and pulverizing in an argon atmosphere for 3 hours, the mixture was produced by stirring and granulating. For agitation granulation, a general agitation type mixer was used, and 2% by weight of polyvinyl alcohol was added to the pulverized product, followed by stirring for about 10 to 30 minutes. The thus obtained granules were dried in the atmosphere at 150° C. for 2 hours, and then pulverized and classified repeatedly to adjust the particle size to 45 to 10 μm to obtain composite powders of each composition. Table 1 shows the composition (volume %) of each powder used in the test.

次に、各試験に用いた溶射被覆試験片の作製方法を説明
する。溶射は、以下に述べる条件で爆発溶射法またはプ
ラズマ溶射法にて実施した。
Next, the method for producing the thermal spray coating test pieces used in each test will be explained. Thermal spraying was carried out using an explosive spraying method or a plasma spraying method under the conditions described below.

爆発溶射条件: 溶射材料    表−IN09〜No30溶射カン内径
  20mm 爆発カス混合比 酸素ガス/アセチレンガス= 1 、
 0 爆発サイクル  毎秒4シヨツト 溶射路111200++un プラズマ溶射条件: 溶射材料    表−I  Nol〜No8型式   
   プラズマダイン5G−100モート40KWSu
b プラズマガス  50psi/Ar、  15psi/
N2溶射距@     100++u++ 溶射被覆層の特性2f (Itlは、ヒルドアツブ試験
(MN値)、密着力、皮膜断面硬度、熱衝撃試験にて実
施した。以下に、これらの試験の目的と試l験方法につ
いて説明する。
Explosive spraying conditions: Spraying material Table-IN09~No30 spraying can inner diameter 20mm Explosive residue mixture ratio Oxygen gas/acetylene gas = 1,
0 Explosion cycle 4 shots per second spray path 111200++un Plasma spraying conditions: Spraying material Table-I No. 1 to No. 8 types
Plasmadyne 5G-100 Mote 40KWSu
b Plasma gas 50psi/Ar, 15psi/
N2 thermal spraying distance @ 100++u++ Characteristics of thermal spray coating layer 2f (Itl was carried out using Hild stub test (MN value), adhesion, film cross-sectional hardness, and thermal shock test.The purpose of these tests and the test method are as follows. I will explain about it.

ヒルドアツブ試験: 耐ヒルドアツブ性能評価を目的に付着物堆積試験として
ヒルドアツブ試験を実施した。第1図にヒルドアツブ試
験方法の略図を示す。
Hild stubble test: A hild stubble test was conducted as a deposit deposition test for the purpose of evaluating hilt stubble resistance performance. FIG. 1 shows a schematic diagram of the Hild Abs test method.

溶射被覆した2枚の試験片(505316,30x 5
0x5)の間に酸化鉄粉(ビルドアップ源Fe304)
を配置し、更にその上に酸化鉄粉を配置した後、半月状
ロールて8.5Kgの一定の荷重負荷を与えなから往復
運動させ、試験温度850℃、試験:囲気95%N2−
5%H2で4時間試験した後、試験片表面を下記の評点
(MN値)で評価した。
Two spray-coated specimens (505316, 30x 5
0x5) between iron oxide powder (build-up source Fe304)
After arranging iron oxide powder on top of the iron oxide powder, a constant load of 8.5 kg was applied using a semicircular roll, and the test temperature was 850°C, and the surrounding atmosphere was 95% N2-
After testing at 5% H2 for 4 hours, the surface of the test piece was evaluated using the following rating (MN value).

3点:横にするとビルドアップ源が落ちる。3 points: If you turn it sideways, the buildup source will fall.

2点; 6 Kg/ cm2の圧縮空気でビルドアップ
源か落ちる。
2 points; 6 Kg/cm2 of compressed air causes the build-up source to fall.

1点:手てこするとヒルドアツブ源か落ちる。1 point: If you push your hand, the hild sprout source will fall.

0点1以上の手段て落ちない。No means of 0 points or more will fail.

