JPH03223163A - Hybrid fiber reinforced carbon wire - Google Patents

Hybrid fiber reinforced carbon wire

Info

Publication number
JPH03223163A
JPH03223163A JP2016964A JP1696490A JPH03223163A JP H03223163 A JPH03223163 A JP H03223163A JP 2016964 A JP2016964 A JP 2016964A JP 1696490 A JP1696490 A JP 1696490A JP H03223163 A JPH03223163 A JP H03223163A
Authority
JP
Japan
Prior art keywords
carbon
wire
fibers
fiber
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016964A
Other languages
Japanese (ja)
Other versions
JP2669089B2 (en
Inventor
Makoto Utsunomiya
真 宇都宮
Mitsuhiro Okumura
奥村 光弘
Yasuo Kogo
保雄 向後
Takeshi Ozaki
毅志 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016964A priority Critical patent/JP2669089B2/en
Publication of JPH03223163A publication Critical patent/JPH03223163A/en
Application granted granted Critical
Publication of JP2669089B2 publication Critical patent/JP2669089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve strength of carbon matrix and to exhibit performances of carbon fibers as a main stress carrier by dispersing whiskers into fibrous gaps of carbon fiber bundle. CONSTITUTION:A bundle of 100-20,000 gathered carbon fibers having 3-30mum diameters is formed. The bundle is blended with whiskers 3 having 0.05-1mum diameter and then impregnated with a carbon matrix 2 by chemical vapor phase impregnation. Thus, the objective hybrid fiber reinforced carbon wire formed into a wire state having 0.1-2mm wire diameter is formed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、耐熱構造材料などに用いられる炭素繊維強
化炭素複合材料(以下C/C複合材料と称する)を複合
化成形する工程において、中間素材として有用な炭素繊
維強化炭素ワイヤに関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides an intermediate method for forming carbon fiber-reinforced carbon composite materials (hereinafter referred to as C/C composite materials) used for heat-resistant structural materials. This invention relates to carbon fiber-reinforced carbon wire useful as a material.

[従来の技術] C/C複合材料は、2000℃を越える耐熱性と高温強
度を有し、耐熱構造材料としてロケットノズル、ノーズ
コーン、ディスクブレーキ用材料、超高温発熱体、炉体
などへ用いられてl、Mる。
[Prior art] C/C composite materials have heat resistance exceeding 2000°C and high-temperature strength, and are used as heat-resistant structural materials for rocket nozzles, nose cones, disc brake materials, ultra-high temperature heating elements, furnace bodies, etc. It's been a long time since I've been in the middle of a long time.

従来、C/C複合材料は、予め炭素繊維に樹脂あるいは
ピッチなどの炭素マトリックス前駆物質を含浸しておき
、成形した後戻化処理、黒鉛化処理を行う方法(以下、
前駆物質含浸法と称する)、あるいは炭素繊維の成形体
に化学気相蒸着により熱分解炭素を繊維間隙に充構する
方法(以下、CVI法と称する)等により製造されてい
た。
Conventionally, C/C composite materials have been manufactured using a method in which carbon fibers are impregnated with a carbon matrix precursor such as resin or pitch in advance, and then subjected to a reversion treatment and a graphitization treatment after being shaped.
They have been manufactured by methods such as precursor impregnation method (hereinafter referred to as the CVI method), or a method in which pyrolytic carbon is filled into the fiber gaps by chemical vapor deposition on a carbon fiber molded body (hereinafter referred to as the CVI method).

[発明が解決しようとする課題] しかしながら、従来のC/C複合材料に共通する課題と
して、炭素繊維の強度発現率が低いことがあった。この
原因のひとつに、従来の前駆物質含浸法では、炭化処理
の工程において前駆物質よりの炭素取率に限界があり、
著しく収縮して、C/C複合材料内部に空隙を残存させ
ることがあった。そのためマトリックスと繊維の応力伝
達が円滑でなく、繊維の性能を十分に発揮させるに至ら
なかった。
[Problems to be Solved by the Invention] However, a common problem with conventional C/C composite materials is that the strength development rate of carbon fibers is low. One of the reasons for this is that in the conventional precursor impregnation method, there is a limit to the carbon removal rate from the precursor in the carbonization process.
In some cases, the C/C composite material shrinks significantly, leaving voids inside the C/C composite material. Therefore, the stress transmission between the matrix and the fibers was not smooth, and the performance of the fibers could not be fully demonstrated.

