JPH0322430A - Formation of flattened insulating film - Google Patents

Formation of flattened insulating film

Info

Publication number
JPH0322430A
JPH0322430A JP15584889A JP15584889A JPH0322430A JP H0322430 A JPH0322430 A JP H0322430A JP 15584889 A JP15584889 A JP 15584889A JP 15584889 A JP15584889 A JP 15584889A JP H0322430 A JPH0322430 A JP H0322430A
Authority
JP
Japan
Prior art keywords
insulating film
sog
coated film
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15584889A
Other languages
Japanese (ja)
Inventor
Yuji Komatsu
裕司 小松
Masakazu Muroyama
雅和 室山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP15584889A priority Critical patent/JPH0322430A/en
Publication of JPH0322430A publication Critical patent/JPH0322430A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a flattened insulating film having no crack and void and reliability by thermosetting a spin-on glass solution coated film shaped onto a semiconductor substrate having a stepped section through microwave irradiation. CONSTITUTION:A substrate 1 on which a spin-on glass(SOG) solution coated film 4 is formed is placed on a susceptor 11 in a chamber 12. Microwaves 15 are generated by a magnetron 14, introduced into the chamber 12 by a waveguide 13, and applied toward the substrate 1. Only the SOG-solution coated film 4 is heated through the microwave irradiation. The temperature of the coated film 4 is elevated preferentially from the inside of the SOG-solution coated film 4 of a stepped recessed section 3, and thermosetting pregrecess. The coated film 4 is heated up to several hundred degrees C to 900 deg.C in response to an object finally, thus forming a flattened insulating film 5, in which no crack and void is generated and which has high reliability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体装置製造工程における平坦化絶縁膜の
形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a planarized insulating film in a semiconductor device manufacturing process.

〔発明の概要〕[Summary of the invention]

本発明は、段差を有する半導体基板上に形或されたスピ
ンオンガラス(以下、SOGという)溶液塗布膜に、マ
イクロ波照射を施して熱硬化することにより、クランク
やボイドのない信頼性のあ〔従来の技術〕 LSI等の半導体装置の高集積度化に伴い、多層配線の
重要性が高まってきた。とりわけ、激しい段差を有する
層間絶縁膜や下層配線等の上に形成する平坦化絶縁膜は
、更にこの上に上層配線を形成する関係上、可及的に平
坦な表面とすることが要求される。これは上層配線のス
テップカバレッジを良好なものとし、エレクトロマイグ
レーションやストレスマイグレーション等の心配のない
信頼性に優れた多層配線を形或するためである。
The present invention provides a reliable film with no cranks or voids by thermally curing a spin-on glass (hereinafter referred to as SOG) solution coated film formed on a semiconductor substrate having steps by applying microwave irradiation. 2. Description of the Related Art As semiconductor devices such as LSIs become highly integrated, the importance of multilayer wiring has increased. In particular, a flattening insulating film formed on an interlayer insulating film or a lower layer wiring having a severe step difference is required to have a surface as flat as possible because the upper layer wiring is further formed on top of the flattening insulating film. . This is to improve the step coverage of the upper layer wiring and to form a highly reliable multilayer wiring free from electromigration, stress migration, and the like.

従来より平坦化絶縁膜を形或する方法としては、SOG
溶液塗布膜による方法が知られている。これを従来例に
よる平坦化絶縁膜形或方法の概略工程断面図である第3
図(a)〜(C)に基づき説明する。
A conventional method for forming a planarized insulating film is SOG.
A method using a solution coating film is known. FIG.
This will be explained based on FIGS. (a) to (C).