密着力評価試験: 溶射被複層の耐衝撃剥離などの機械的密着力評価を目的
に、第2図に示すビンテスタ一方による密着力評価試験
を実施した。テーパーピンを装着した直径20mmのス
リーブに、膜厚か約500μmの溶射板Iを施した後、
引っ張り試験機によりテーパーピンを引き抜き、単位破
断面積当たりの破断同市を求めた。
Adhesion force evaluation test: For the purpose of evaluating mechanical adhesion force such as impact peeling resistance of the thermal sprayed composite layer, an adhesion force evaluation test was conducted using one side of the bin tester shown in FIG. 2. After applying thermal spray plate I with a film thickness of about 500 μm to a sleeve with a diameter of 20 mm equipped with a taper pin,
The taper pin was pulled out using a tensile tester, and the fracture density per unit fracture area was determined.

皮膜断面硬度: 溶射被複層の耐摩耗性評価として溶射被覆層断面硬度試
験を実施した。市販のマイクロヒラカース硬度計を用い
、荷重300gを負荷しヒラカース硬度を求めた。
Coating cross-sectional hardness: A cross-sectional hardness test of the thermal sprayed coating layer was conducted to evaluate the wear resistance of the thermal sprayed coating layer. Using a commercially available micro-Hira-Kase hardness meter, the Hira-Kase hardness was determined by applying a load of 300 g.

熱衝γ試験 溶射被複層の耐熱衝撃性評価を目的に、熱衝撃試験を実
施した。基材(SUS3]6.50X 50X 10)
に200μm溶射被覆した試験片を、1000℃の電気
炉内で20分間加熱保持したのち、試験片を取り出し急
水冷を加えて表面観察を行い、加熱、急水冷を最大30
回縁り返し実施した。
Thermal Shock Gamma Test A thermal shock test was conducted to evaluate the thermal shock resistance of the thermally sprayed composite layer. Base material (SUS3] 6.50X 50X 10)
A test piece coated with a 200 μm coating was heated and held in an electric furnace at 1000°C for 20 minutes, then the test piece was taken out, rapidly cooled with water, and the surface observed.
We carried out a reenactment.

評価は、皮膜剥離に至るまでの繰り返し回数とした。The evaluation was based on the number of repetitions until the film peeled off.

表−2は、これらの試験結果をまとめたものである。こ
の表から判るように、本発明の被覆物は従来からの比較
例と比へて、耐ビルドアツプ性、畜n力、断面硬度およ
び耐熱衝撃性の全てについて4nていることか示されて
いる。
Table 2 summarizes these test results. As can be seen from this table, the coating of the present invention is 4n better in terms of build-up resistance, durability, cross-sectional hardness, and thermal shock resistance than the conventional comparative example.

表 2試験結果 [発明の効果] 前述の実施例に示したように、本発明の組成物を用いた
溶射被複層は、耐ビルドアツプ性、密着性、耐熱面γ性
および耐摩耗性の全てに優れ、剥離か生したり摩耗の進
行による寿命の低下か極めて少ないために、ハースロー
ル等の高温使用の鉄鋼プロセス部品の長寿命化および鋼
板品質の向上に大きく貢献するものである。
Table 2 Test Results [Effects of the Invention] As shown in the above examples, the thermal sprayed composite layer using the composition of the present invention exhibited excellent build-up resistance, adhesion, heat-resistant surface gamma resistance, and abrasion resistance. It has excellent properties and has very little reduction in service life due to peeling or progression of wear, making it a major contributor to extending the service life of steel process parts used at high temperatures, such as hearth rolls, and improving the quality of steel sheets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例に用いたビルドアップ試験法の説
明図、第2図は同密着力評価試験法の説明図である。
FIG. 1 is an explanatory diagram of the build-up test method used in the examples of the present invention, and FIG. 2 is an explanatory diagram of the same adhesion evaluation test method.