一方、CVI法においては、気相含浸であるため細孔へ
もマトリックスを含浸できる。しかし、熱分解炭素はマ
トリックスとしての強度が低く、応力伝達が十分でない
。また、CVI法では、表面近傍はど析出量が大きいた
めに、目詰まりを生じて、C/C複合材料内部まで緻密
度を高めることができない欠点があった。
On the other hand, in the CVI method, the matrix can be impregnated into the pores because it is a gas phase impregnation. However, pyrolytic carbon has low strength as a matrix and does not transmit sufficient stress. Further, in the CVI method, since the amount of precipitation near the surface is large, clogging occurs and the density cannot be increased to the inside of the C/C composite material.

これらとは別の原因として、炭素繊維は、平均径3〜3
0μmの連続繊維が100〜20000本の束として供
給されるが、この細い繊維をマトリックス中へ均一に分
散することが難しく、特に繊維体積含有率が高くなると
、繊維と繊維が接触しやすくなり、これが原因となって
強度低下を生じる。繊維直径が小さいために一本あたり
の強さは小さく、織物やフィラメントワインディングな
どの過程で損傷を受は易く、取り扱いに注意を要すると
いう課題があった。
Another cause is that carbon fibers have an average diameter of 3 to 3
Continuous fibers of 0 μm are supplied as a bundle of 100 to 20,000 fibers, but it is difficult to uniformly disperse these thin fibers into the matrix, and especially when the fiber volume content increases, fibers tend to come into contact with each other. This causes a decrease in strength. Due to the small diameter of the fibers, each fiber has low strength and is easily damaged during processes such as weaving and filament winding, making it difficult to handle with care.

[課題を解決するための手段] 本発明は、上記従来のC/C複合材料の製造方法の欠点
を改良するためになされたもので、炭素繊維束の繊維間
隙へウィスカーを分散させて、繊維間隔を一定以上に保
つとともに、ウィスカーの強化効果により炭素マトリッ
クスの強度改善を図り、応力伝達能力を高めて、主応力
担体である炭素繊維の性能を発揮させようとするもので
ある。
[Means for Solving the Problems] The present invention has been made to improve the drawbacks of the above-mentioned conventional method for producing C/C composite materials. In addition to maintaining the spacing above a certain level, the strength of the carbon matrix is improved through the reinforcing effect of the whiskers, and the stress transmission ability is increased to bring out the performance of carbon fibers, which are the main stress carriers.

同時にワイヤ状の材料とすることにより、C/C複合材
料の製造に適した中間素材として供給するものである。
At the same time, by making it into a wire-like material, it can be supplied as an intermediate material suitable for manufacturing C/C composite materials.

すなわち、本発明は、炭素繊維束の繊維間隙へ炭素繊維
より十分に細く短いウィスカーを分散させ、その後、化
学気相蒸着により熱分解炭素を繊維間隙に充填する方法
によってハイブリッド繊維強化炭素ワイヤを製造するも
のである。
That is, the present invention manufactures a hybrid fiber-reinforced carbon wire by dispersing whiskers that are sufficiently thinner and shorter than carbon fibers into the fiber gaps of a carbon fiber bundle, and then filling the fiber gaps with pyrolytic carbon by chemical vapor deposition. It is something to do.