第3図(a)において、シリコン半導体等の基板1上に
は、例えば層間絶縁膜や下層配線が形成されており、こ
れらにより段差凸部2と、アスペクト比の大きな段差凹
部3とが形成されている。ここ?同図(b)のごとく、
SOG溶液をスピンコート法により全面に塗布し、SO
G溶液塗布膜4を形成する。SOG溶液塗布膜4は段差
四部3には厚く、段差凸部には薄く形成される。SOG
溶液は周知の通り、例えばシラノール(St (Oll
) 4)等のケイ素化合物を主体とし、これをアルコー
ル等の有機溶媒に溶解したものである。すなわち、SO
G溶液塗布膜4を例えば数百゜Cから900″C程度に
まで加熱し、有機溶媒を蒸発させ、ケイ素化合物の脱水
縮重合反応を進行させ熱硬化させることにより、第3図
(C)のごとく無機質の酸化ケイ素(SiO■)を主体
とする平坦化絶縁膜5が形成されるのである。
In FIG. 3(a), for example, an interlayer insulating film and lower wiring are formed on a substrate 1 such as a silicon semiconductor, and these form a step convex portion 2 and a step recess 3 having a large aspect ratio. ing. here? As shown in figure (b),
Apply SOG solution to the entire surface by spin coating method, and
A G solution coating film 4 is formed. The SOG solution coating film 4 is formed thickly on the four step portions 3 and thinly on the step convex portions. SOG
As is well known, the solution is, for example, silanol (St (Oll
) 4) etc., which is dissolved in an organic solvent such as alcohol. That is, S.O.
The G solution coating film 4 is heated, for example, from several hundred degrees Celsius to about 900''C, the organic solvent is evaporated, the dehydration condensation reaction of the silicon compound is progressed, and the film is thermally cured, as shown in FIG. 3(C). Thus, a flattening insulating film 5 mainly made of inorganic silicon oxide (SiO2) is formed.

従来法によれば、SOG溶液塗布膜4を加熱するに際し
ては、抵抗加熱による電気炉を用いたり、あるいは炭酸
ガスレーザ光の照射による方法が用いられてきた(例え
ば、特開昭57−69748号公報参照)。
According to conventional methods, when heating the SOG solution coated film 4, an electric furnace using resistance heating or a method using carbon dioxide laser light irradiation has been used (for example, as disclosed in Japanese Patent Laid-Open No. 57-69748). reference).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記した従来の方法によれば、SOG溶液塗布膜4はそ
の表面から加熱され、有機溶媒の蒸発ならびにケイ素化
合物の脱水縮重合反応による熱硬化は表面から進行する
。このため、表面にまずSiOzを主体とする皮膜が形
成され、次いで段差凹部3の内部の熱硬化が進行する。
According to the conventional method described above, the SOG solution coating film 4 is heated from the surface thereof, and thermal curing by evaporation of the organic solvent and dehydration condensation reaction of the silicon compound proceeds from the surface. Therefore, a film mainly composed of SiOz is first formed on the surface, and then thermal hardening inside the step recess 3 progresses.

この熱硬化は体積減少を供なう反応であるので、第3図
(C)に示すように段差四部3の平坦化絶縁膜5にクラ
ック6やボイド7が発生する場合があり、半導体装置の
信頼性低下の原因となっていた。
Since this thermal curing is a reaction that causes volume reduction, cracks 6 and voids 7 may occur in the flattened insulating film 5 at the four step portions 3, as shown in FIG. This caused a decrease in reliability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による平坦化絶縁膜形或法は、SOC溶液塗布膜
の熱硬化手段として、マイクロ波照射を施すことを特徴
とする。ここでいうマイクロ波とは、IGHz =10
0GHzの範囲より選択される電磁波である。この電磁
波の照射によりSOG溶液塗布膜を数百゜C〜900゜
C程度に加熱して熱硬化し、平坦化絶縁膜を形成するの
である。
The flattening insulating film forming method according to the present invention is characterized in that microwave irradiation is applied as a means for thermally curing the SOC solution coating film. The microwave referred to here is IGHz = 10
This is an electromagnetic wave selected from the 0 GHz range. By irradiating this electromagnetic wave, the SOG solution coating film is heated to about several hundred degrees Celsius to about 900 degrees Celsius to be thermally cured, thereby forming a flattened insulating film.