Claims (6)

【特許請求の範囲】[Claims] 1.合金粉末と金属硼化物粒子からなる複合粉末または
混合粉末であって、前記金属硼化物粒子が5〜50体積
%含まれ且つ、前記合金粉末が15〜40重量%のクロ
ム、5〜20重量%のアルミニウム、残部がニッケルま
たはコバルトまたは鉄のうち少くとも1種以上から成る
組成を有することを特徴とする溶射材料。
1. A composite powder or mixed powder consisting of an alloy powder and metal boride particles, wherein the metal boride particles are contained in an amount of 5 to 50% by volume, and the alloy powder contains 15 to 40% by weight of chromium, 5 to 20% by weight. A thermal spray material characterized in that it has a composition of aluminum, with the balance consisting of at least one of nickel, cobalt, or iron.
2.合金粉末と金属硼化物粒子からなる複合粉末または
混合粉末であって、前記金属硼化物粒子が5〜50体積
%含まれ且つ、前記合金粉末が15〜40重量%のクロ
ム、5〜20重量%のアルミニウム、10重量%以下の
チタニウム、5重量%以下の炭素を含み、残部がニッケ
ルまたはコバルトまたは鉄のうち少くとも1種以上から
なる組成を有することを特徴とする溶射材料。
2. A composite powder or mixed powder consisting of an alloy powder and metal boride particles, wherein the metal boride particles are contained in an amount of 5 to 50% by volume, and the alloy powder contains 15 to 40% by weight of chromium, 5 to 20% by weight. 1. A thermal spray material having a composition comprising aluminum of 10% by weight or less, titanium of 10% by weight or less, carbon of 5% by weight or less, and the balance consisting of at least one of nickel, cobalt, or iron.
3.金属硼化物粒子がクロムボライドまたはジルコニウ
ムボライドまたはチタニウムボライドのうち少くとも1
種以上であることを特徴とする請求項1又は2記載の溶
射材料。
3. The metal boride particles are at least one of chromium boride, zirconium boride, and titanium boride.
The thermal spray material according to claim 1 or 2, characterized in that the thermal spray material contains at least one species.
4.合金粉末と金属硼化物粒子と金属酸化物粒子からな
る複合粉末または混合粉末であって、請求項1又は2記
載の溶射材料に、さらに酸化アルミニウム、酸化クロム
、二酸化チタン、二酸化ケイ素、酸化ジルコニウム、酸
化マグネシウム、酸化イットリウムおよび希土類酸化物
の少くとも1種以上の金属酸化物を、溶射材料全体に対
して5〜50体積%含有したことを特徴とする溶射材料
4. A composite powder or mixed powder consisting of an alloy powder, metal boride particles, and metal oxide particles, the thermal spray material according to claim 1 or 2 further comprising aluminum oxide, chromium oxide, titanium dioxide, silicon dioxide, zirconium oxide, A thermal spraying material containing 5 to 50% by volume of at least one metal oxide of magnesium oxide, yttrium oxide, and rare earth oxide based on the entire thermal spraying material.
5.合金中に、酸化アルミニウム、酸化クロム、二酸化
チタン、二酸化ケイ素、酸化ジルコニウム、酸化マグネ
シウム、酸化イットリウムおよび希土類酸化物の少くと
も1種以上の金属酸化物粒子を、合金中で2体積%以下
均一に分散、含有した合金粉末から成ることを特徴とす
る請求項1ないし4のいずれか1項記載の溶射材料。
5. At least one metal oxide particle of aluminum oxide, chromium oxide, titanium dioxide, silicon dioxide, zirconium oxide, magnesium oxide, yttrium oxide, and rare earth oxide is uniformly contained in the alloy in an amount of 2% by volume or less. The thermal spray material according to any one of claims 1 to 4, characterized in that it comprises dispersed and contained alloy powder.
6.請求項1〜5のいずれか1項記載の溶射材料を、爆
発溶射法または超音速ガス溶射法またはプラズマ溶射法
により溶射して形成された溶射皮膜を具備してなること
を特徴とする被覆物品。
6. A coated article comprising a thermal spray coating formed by spraying the thermal spray material according to any one of claims 1 to 5 by an explosive thermal spraying method, a supersonic gas spraying method, or a plasma spraying method. .
JP2017933A 1990-01-30 1990-01-30 Thermal spray material excellent in high temperature wear resistance and build-up resistance and its coated article Expired - Fee Related JPH0645863B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017933A JPH0645863B2 (en) 1990-01-30 1990-01-30 Thermal spray material excellent in high temperature wear resistance and build-up resistance and its coated article
EP19910300698 EP0440437B1 (en) 1990-01-30 1991-01-30 Thermal spray material and its coated article excellent in high-temperature wear resistance and build-up resistance
DE1991609140 DE69109140T2 (en) 1990-01-30 1991-01-30 Spray application material and thus coated object with excellent high-temperature wear resistance.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017933A JPH0645863B2 (en) 1990-01-30 1990-01-30 Thermal spray material excellent in high temperature wear resistance and build-up resistance and its coated article