本発明で使用する炭素繊維は、公知のPAN系、ピッチ
系などいずれの種類でもよい。直径が3〜30μmの連
続繊維で、100〜20000本の束として供給される
ものを使用する。細い炭素繊維あるいは、本数の少ない
繊維は、取り扱い上手間がかかり、工業的に不利となる
ため、線径および一束の本数を3μm、100本以上に
それぞれ制限した。太い繊維は中間素材としてワイヤ状
のものを用いると本発明の効果が少なくなることと、繊
維自身の強度が低下するため最大径を30μmとした。
The carbon fiber used in the present invention may be of any known type, such as PAN type or pitch type. Continuous fibers having a diameter of 3 to 30 μm and supplied as a bundle of 100 to 20,000 fibers are used. Thin carbon fibers or fibers with a small number of fibers are difficult to handle and are industrially disadvantageous, so the wire diameter and the number of fibers in a bundle were limited to 3 μm and 100 or more, respectively. The maximum diameter of thick fibers was set to 30 μm because if wire-like fibers were used as an intermediate material, the effect of the present invention would be reduced and the strength of the fibers themselves would be reduced.

マトリックスの炭素を緻密に含浸させるため、CVI法
を鋭意研究した結果、緻密化できる表面からの深さに限
界があることを見いだした。すなわち、CVI法により
、実質的に緻密化(残存気孔率10%以下)できる表面
からの深さは、せいぜい1mmである(第3図)。従っ
てワイヤの径が2mm以下となるように炭素繊維の線径
および一束の本数を選べば、CVI法により均一に緻密
化することが可能である。−束あたりの本数の上限20
000本はこの観点から選択された。
As a result of intensive research on the CVI method in order to densely impregnate the carbon matrix, it was discovered that there is a limit to the depth from the surface that can be densely impregnated. That is, the depth from the surface that can be substantially densified (residual porosity 10% or less) by the CVI method is at most 1 mm (FIG. 3). Therefore, if the diameter of the carbon fibers and the number of carbon fibers in a bundle are selected so that the diameter of the wire is 2 mm or less, uniform densification can be achieved by the CVI method. -Maximum number of pieces per bundle: 20
000 books were selected from this point of view.

ウィスカーには、炭化珪素、窒化珪素、炭素、窒化硼素
、アルミナなどの材質のものであって、その径が0.0
5〜1μmのものが用いられる。
Whiskers are made of materials such as silicon carbide, silicon nitride, carbon, boron nitride, and alumina, and have a diameter of 0.0
A material having a diameter of 5 to 1 μm is used.

径か細過ぎるウィスカーは炭素繊維間隙をある距離以上
に保つ効果に欠け、径が大き過ぎると炭素繊維間隙が広
くなり、炭素繊維の体積含有率を低下させるため、ウィ
スカーの径が限定される。ウィスカーの炭素繊維に対す
る体積含有率の比0.1〜20%であることが好ましい
。0.1%以下ではウィスカーの効果が小さく、20%
以上では、炭素繊維の含有率を下げるのみでなく、ウィ
スカー同士が、からまりあう毛玉を生じて機械的性質に
悪影響を与える。
A whisker whose diameter is too small lacks the effect of keeping the carbon fiber gap above a certain distance, and a whisker whose diameter is too large will widen the carbon fiber gap and reduce the volume content of carbon fibers, thus limiting the diameter of the whisker. The ratio of the volume content of the whiskers to the carbon fibers is preferably 0.1 to 20%. Below 0.1%, the whisker effect is small, 20%
The above method not only lowers the content of carbon fibers, but also causes the whiskers to become entangled with each other, resulting in pilling, which adversely affects mechanical properties.

第1図に、本発明によるハイブリッド繊維強化炭素ワイ
ヤの断面の模式図を、第2図に本発明のハイブリッド繊
維強化炭素ワイヤを製造するための工程の模式図を示す
。第1図において、(a)は。
FIG. 1 shows a schematic diagram of a cross section of a hybrid fiber-reinforced carbon wire according to the present invention, and FIG. 2 shows a schematic diagram of a process for manufacturing the hybrid fiber-reinforced carbon wire of the present invention. In FIG. 1, (a) is.

炭素繊維間へ分散するウィスカーの状態を示し、(b)
は本発明のハイブリッド繊維強化炭素ワイヤの新面を示
す。(1)が個々の炭素繊維であり、(2)がCVIに
より生成された炭素、(3)が炭素繊維間隙へ分散する
ウィスカーである。
(b) shows the state of whiskers dispersed between carbon fibers;
shows a novel aspect of the hybrid fiber-reinforced carbon wire of the present invention. (1) is the individual carbon fiber, (2) is the carbon produced by CVI, and (3) is the whisker dispersed into the carbon fiber gap.

炭素繊維束(4)は、ウィスカー分散槽(5)中のウィ
スカーを分散しスラリー状とした溶液(5)中を通過し
て、その間隙にウィスカーが含浸される。
The carbon fiber bundle (4) passes through a slurry-like solution (5) in which whiskers are dispersed in a whisker dispersion tank (5), and the gaps therebetween are impregnated with whiskers.

乾燥装置(6)により乾燥後、CVI炉(7)へ供給さ
れ、熱分解炭素が炭素繊維表面へ析出して、間隙が充填
される。CVIの原料ガスは、メタン、プロパンなどの
低級炭化水素あるいはハロゲン化炭化水素など公知のも
のが用いられる。充填析出に必要な時間CVI炉中へ繊
維が留まるよう第2図の例では、連続的にCVI炉が配
置されている。
After being dried by a drying device (6), it is supplied to a CVI furnace (7), where pyrolytic carbon is deposited on the carbon fiber surface and fills the gaps. As the raw material gas for CVI, known gases such as lower hydrocarbons such as methane and propane or halogenated hydrocarbons are used. In the example of FIG. 2, the CVI furnaces are arranged in series so that the fibers remain in the CVI furnace for the time required for filling and precipitation.

このように連続的にCVI炉を配置すると、最後のCV
I炉を酸化反応防止作用のある炭化珪素あるいはその他
の炭化物、窒化物のコーティングへ用いることにより、
耐酸化性皮膜(8)に優れた炭素繊維強化炭素ワイヤを
得ることができる効果がある(第1図(C))。
If CVI furnaces are arranged in succession in this way, the last CV
By using the I-furnace to coat silicon carbide or other carbides or nitrides that have an oxidation reaction prevention effect,
This has the effect of making it possible to obtain a carbon fiber-reinforced carbon wire with an excellent oxidation-resistant coating (8) (FIG. 1(C)).

[作用] 本発明によれば、炭素繊維束内で炭素繊維はそれぞれウ
ィスカーによって隔てられており、直接接することがな
い。ウィスカーにより分散していると、炭素マトリック
スの中でも均等な間隔で炭素繊維が分散することができ
る。このため個々の繊維が均等に荷重を分担する作用が
生じる。ウィスカーは炭素マトリックスより強度が高く
、炭素マトリックスを強化してマトリックスが担う炭素
繊維への応力伝達の役割を向上させる。
[Function] According to the present invention, the carbon fibers within the carbon fiber bundle are separated by whiskers and do not come into direct contact with each other. When dispersed by whiskers, the carbon fibers can be dispersed at even intervals within the carbon matrix. This results in the effect that the individual fibers share the load equally. The whiskers are stronger than the carbon matrix and strengthen the carbon matrix, improving the matrix's role in transmitting stress to the carbon fibers.

ハイブリッド繊維強化炭素ワイヤの径が2mm以下とな
るようにしたことで、残存気孔率10%以下の緻密化が
可能である。CVI条件の制御により、炭素の微細構造
を制御できるため、高性能な炭素繊維強化炭素ワイヤを
得ることができる。
By setting the diameter of the hybrid fiber-reinforced carbon wire to 2 mm or less, densification with a residual porosity of 10% or less is possible. Since the fine structure of carbon can be controlled by controlling the CVI conditions, a high-performance carbon fiber-reinforced carbon wire can be obtained.

