JPH03224212A - Optical ashing device - Google Patents

Optical ashing device

Info

Publication number
JPH03224212A
JPH03224212A JP1786890A JP1786890A JPH03224212A JP H03224212 A JPH03224212 A JP H03224212A JP 1786890 A JP1786890 A JP 1786890A JP 1786890 A JP1786890 A JP 1786890A JP H03224212 A JPH03224212 A JP H03224212A
Authority
JP
Japan
Prior art keywords
reflectors
semiconductor wafer
reflecting surfaces
ultraviolet ray
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1786890A
Other languages
Japanese (ja)
Inventor
Toshiro Mihashi
敏郎 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1786890A priority Critical patent/JPH03224212A/en
Publication of JPH03224212A publication Critical patent/JPH03224212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To augment the evenness in the removing rate of photoresist on a semiconductor wafer to be processed by a method wherein multiple ultraviolet reflectors are juxtaposed on the upper part of ultraviolet ray emitting light sources positioned above a semiconductor wafer to be processed. CONSTITUTION:Multiple ultraviolet ray reflectors 9 are juxtaposed on the upper part of low pressure mercury lamps 4 positioned above a semiconductor wafer 7 on a specimen base 6. The ultraviolet ray reflectors 9 are composed of one side surfaces comprising ultraviolet ray reflecting surfaces 10 as well as the other side surfaces as the rear surfaces comprising non-reflecting surfaces 11. Besides, the multiple ultraviolet ray reflectors 9 are respectively driven independently and free-rotatably so that the ultraviolet ray reflecting surfaces 10 may independently and selectively turn to opposite side to the low pressure mercury lamps side. When the removing rate of photoresist is lower in the peripheral part of the semiconductor wafer 7, the reflectors 9 in the peripheral part are rotated to turn the reflecting surfaces 10 to the lamps 4 side while the other reflectors 9 are rotated to turn the reflecting surfaces 10 to the opposite side. Furthermore, when the removing rate is lower in the central part, the reflectors 9 in the central part are rotated to turn the reflecting surfaces 10 to the lamps 4 side while the other reflectors 9 are rotated to turn the reflecting surfaces 10 to the opposite side.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば半導体装置の製造装置として用いら
れ、フォトリソグラフィ工程後の半導体ウェハ上の不要
なフォトレジストを除去する光アッシング装置に関する
ものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an optical ashing device that is used, for example, as a semiconductor device manufacturing device and removes unnecessary photoresist from a semiconductor wafer after a photolithography process. be.

(従来の技術) セミコン・ニュース(Semicon NEWS) 1
98B−12゜P47〜53に説明されるような従来の
光アッシング装置を第3図に示す。この図において、1
はオゾンガスを生成するオゾナイザ−2はオゾンガスを
輸送する輸送管、3はその輸送管2によってオゾンガス
が供給される処理室である。この処理室3の上部には低
圧水銀ランプ4が配置される。
(Conventional technology) Semicon News 1
A conventional optical ashing device as described in 98B-12°P47-53 is shown in FIG. In this figure, 1
An ozonizer 2 for producing ozone gas is a transport pipe for transporting ozone gas, and 3 is a processing chamber to which ozone gas is supplied through the transport pipe 2. A low-pressure mercury lamp 4 is placed in the upper part of the processing chamber 3.

一方、処理室3の下部には、ヒーター5を内蔵した試料
台6が設けられ、この試料台6上に被除去フォトレジス
トを有する例えば半導体ウェハ7が配置される。8は処
理室3に接続された排気ダクトである。
On the other hand, in the lower part of the processing chamber 3, a sample stage 6 containing a heater 5 is provided, and on this sample stage 6, for example, a semiconductor wafer 7 having a photoresist to be removed is placed. 8 is an exhaust duct connected to the processing chamber 3.

このように構成された光アッシング装置においては、オ
ゾナイザ−1によりオゾンガスが生成される。そして、
そのオゾンガスが輸送管2により処理室3に輸送され、
半導体ウェハ7上で低圧水銀ランプ4により紫外線がオ
ゾンガスに照射される。ここで、オゾンガスは波長25
5nmに吸収ピークがあるため、185nmと254n
mにピークをもつ低圧水銀ランプ4を光源として紫外線
を照射することにより、オゾンガスを分解してラジカル
酸素を生成することができる。そして、そのラジカル酸
素で半導体ウェハ7上のフォトレジストを次式に示す化
学反応により分解して除去できる。
In the optical ashing device configured as described above, ozone gas is generated by the ozonizer 1. and,
The ozone gas is transported to the processing chamber 3 by the transport pipe 2,
Ozone gas is irradiated with ultraviolet light by the low-pressure mercury lamp 4 on the semiconductor wafer 7 . Here, ozone gas has a wavelength of 25
Since there is an absorption peak at 5 nm, 185 nm and 254 nm
By irradiating ultraviolet light using a low-pressure mercury lamp 4 having a peak at m as a light source, ozone gas can be decomposed to generate radical oxygen. Then, the photoresist on the semiconductor wafer 7 can be decomposed and removed by the chemical reaction shown in the following equation using the radical oxygen.

cllHllo、 + 0”→Cog↑+H20↑この
時、除去速度を上げるため、試料台6内にはヒーター5
が設置され、半導体ウェハ温度250℃の高温下で上記
除去処理する。また、この処理により生成した反応生成
物は、処理室3に接続された排気ダクト8により外部へ
排出される。
cllHllo, +0”→Cog↑+H20↑At this time, in order to increase the removal speed, a heater 5 is installed inside the sample stage 6.
is installed, and the above-mentioned removal process is performed at a semiconductor wafer temperature of 250°C. Further, the reaction products generated by this process are exhausted to the outside through an exhaust duct 8 connected to the process chamber 3.

(発明が解決しようとする課題) しかしながら、上記のような従来の装置では、フォトレ
ジストの除去速度を上げるために、低圧水銀ランプ4と
半導体ウェハ7間の距離が0.2fi以下とかなり狭く
なっているため、低圧水銀ランプ4の照度のバラツキが
フォトレジストの除去速度に大きな影響を与えて、フォ
トレジスト除去速度の半導体ウェハ面内均一性があまり
良くないという問題点があった。
(Problem to be Solved by the Invention) However, in the conventional apparatus as described above, in order to increase the removal speed of photoresist, the distance between the low-pressure mercury lamp 4 and the semiconductor wafer 7 is considerably narrowed to 0.2 fi or less. Therefore, variations in the illuminance of the low-pressure mercury lamp 4 have a large effect on the photoresist removal rate, resulting in a problem that the uniformity of the photoresist removal rate within the semiconductor wafer surface is not very good.

この発明は上記の点に鑑みなされたもので、光源の照度
のバラツキに影響されず、フォトレジストの除去速度の
被処理板面内均一性の良好な光アッシング装置を提供す
ることを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide an optical ashing device that is not affected by variations in illuminance of a light source and has good uniformity of photoresist removal rate within the surface of a processed plate. .

(課題を解決するための手段) この発明は、光アッシング装置において、被処理板上に
位置する紫外線発生光源の上部に複数の紫外線反射鏡を
並べて設け、この複数の紫外線反射鏡は独立して、前記
光源側と反対側を選択的に向くように各々独立して回転
自在としたものである。
(Means for Solving the Problems) The present invention provides an optical ashing apparatus in which a plurality of ultraviolet reflecting mirrors are arranged in line above an ultraviolet light generating light source located on a plate to be processed, and the plurality of ultraviolet reflecting mirrors are independently arranged. , and are independently rotatable so as to selectively face the side opposite to the light source side.

(作 用) この発明においては、光源の照度のバラツキによりフォ
トレジストの除去速度が遅い部分の反射鏡を光源側(被
処理板側でもある)に向け、他の部分の反射鏡を反対側
に向ける。すると、フォトレジストの除去速度が遅い部
分においては、反射光により紫外線の光量が増えるため
フォトレジストの除去速度は増し、結果として被処理板
面内のフォトレジスト除去速度の均一性が向上する。
(Function) In this invention, the reflecting mirror in the area where the photoresist removal rate is slow due to variations in the illuminance of the light source is directed toward the light source side (also the side to be processed), and the reflecting mirror in other areas is directed to the opposite side. turn towards Then, in areas where the photoresist removal rate is slow, the amount of ultraviolet rays increases due to the reflected light, so the photoresist removal rate increases, and as a result, the uniformity of the photoresist removal rate within the surface of the plate to be processed is improved.

(実施例) 以下この発明の一実施例を図面を参照して説明する。第
1図はこの発明の一実施例を示す装置の構成図である。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an apparatus showing an embodiment of the present invention.

この図のように、この発明の一実施例の装置では、試料
台6上の半導体ウエノ17(被処理板)の上に位置する
低圧水銀ランプ4(紫外線発生光源)の上部に、複数の
紫外線反射鏡9が並べて設けられる。その他は第3図の
従来例と同一であり、1はオゾナイザ−2はオゾンガス
の輸送管、3は処理室、5は試料台6に内蔵されたヒー
ター 8は排気ダクトである。
As shown in this figure, in the apparatus according to one embodiment of the present invention, a plurality of ultraviolet rays are placed above the low pressure mercury lamp 4 (ultraviolet light generation light source) located above the semiconductor wafer 17 (substrate to be processed) on the sample stage 6. Reflecting mirrors 9 are arranged side by side. The rest is the same as the conventional example shown in FIG. 3; 1 is an ozonizer, 2 is an ozone gas transport pipe, 3 is a processing chamber, 5 is a heater built into the sample stage 6, and 8 is an exhaust duct.

前記紫外線反射鏡9は、一方の面が紫外線反射面10と
なっており、裏面の他方の面は紫外線を反射しない非反
射面11となっている。また、この複数の紫外線反射鏡
9は独立して、前記紫外線反射面10が前記低圧水銀ラ
ンプ4側(半導体ウェハ7側でもある)と反対側(処理
室天井部3a側)を選択的に向くように各々独立して回
転自在となっており、かつ個々に設けた回転駆動機構で
回転駆動される。
One surface of the ultraviolet reflecting mirror 9 is an ultraviolet reflecting surface 10, and the other surface on the back is a non-reflecting surface 11 that does not reflect ultraviolet rays. Further, the plurality of ultraviolet reflecting mirrors 9 are independently arranged such that the ultraviolet reflecting surface 10 selectively faces the low pressure mercury lamp 4 side (also the semiconductor wafer 7 side) and the opposite side (processing chamber ceiling 3a side). They are each rotatable independently, and are rotationally driven by individually provided rotational drive mechanisms.

その回転駆動機構を第2図に示す。紫外線反射鏡9は両
側に支軸12a、12bを有し、この支軸12a、12
b、が図示しない支持体に回転自在に支持されることに
より、前記紫外線反射鏡9が回転自在に支持されて設け
られる。また、一方の支軸12bには大歯車13が取り
付けられる。
The rotational drive mechanism is shown in FIG. The ultraviolet reflecting mirror 9 has support shafts 12a, 12b on both sides, and the support shafts 12a, 12
b is rotatably supported by a support (not shown), so that the ultraviolet reflecting mirror 9 is rotatably supported. Further, a large gear 13 is attached to one of the support shafts 12b.

一方、14はモーターで、その回転軸には小歯車15が
取り付けられ、この小歯車15が前記大歯車13に噛合
する。したがって、モーター14が動作すると、歯車1
5.13で減速されて紫外線反射鏡9が回転し、該紫外
線反射鏡9が反転する。
On the other hand, 14 is a motor, and a small gear 15 is attached to the rotating shaft of the motor, and this small gear 15 meshes with the large gear 13. Therefore, when the motor 14 operates, the gear 1
At step 5.13, the speed is decelerated and the ultraviolet reflecting mirror 9 rotates, and the ultraviolet reflecting mirror 9 is reversed.

以上のように構成された装置においては、第3図の従来
装置と同様にして半導体ウエノX7上のフォトレジスト
の除去作用が行われるが、いま、低圧水銀ランプ4の照
度のバラツキによりフォトレジストの除去速度が半導体
ウェハ7周辺で遅い場合には、第1図に示すように周辺
部の紫外線反射鏡9を、その紫外線反射面10が低圧水
銀ランプ4側(半導体ウェハ7側でもある)を向くよう
に回転させ、他の紫外線反射鏡9は紫外線を反射しない
ように紫外線反射面10を低圧水銀ランプ4と反対側、
すなわち処理室天井部3a側に向くように回転させる。
In the apparatus configured as described above, the photoresist on the semiconductor wafer X7 is removed in the same way as the conventional apparatus shown in FIG. If the removal speed is slow around the semiconductor wafer 7, as shown in FIG. The other ultraviolet reflecting mirror 9 is rotated so that the ultraviolet reflecting surface 10 is on the opposite side from the low pressure mercury lamp 4 so as not to reflect ultraviolet rays.
That is, it is rotated so as to face the processing chamber ceiling 3a side.

すると、半導体ウェハ7の周辺部では反射光により紫外
線の光量が増え、フォトレジストの除去速度は増し、結
果として半導体ウェハ7面内のフォトレジスト除去速度
の均一性が向上する。
Then, the amount of ultraviolet rays increases due to the reflected light in the peripheral area of the semiconductor wafer 7, the photoresist removal speed increases, and as a result, the uniformity of the photoresist removal speed within the surface of the semiconductor wafer 7 improves.

一方、半導体ウェハ7の中心部でフォトレジストの除去
速度が遅い場合は、上記とは逆に、中心部の紫外線反射
鏡9の紫外線反射面10を低圧水銀ランプ4側に向け、
周辺部の紫外線反射鏡9の紫外線反射面10を処理室天
井部3a側に向けることにより、中心部の紫外線光量が
増え、中心部のフォトレジストの除去速度が堆すので、
やはり半導体ウェハ7面内のフォトレジスト除去速度の
均一性が向上する。
On the other hand, if the photoresist removal rate is slow in the center of the semiconductor wafer 7, contrary to the above, the ultraviolet reflecting surface 10 of the ultraviolet reflecting mirror 9 in the center is directed toward the low-pressure mercury lamp 4.
By directing the ultraviolet reflecting surface 10 of the ultraviolet reflecting mirror 9 at the periphery toward the processing chamber ceiling 3a, the amount of ultraviolet light at the center increases and the removal speed of the photoresist at the center increases.
The uniformity of the photoresist removal rate within the semiconductor wafer 7 is also improved.

このように上記装置によれば、フォトレジストの除去速
度が遅い部分の紫外線反射鏡9を低圧水銀ランプ4側に
向けて反射光を加えることにより、半導体ウェハ7面内
のフォトレジスト除去速度の均一性の向上が図れる。
In this manner, according to the above-mentioned apparatus, by directing the ultraviolet reflecting mirror 9 in the portion where the photoresist removal rate is slow toward the low-pressure mercury lamp 4 side and applying reflected light, the photoresist removal rate within the surface of the semiconductor wafer 7 can be made uniform. You can improve your sexual performance.

(発明の効果) 以上詳細に説明したように、この発明の装置によれば、
紫外線発生光源の上部に複数の紫外線反射鏡を独立して
回転自在に設けて、光源の照度のバラツキによりフォト
レジストの除去速度が遅い部分においては、反射光によ
り光量を増大させてフォトレジストの除去速度を上げら
れるようにしたので、被処理板面内のフォトレジスト除
去速度の均一性の向上を図ることができる。それによっ
て、残渣のない良好なフォトレジスト除去工程が可能と
なる。
(Effects of the Invention) As explained in detail above, according to the device of the present invention,
A plurality of ultraviolet reflecting mirrors are installed independently and rotatably above the ultraviolet light source, and in areas where the photoresist removal speed is slow due to variations in the illuminance of the light source, the amount of reflected light is increased to remove the photoresist. Since the speed can be increased, the uniformity of the photoresist removal speed within the surface of the plate to be processed can be improved. This allows for a good photoresist removal process without any residue.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の光アッシング装置の一実施例を示す
構成図、第2図は上記装置の紫外線反射鏡回転駆動機構
を示す斜視図、第3図は従来の光アッシング装置の構成
図である。 1・・・オゾナイザ−2・・・輸送管、3・・・処理室
、4・・・低圧水銀ランプ、6・・・試料台、7・・・
半導体ウェハ、9・・・紫外線反射鏡、10・・・紫外
線反射面。 本発明の 実施例の装置 第 図 非反射面 1 回転駆動機構 第2 図
Fig. 1 is a block diagram showing an embodiment of the optical ashing device of the present invention, Fig. 2 is a perspective view showing the ultraviolet reflector rotation drive mechanism of the above device, and Fig. 3 is a block diagram of a conventional optical ashing device. be. DESCRIPTION OF SYMBOLS 1...Ozonizer-2...Transport pipe, 3...Processing chamber, 4...Low pressure mercury lamp, 6...Sample stand, 7...
Semiconductor wafer, 9... Ultraviolet reflecting mirror, 10... Ultraviolet reflecting surface. Device according to an embodiment of the present invention: Figure 1: Non-reflective surface 1: Rotation drive mechanism: Figure 2

Claims (1)

【特許請求の範囲】[Claims]  オゾンガスに紫外線を照射してラジカル酸素を発生さ
せ、そのラジカル酸素で被処理板上のフォトレジストを
除去する光アッシング装置において、被処理板上に位置
する紫外線発生光源の上部に複数の紫外線反射鏡を並べ
て設け、この複数の紫外線反射鏡は独立して、前記光源
側と反対側を選択的に向くように各々独立して回転自在
であることを特徴とする光アッシング装置。
In an optical ashing device that irradiates ozone gas with ultraviolet rays to generate radical oxygen, and removes the photoresist on the substrate to be processed using the radical oxygen, multiple ultraviolet reflecting mirrors are installed above the ultraviolet light source located on the substrate to be processed. An optical ashing device characterized in that the plurality of ultraviolet reflecting mirrors are arranged side by side, and each of the plurality of ultraviolet reflecting mirrors is independently rotatable so as to selectively face the side opposite to the light source.
JP1786890A 1990-01-30 1990-01-30 Optical ashing device Pending JPH03224212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1786890A JPH03224212A (en) 1990-01-30 1990-01-30 Optical ashing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1786890A JPH03224212A (en) 1990-01-30 1990-01-30 Optical ashing device

Publications (1)

Publication Number Publication Date
JPH03224212A true JPH03224212A (en) 1991-10-03

Family

ID=11955651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1786890A Pending JPH03224212A (en) 1990-01-30 1990-01-30 Optical ashing device

Country Status (1)

Country Link
JP (1) JPH03224212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062219A (en) * 2013-09-04 2019-04-18 東京エレクトロン株式会社 Uv-assisted stripping of hardened photoresist to form chemical template for directed self-assembly
WO2024101144A1 (en) * 2022-11-07 2024-05-16 東京エレクトロン株式会社 Substrate processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062219A (en) * 2013-09-04 2019-04-18 東京エレクトロン株式会社 Uv-assisted stripping of hardened photoresist to form chemical template for directed self-assembly
WO2024101144A1 (en) * 2022-11-07 2024-05-16 東京エレクトロン株式会社 Substrate processing device

Similar Documents

Publication Publication Date Title
US5083030A (en) Double-sided radiation-assisted processing apparatus
KR100189794B1 (en) Process for oxidation of an article surface
JP2001118818A (en) Ultraviolet ray-treating device and method
JP2705023B2 (en) Oxidation method of workpiece
JP7058177B2 (en) Board processing equipment
JPH03224212A (en) Optical ashing device
TWI829724B (en) Substrate processing device, substrate processing method and storage medium
JP2004216321A5 (en)
JPH049373B2 (en)
JP3443779B2 (en) Heat treatment equipment for semiconductor substrates
JPH0429220B2 (en)
JPS6379323A (en) Treatment equipment
JPS6352411A (en) Heat treatment method and its device
JP2001219053A (en) Oxidizing method and oxidizing device using dielectric barrier discharge
JPS63260132A (en) Surface modification apparatus
JPH10242098A (en) Wafer cleaning equipment and wafer cleaning method
JPH05315246A (en) Aligner
JP2840419B2 (en) Light treatment method and light treatment device
JPH06177093A (en) Semiconductor manufacturing apparatus
JPH04307734A (en) Ashing apparatus
JPH09120950A (en) Ultraviolet cleaning equipment
JPH0547731A (en) Both side type radiation assistant treating device
JPH0611347U (en) Resist film ashing device
JPH08236492A (en) Optical cleaning method
JPH0430519A (en) Treating apparatus of surface of substrate