Publications (2)

Publication Number Publication Date
JPH03226552A true JPH03226552A (en) 1991-10-07
JPH0645863B2 JPH0645863B2 (en) 1994-06-15

Family

ID=11957577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017933A Expired - Fee Related JPH0645863B2 (en) 1990-01-30 1990-01-30 Thermal spray material excellent in high temperature wear resistance and build-up resistance and its coated article

Country Status (3)

Country Link
EP (1) EP0440437B1 (en)
JP (1) JPH0645863B2 (en)
DE (1) DE69109140T2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197229A (en) * 1994-12-26 1995-08-01 Tocalo Co Ltd Boride type powder material for thermal spraying, excellent in molten zinc resistance, and sprayed coating for molten zinc bath member
JP2008537019A (en) * 2005-04-21 2008-09-11 スタンダード・エアロ・リミテッド Abrasion resistant ceramic composite coating and process for its manufacture
CN105755422A (en) * 2016-03-30 2016-07-13 中国人民解放军装甲兵工程学院 Method and device for preparing gradient metal ceramic composite coating on surface of bias current plate
RU2728124C1 (en) * 2019-11-05 2020-07-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный аграрный университет" Powder material for application of wear-resistant gas-thermal coating, obtained by self-propagating high-temperature synthesis

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519387B2 (en) * 1999-11-09 2010-08-04 Jfeスチール株式会社 Thermal spray coating cermet powder and thermal spray coating roll with excellent build-up resistance
DE10046956C2 (en) * 2000-09-21 2002-07-25 Federal Mogul Burscheid Gmbh Thermally applied coating for piston rings made of mechanically alloyed powders
US8034153B2 (en) 2005-12-22 2011-10-11 Momentive Performances Materials, Inc. Wear resistant low friction coating composition, coated components, and method for coating thereof
CN112575279B (en) * 2019-09-30 2023-10-20 新疆天业(集团)有限公司 Method for preparing Zr-Y-Cr-Si composite thermal insulation coating by plasma spraying
CN112063955A (en) * 2020-09-15 2020-12-11 昆明理工大学 Method for improving high-temperature mechanical property of zirconium alloy surface
CN114032490B (en) * 2021-09-30 2023-11-24 福建省宁德恒茂节能科技有限公司 High-temperature corrosion-resistant wear-resistant electric arc spraying powder core wire for AOD furnace vaporization cooling boiler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956839A (en) * 1972-10-06 1974-06-03
JPS6250455A (en) * 1985-08-29 1987-03-05 Cosmo Co Ltd Coating method with ceramic
JPS6263663A (en) * 1985-09-13 1987-03-20 Umeda Densen Kk Thermally sprayed film
JPS63140071A (en) * 1986-10-23 1988-06-11 ザ・パーキン−エルマー・コーポレイシヨン Thermal spraying material and powder containing composite powder
JPS63195254A (en) * 1987-02-09 1988-08-12 Toyo Kohan Co Ltd Production of composite material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH312216A (en) * 1951-09-18 1955-12-31 Deutsche Edelstahlwerke Ag Process for applying hard metal to carrier materials.
EP0035043A1 (en) * 1980-02-28 1981-09-09 Scm Corporation Spray-and-fuse self-fluxing alloy powders, a process for preparing the powders and articles coated therewith
CH668776A5 (en) * 1986-02-05 1989-01-31 Castolin Sa METHOD FOR PRODUCING AN EROSION-RESISTANT SURFACE LAYER ON A METAL WORKPIECE.
US4731253A (en) * 1987-05-04 1988-03-15 Wall Colmonoy Corporation Wear resistant coating and process
JPH01230760A (en) * 1988-03-11 1989-09-14 Nippon Steel Corp Sliding member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956839A (en) * 1972-10-06 1974-06-03
JPS6250455A (en) * 1985-08-29 1987-03-05 Cosmo Co Ltd Coating method with ceramic
JPS6263663A (en) * 1985-09-13 1987-03-20 Umeda Densen Kk Thermally sprayed film
JPS63140071A (en) * 1986-10-23 1988-06-11 ザ・パーキン−エルマー・コーポレイシヨン Thermal spraying material and powder containing composite powder
JPS63195254A (en) * 1987-02-09 1988-08-12 Toyo Kohan Co Ltd Production of composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197229A (en) * 1994-12-26 1995-08-01 Tocalo Co Ltd Boride type powder material for thermal spraying, excellent in molten zinc resistance, and sprayed coating for molten zinc bath member
JP2008537019A (en) * 2005-04-21 2008-09-11 スタンダード・エアロ・リミテッド Abrasion resistant ceramic composite coating and process for its manufacture
CN105755422A (en) * 2016-03-30 2016-07-13 中国人民解放军装甲兵工程学院 Method and device for preparing gradient metal ceramic composite coating on surface of bias current plate
CN105755422B (en) * 2016-03-30 2017-12-08 中国人民解放军装甲兵工程学院 A kind of method and device for being used to prepare gradient metal ceramic composite coating in bias current plate surface
RU2728124C1 (en) * 2019-11-05 2020-07-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный аграрный университет" Powder material for application of wear-resistant gas-thermal coating, obtained by self-propagating high-temperature synthesis