一方、CVI法により連続的に含浸を行うため、成分の
異なる層を重ねて析出させることが容易であり、繊維へ
直接耐酸化性に優れた皮膜を形成して、ハイブリッド繊
維強化炭素ワイヤの表面を被覆することによって優れた
耐酸化性を付与することができる。
On the other hand, since impregnation is carried out continuously using the CVI method, it is easy to deposit layers with different components, forming a film with excellent oxidation resistance directly on the fiber, and forming a film on the surface of the hybrid fiber-reinforced carbon wire. Excellent oxidation resistance can be imparted by coating.

本発明のハイブリッド繊維強化炭素ワイヤの径は、0.
1〜2 m m であり、炭素繊維の束を扱う場合と比
べて、繊維切れなどが生じ難く、取り扱いが容易である
。このワイヤは整列して2次元の積層体として供する他
、ピアス織りによる3次元多軸織物の素材として用いる
ことができる。
The diameter of the hybrid fiber-reinforced carbon wire of the present invention is 0.
It is 1 to 2 mm, and compared to handling a bundle of carbon fibers, fiber breaks are less likely to occur and handling is easier. These wires can be aligned to form a two-dimensional laminate, and can also be used as a material for a three-dimensional multiaxial fabric by pierced weaving.

[実施例コ 本発明の実施例では、炭素繊維としてポリアクリロニト
ロル(PAN)系の高弾性糸であるM2O(東しlI)
を用いた。繊維径は、平均6μm、3000本が一束と
なっており、束径は約0.5mmであった。ウィスカー
には、炭化珪素(タテ水化学工業製)怪0.1〜0.5
μm、長さ10〜30μmのものを用いた。炭素繊維束
をウィスカーを分散させた水中を通過させ、水中で開繊
して十分にウィスカーが繊維束中に分散して取り込まれ
るようにした。Cv■の原料ガスにはメタンガスを用い
て、アルゴンガスをキャリアガスとし。
[Example] In the example of the present invention, M2O (Toshi I), which is a polyacrylonitrol (PAN)-based high elastic yarn, was used as the carbon fiber.
was used. The fiber diameter was 6 μm on average, 3000 fibers were in a bundle, and the bundle diameter was about 0.5 mm. For whiskers, silicon carbide (manufactured by Tatemizu Kagaku Kogyo) 0.1 to 0.5
μm and a length of 10 to 30 μm was used. The carbon fiber bundle was passed through water in which whiskers were dispersed, and the fibers were opened in the water so that the whiskers were sufficiently dispersed and incorporated into the fiber bundle. Methane gas is used as the raw material gas for Cv■, and argon gas is used as the carrier gas.

水素ガスとともに反応炉へ繊維の進行方向と同一方向か
ら供給した。反応炉の圧力はLoot o rr、温度
は1000℃とした。
It was supplied together with hydrogen gas to the reactor from the same direction as the fiber traveling direction. The pressure of the reactor was Loot o rr, and the temperature was 1000°C.

得られたハイブリッド繊維強化炭素ワイヤは、炭素繊維
の繊維体積分率が40%、ウィスカーの繊維体積分率が
4%であった。密度から計算したワイヤの残存空孔率は
5%であった。その引張り強度は、65 k g / 
m m 2であり、炭素繊維の強度発現率は60%であ
り、この値は、従来得られている文献値の最高水準に匹
敵する。
The resulting hybrid fiber-reinforced carbon wire had a carbon fiber volume fraction of 40% and a whisker fiber volume fraction of 4%. The residual porosity of the wire calculated from the density was 5%. Its tensile strength is 65 kg/
mm 2 and the strength development rate of carbon fiber is 60%, which is comparable to the highest literature value conventionally obtained.

他の実施例では、前記した実施例のハイブリッド繊維強
化炭素ワイヤをCVIする工程において、最後のCVI
炉に炭化珪素被覆のためのCVD装置を持ってきて、炭
化珪素で被覆した繊維を得ることを行った。炭化珪素の
皮膜厚さは50μmであった。このハイブリッド繊維強
化炭素ワイヤの強度は55 k g / m m 2で
あり、実施例1と比べ低下した。しかしながら、100
0℃の大気中において1時間加熱した後の重量低減が1
%であり、実施例1の材料が600℃以上で酸化したこ
とと比べて、著しい耐酸化性の向上を示した。
In another embodiment, in the step of CVIing the hybrid fiber-reinforced carbon wire of the embodiment described above, the final CVI
A CVD device for silicon carbide coating was brought to the furnace to obtain fibers coated with silicon carbide. The thickness of the silicon carbide film was 50 μm. The strength of this hybrid fiber-reinforced carbon wire was 55 kg/m2, which was lower than that of Example 1. However, 100
The weight reduction after heating for 1 hour in the atmosphere at 0℃ is 1
%, indicating a significant improvement in oxidation resistance compared to the material of Example 1, which was oxidized at 600° C. or higher.

[発明の効果] 以上のように、この発明によれば、炭素繊維の束へウィ
スカーを分散させ、炭素繊維の間隙をC/複合材料中で
均一になるようにしたので、高い繊維強度の発現率が得
られる。CVI法により炭素マトリックスを含浸させた
ので、緻密度に優れ、かつウィスカーの繊維強化効果に
より機械的性質に優れたマトリックスが得られ、強度の
高いハイブリッド繊維強化炭素ワイヤを得ることができ
る。
[Effects of the Invention] As described above, according to the present invention, whiskers are dispersed in the bundle of carbon fibers and the gaps between the carbon fibers are made uniform in the C/composite material, so that high fiber strength can be achieved. rate is obtained. Since the carbon matrix is impregnated by the CVI method, a matrix with excellent density and excellent mechanical properties due to the fiber reinforcing effect of the whiskers can be obtained, and a hybrid fiber-reinforced carbon wire with high strength can be obtained.

このハイブリッド繊維強化炭素ワイヤをC/C複合材料
の中間素材として用いることにより、複合化成形工程に
おける炭素繊維の痛みを減少することができる。
By using this hybrid fiber-reinforced carbon wire as an intermediate material for a C/C composite material, it is possible to reduce damage to the carbon fibers during the composite molding process.

CVI法では、容易に多層のコーティングを形成するこ
とが可能であり、ハイブリッド繊維強化炭素ワイヤの上
へ耐酸化性物質を被覆することにより、耐酸化性に優れ
たワイヤを得ることができる。
With the CVI method, it is possible to easily form a multilayer coating, and by coating a hybrid fiber-reinforced carbon wire with an oxidation-resistant substance, a wire with excellent oxidation resistance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)、 (c)は、本発明による
ハイブリッド繊維強化炭素ワイヤの構造を示す模式図、
第2図は本発明によるハイブリッド繊維強化炭素ワイヤ
の製造方法を示す模式図、113図は開孔気孔率と表面
からの距離の関係を示すグラフである。 図において、(1)は炭素繊維、(2)は炭素、(3)
はウィスカー、(4)は炭素繊維束、(5)はウィスカ
ー分散槽、(6)は乾燥炉、(7)!、tCVI炉、(
8)ハ耐酸化性皮膜、(9)はガスボンベ、  (10
)はガス精製装置+  (11)は流jil1節装置で
ある。
FIGS. 1(a), (b), and (c) are schematic diagrams showing the structure of a hybrid fiber-reinforced carbon wire according to the present invention,
FIG. 2 is a schematic diagram showing the method for manufacturing a hybrid fiber-reinforced carbon wire according to the present invention, and FIG. 113 is a graph showing the relationship between open pore porosity and distance from the surface. In the figure, (1) is carbon fiber, (2) is carbon, (3)
is a whisker, (4) is a carbon fiber bundle, (5) is a whisker dispersion tank, (6) is a drying oven, (7)! , tCVI reactor, (
8) Oxidation-resistant film, (9) gas cylinder, (10)
) is a gas purification device + (11) is a flow joint device.

Claims (2)

【特許請求の範囲】[Claims] (1)直径が3〜30μmの炭素繊維が100〜200
00本集まつてなる炭素繊維の束へ、直径0.05〜1
μmのウィスカーを混合させた後、化学気相含浸により
炭素母材を含浸させて、線径が0.1〜2mmであるワ
イヤ状に成形したことを特徴とするハイブリッド繊維強
化炭素ワイヤ。
(1) 100 to 200 carbon fibers with a diameter of 3 to 30 μm
A bundle of carbon fibers with a diameter of 0.05 to 1
A hybrid fiber-reinforced carbon wire characterized in that it is formed into a wire shape having a wire diameter of 0.1 to 2 mm by impregnating a carbon base material by chemical vapor phase impregnation after mixing μm whiskers.
(2)最外層に耐酸化性皮膜をコーティングしたことを
特徴とする特許請求の範囲第1項記載のハイブリッド繊
維強化炭素ワイヤ。
(2) The hybrid fiber-reinforced carbon wire according to claim 1, wherein the outermost layer is coated with an oxidation-resistant film.
JP2016964A 1990-01-26 1990-01-26 Hybrid fiber reinforced carbon wire Expired - Lifetime JP2669089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016964A JP2669089B2 (en) 1990-01-26 1990-01-26 Hybrid fiber reinforced carbon wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016964A JP2669089B2 (en) 1990-01-26 1990-01-26 Hybrid fiber reinforced carbon wire

Publications (2)

Publication Number Publication Date
JPH03223163A true JPH03223163A (en) 1991-10-02
JP2669089B2 JP2669089B2 (en) 1997-10-27

Family

ID=11930787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016964A Expired - Lifetime JP2669089B2 (en) 1990-01-26 1990-01-26 Hybrid fiber reinforced carbon wire

Country Status (1)

Country Link
JP (1) JP2669089B2 (en)

Also Published As

Publication number Publication date
JP2669089B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US3580731A (en) Method of treating the surface of a filament
US7384663B2 (en) Method of making a three-dimensional fiber structure of refractory fibers
US5654059A (en) Fiber-reinforced carbon and graphite articles and method for the production thereof
EP1841714B1 (en) A method of making a fiber preform for manufacturing parts of a composite material of the carbon/carbon type incorporating ceramic particles, and products obtained thereby
CN104507676B (en) Shaped composite material
JPH0234788A (en) Fire-proof composite material and method for its manufacture
EP3211262B1 (en) Differential needling of a carbon fiber preform
JP2001507988A (en) High performance filter
JP3987123B2 (en) Fabric preform formed with boron nitride coating, composite material incorporating the same, and method for producing the same
JPH0586534A (en) Preparation of fire-resistant fiber preform for manufacturing composite material product
CN106507783B (en) The manufacture method of carbon/carbon/silicon carbide ceramic matrix composite brake disc
JP2015500197A (en) CMC material parts
JP3211203B2 (en) High strength fiber reinforced composite material and method for producing the same
EP2568013B1 (en) Forming carbon-carbon composite preforms using molten pitch and carbon fiber filaments
KR102153918B1 (en) Method for preparing high density silicon carbide composite by uniform growth of sic nanowire using chemical vapor deposition and silicon carbide composite prepared by the same
JPH03223163A (en) Hybrid fiber reinforced carbon wire
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
US5554354A (en) Carbon fiber-reinforced carbon composite material and process for producing the same
JP2000086382A (en) C/c crucible for pulling single crystal
JP3829964B2 (en) Method for producing carbon fiber reinforced carbon composite
JP2658470B2 (en) Carbon fiber reinforced carbon wire
KR101467665B1 (en) THE MANUFACTURING METHOD FOR C-SiC COMPOSITES
JP3853035B2 (en) Oxidation resistant C / C composite and method for producing the same
JP2521795B2 (en) Method for producing carbon fiber reinforced composite material having oxidation resistance
JP3494533B2 (en) Method for producing oxidation resistant C / C composite