〔作用〕[Effect]

マイクロ波は、水酸基(一〇■)等双極性の結合をもつ
SOG溶液等のごとき被照射物体にのみ吸収され、この
ときに発生する電磁気的なエネルギー損失を熱源として
被照射物体を加熱する。このため、特に熱の逃げにくい
段差凹部の内部のSOG溶液塗布膜から温度が上昇し、
熱硬化が進行する。
Microwaves are absorbed only by objects to be irradiated, such as SOG solutions, which have dipolar bonds such as hydroxyl groups (10■), and the electromagnetic energy loss generated at this time is used as a heat source to heat the object to be irradiated. For this reason, the temperature rises from the SOG solution coating film inside the stepped recesses, where heat is particularly difficult to escape.
Heat curing progresses.

すなわち、SOG溶液塗布膜の体積減少は段差凹部の内
部から進行し、この後に表面に皮膜が形成されることと
なる。この結果、従来例のようにS○G塗布膜の表面か
ら優先的に熱硬化して皮膜を形成してしまい、この結果
としてクランクやボイドが発生する現象を回避すること
が可能となる。
That is, the volume reduction of the SOG solution coating film proceeds from the inside of the stepped recess, and thereafter a film is formed on the surface. As a result, it is possible to avoid a phenomenon in which a film is preferentially thermally cured from the surface of the S○G coating film as in the conventional example, and as a result, cranks and voids occur.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照しながら説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明による平坦化絶縁膜形或方法に供する
装置の概略断面図である。同図において、SOG溶液塗
布膜を形成したシリコン半導体等の基板1を、電磁気的
なエネルギー損失の小さな材質からなる支持台11に載
置し、マイクロ波を反射する材質よりなるチャンバ12
内へ設置する。マグネトロン14により発生したマイク
ロ波l5は、導波管13によりチャンバ12内へ導入さ
れるように構威する。
FIG. 1 is a schematic cross-sectional view of an apparatus for use in a method of planarizing an insulating film according to the present invention. In the figure, a substrate 1 such as a silicon semiconductor on which a SOG solution coating film is formed is placed on a support 11 made of a material with low electromagnetic energy loss, and a chamber 12 made of a material that reflects microwaves.
Install inside. The microwave 15 generated by the magnetron 14 is introduced into the chamber 12 through the waveguide 13.

次にこの装置を用いて本発明による平坦化絶縁膜を形成
する方法を説明する。第2図(a)〜(C)は本発明に
よる平坦化絶縁膜形或方法の概略工程断面図である。同
図(a)及び(ロ)の工程は、前記従来の技術の説明に
おける第3図(a)および(b)の工程と同一であるの
で、説明を省略する。次にSOG溶液塗布膜4を形成し
た基板1を、前記したチャンバ12内の支持台11に載
置する。マグネトロン14により、例えば2.45GH
zのマイクロ波15を発生させ、導波管13によりチャ
ンバl2内に導入し、基板1に向け照射する。
Next, a method for forming a planarized insulating film according to the present invention using this apparatus will be described. FIGS. 2(a) to 2(c) are schematic process cross-sectional views of a planarizing insulating film type or method according to the present invention. The steps shown in FIGS. 3(a) and 3(b) are the same as the steps shown in FIGS. 3(a) and 3(b) in the description of the prior art, so their explanation will be omitted. Next, the substrate 1 on which the SOG solution coating film 4 has been formed is placed on the support table 11 in the chamber 12 described above. For example, 2.45GH by magnetron 14
z microwave 15 is generated, introduced into the chamber l2 through the waveguide 13, and irradiated toward the substrate 1.

このマイクロ波照射により、SOG溶液塗布膜4のみが
加熱される。しかも段差凹部3のSOG溶液塗布膜4内
部から優先的に昇温し熱硬化が進行する。最終的には目
的に応じて数百゜C〜900゜Cにまで加熱し、第2図
(C)に示されるようなクラックやボイドの発生のない
信頼性の高い平坦化絶縁膜5が形成されるのである。
By this microwave irradiation, only the SOG solution coating film 4 is heated. Moreover, the temperature rises preferentially from inside the SOG solution coating film 4 in the step recess 3, and thermal curing progresses. Finally, it is heated to several hundred degrees Celsius to 900 degrees Celsius depending on the purpose, and a highly reliable flattened insulating film 5 without cracks or voids as shown in FIG. 2(C) is formed. It will be done.

なお、本発明においてマイクロ波照射を施す場合は、目
的に応してチャンハ12内を窒素(N2)やアルゴン(
Ar)等の不活性気体雰囲としてもよく、また真空ポン
プにより排気して減圧雰囲気とすることも可能である。
In addition, when performing microwave irradiation in the present invention, nitrogen (N2) or argon (
The atmosphere may be an inert gas atmosphere such as Ar), or it may be evacuated using a vacuum pump to create a reduced pressure atmosphere.

本実施例においては、平坦化絶縁膜の形成方法として、
SOG溶液塗布膜の熱硬化による方法を例にとったが、
本発明はテトラエチルオルソシリケイト(TEOS)−
CVD法によるSiOz絶縁膜のように、堆積直後には
膜中に一〇H基が残留しやすい絶縁膜に対しても適用す
ることができ、残留−011基のない信頼性の高い平坦
化絶縁膜を形成することが可能である。
In this example, the method for forming the planarization insulating film is as follows:
We took as an example the method of thermal curing of the SOG solution coating film,
The present invention is based on tetraethylorthosilicate (TEOS)-
It can be applied to insulating films in which 10H groups tend to remain in the film immediately after deposition, such as SiOz insulating films produced by CVD, and provides highly reliable planarized insulation without residual -011 groups. It is possible to form a film.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、SOG溶液塗布膜は熱の逃げにくい段
差凹部の塗布膜内部から優先的に加熱され、熱硬化され
る。このため、従来法のようにSOG塗布膜表面が先に
熱硬化してしまい、この結果として形成される平坦化絶
縁膜にクラックやボイドが・発生するという問題を回避
することができ、信頼性の高い平坦化絶縁膜を形成する
ことが可能となる。
According to the present invention, the SOG solution coating film is heated preferentially from inside the coating film in the stepped recesses where heat is difficult to escape, and is thermally cured. For this reason, it is possible to avoid the problem of the SOG coating film surface being thermally hardened first, resulting in cracks and voids occurring in the flattened insulating film formed as in the conventional method. It becomes possible to form a planarized insulating film with a high degree of flatness.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明による平坦化絶縁膜形成方法に供する装
置の概略断面図、第2図は本発明による平坦化絶縁膜形
成方法の概略工程断面図、そして第3図は従来例による
平坦化絶縁膜形或方法の概略工程断面図である。 i−−−−−一一一〜一基板 2 −−−−−−−−−−−一段差凸部3 −−−−−
−−−−−−段差凹部 4 .−−−−−一一一一一−− S O G溶液塗布
膜5 −−−−−−−−−−−−−一平坦化絶縁膜6−
   −−−−クラック 7−−−−−−一一−−−−−−−ボイド13 lt−−一一 15 導波管 マグネトロン マイクロ波
FIG. 1 is a schematic cross-sectional view of an apparatus used in the method for forming a planarized insulating film according to the present invention, FIG. 2 is a schematic cross-sectional view of the process for forming a planarized insulating film according to the present invention, and FIG. FIG. 3 is a schematic process cross-sectional view of an insulating film type and method. i------111~1 substrate 2---------One level difference convex part 3------
--------Step recess 4. -------11111-- S O G solution coating film 5 -----------1 Flattening insulating film 6-
---Crack 7--------11--------Void 13 lt--1115 Waveguide magnetron microwave

Claims (1)

【特許請求の範囲】[Claims] 基板上に形成されたスピンオンガラス溶液塗布膜を、マ
イクロ波照射を施すことにより熱硬化することを特徴と
する平坦化絶縁膜形成方法。
A method for forming a flattened insulating film, which comprises thermally curing a spin-on glass solution coating film formed on a substrate by applying microwave irradiation.
JP15584889A 1989-06-20 1989-06-20 Formation of flattened insulating film Pending JPH0322430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15584889A JPH0322430A (en) 1989-06-20 1989-06-20 Formation of flattened insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15584889A JPH0322430A (en) 1989-06-20 1989-06-20 Formation of flattened insulating film

Publications (1)

Publication Number Publication Date
JPH0322430A true JPH0322430A (en) 1991-01-30

Family

ID=15614825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15584889A Pending JPH0322430A (en) 1989-06-20 1989-06-20 Formation of flattened insulating film

Country Status (1)

Country Link
JP (1) JPH0322430A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384390B1 (en) 1997-12-31 2002-05-07 Samsung Electronics Co., Ltd. Apparatus for forming thin film using microwave and method therefor
WO2002082526A1 (en) * 2001-04-03 2002-10-17 Matsushita Electric Industrial Co., Ltd. Semiconductor device and its manufacturing method
JP2010129790A (en) * 2008-11-27 2010-06-10 Tokyo Electron Ltd Deposition method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384390B1 (en) 1997-12-31 2002-05-07 Samsung Electronics Co., Ltd. Apparatus for forming thin film using microwave and method therefor
WO2002082526A1 (en) * 2001-04-03 2002-10-17 Matsushita Electric Industrial Co., Ltd. Semiconductor device and its manufacturing method
US6872989B2 (en) 2001-04-03 2005-03-29 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US7022530B2 (en) 2001-04-03 2006-04-04 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US7170110B2 (en) 2001-04-03 2007-01-30 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
JP2010129790A (en) * 2008-11-27 2010-06-10 Tokyo Electron Ltd Deposition method

Similar Documents

Publication Publication Date Title
JP3802662B2 (en) Method for manufacturing insulating film of semiconductor device using SOG
US6132814A (en) Method for curing spin-on-glass film utilizing electron beam radiation
KR101139175B1 (en) Process for producing semiconductor device, semiconductor device, semiconductor production apparatus, and storage medium
KR20060065493A (en) Semiconductor device fabrication method
JPS59154029A (en) Formation of insulating film
US5290399A (en) Surface planarizing methods for integrated circuit devices
KR20010031586A (en) Method of plasma processing
JPH0322430A (en) Formation of flattened insulating film
US5515985A (en) Method of forming fine copper conductor pattern
EP0794569A2 (en) Amorphous carbon film, formation process thereof, and semiconductor device making use of the film
JPH08236520A (en) Formation of insulation layer of semiconductor device
TW201545175A (en) Method for removing back-filled pore-filling agent from a cured porous dielectric
JP4032447B2 (en) Manufacturing method of semiconductor device
JP3530165B2 (en) Method for manufacturing semiconductor device
JP3210601B2 (en) Semiconductor device and manufacturing method thereof
JPH08306681A (en) Formation of flattened coat insulating film
JP2585439B2 (en) Method for manufacturing semiconductor device
JPH09205086A (en) Method and system for fabricating semiconductor device
JPH0226053A (en) Manufacture of semiconductor device
JP2557916B2 (en) Method for manufacturing semiconductor device
JPH08111458A (en) Semiconductor device and fabrication thereof
JPH11251312A (en) Manufacture of semiconductor device
JPH01241135A (en) Manufacture of semiconductor device
JPS6377139A (en) Formation of insulating film
JPH11274296A (en) Multilayer wiring structure and method of forming the same