Also Published As

Publication number Publication date
EP0440437A2 (en) 1991-08-07
DE69109140D1 (en) 1995-06-01
EP0440437A3 (en) 1991-11-06
JPH0645863B2 (en) 1994-06-15
DE69109140T2 (en) 1995-09-07
EP0440437B1 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
JP3952252B2 (en) Powder for thermal spraying and high-speed flame spraying method using the same
US4124737A (en) High temperature wear resistant coating composition
KR900002491B1 (en) Abrasion resistant coating composition and process for making
EP1485220B1 (en) Corrosion resistant powder and coating
US7670406B2 (en) Deposition system, method and materials for composite coatings
KR100751742B1 (en) Spray powder, thermal spraying process using it, and sprayed coating
US6572518B1 (en) Cermet powder for sprayed coating excellent in build-up resistance and roll having sprayed coating thereon
US5966585A (en) Titanium carbide/tungsten boride coatings
JP2014193487A (en) Thermal spray coated work roll
US20080274010A1 (en) Wear Resistant Alloy Powders and Coatings
JPH03226552A (en) Thermal spraying material excellent in high temperature wear resistance and build-up resistance and article coated by same
EP1077272A1 (en) Titanium carbide/tungsten boride coatings
CA2267960C (en) Coating powder and method for its production
US4806394A (en) Method for producing a wear-resistant, titanium-carbide containing layer on a metal base
JP2988281B2 (en) Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating
JP3403459B2 (en) Carbon member with ceramic spray coating
JP6694817B2 (en) Coating material
JPH11209863A (en) Production of wear resistant parts
JPH06116703A (en) Hearth roller having heat resistance and wear resistance
JPH06228728A (en) Article with wear resisting coating and method
Umanskii et al. Plasma coatings of (TiCrC)-(FeCr) composite powder alloys: Structure and properties
TWI278521B (en) Multi-component alloy coating layer
JPH09268361A (en) Powder for boride cermet thermal spraying
JP3134768B2 (en) Boride cermet spraying powder
KR950008690B1 (en) Cr2c system cermet coating make and powder made thereby

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees