JPH03222207A - Conductive high-molecule, its manufacture and electrolytic capacitor using same - Google Patents

Conductive high-molecule, its manufacture and electrolytic capacitor using same

Info

Publication number
JPH03222207A
JPH03222207A JP1830990A JP1830990A JPH03222207A JP H03222207 A JPH03222207 A JP H03222207A JP 1830990 A JP1830990 A JP 1830990A JP 1830990 A JP1830990 A JP 1830990A JP H03222207 A JPH03222207 A JP H03222207A
Authority
JP
Japan
Prior art keywords
dopant
polymer
conductive polymer
molecule
aldehyde condensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1830990A
Other languages
Japanese (ja)
Other versions
JPH0668926B2 (en
Inventor
Yoshio Kishimoto
岸本 良雄
Sanemori Soga
眞守 曽我
Nobuo Sonoda
園田 信雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1830990A priority Critical patent/JPH0668926B2/en
Priority to EP19900113540 priority patent/EP0409124A3/en
Priority to US07/758,196 priority patent/US5130886A/en
Publication of JPH03222207A publication Critical patent/JPH03222207A/en
Publication of JPH0668926B2 publication Critical patent/JPH0668926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To have a conductive high-molecule of high conductivity and of high reliability by using as a couple of dopants both of each fixed dopant and each mobile dopant to be doped in an electro-conjugate high-molecule. CONSTITUTION:A conductive high-molecule 4 is composed in such a manner that a couple of dopants both of each stationary dopant 6 and each labile dopant 5 are doped in an electro-conjugate high-molecule. Although the stationary dopant 6 in this case can not give high conductivity to the molecule only by itself because of its belonging to a bulky kind of dopant, it has also the function of causing a micropore near each of the fixed dopants present in an aggregate of the electro-conjugate high-molecules so that the entry of a low molecular weight dopant into the fine organization of the molecule may be made easier. The combination of the two different dopants can accordingly give the high conductivity that no conventional high-molecule could have obtained before. The conductive high-molecule can thus obtain the high conductivity without losing the conductivity considerably even under the influence of a d.c. componental electric-field.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 新規な導電性高分子とその製造方法およびそ
れを用いた周波数特性と経時安定性に優れる電解コンデ
ンサに関すも 従来の技術 導電性高分子はポリアセチレン、ポリピロー7t4ポリ
チオフエン、ポリアニリン、ボリアセンなどの大きく広
がった共役π電子系をもつ高分子よりなり、電子供与体
または電子受容体(ルイス飄プロトン酸などのアニオン
)をドーパントとして含有して高導電性を示すことが広
く知られていもしかし これらのドーパントは高分子マ
トリクス中を電界により拡散し導電率を低下させてしま
うという大きな欠点を有していf。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a novel conductive polymer, its manufacturing method, and an electrolytic capacitor using the same that has excellent frequency characteristics and stability over time. is made of polymers with a widely spread conjugated π-electron system such as polyacetylene, polypillow 7t4 polythiophene, polyaniline, and boriacene, and contains an electron donor or electron acceptor (anion such as Lewis protonic acid) as a dopant to make it highly conductive. However, these dopants have the major drawback of being diffused in the polymer matrix by an electric field, reducing the electrical conductivity.

この欠点に鑑水 フタロシアニンテトラスルフォン酸 
ポリスチレンスルフォン酸などの高分子量ドーパントが
 例えばジャーナル オブ ケミカル ソサエティ19
83年版第684頁(K。
A closer look at this shortcoming: Phthalocyanine tetrasulfonic acid
High molecular weight dopants such as polystyrene sulfonic acid, for example, Journal of Chemical Society 19
1983 edition, page 684 (K.

0kabayashi、 J、 Chem、 Sci、
、 Chem、 Commun、、 p684(198
3))およびイビド1985年版第871頁(N、 B
ates etal、 1bid、、 p871(19
85))ですでに開示されている。しかしなが板 これ
らのドーパントはバルキーな分子構造のため導電率が低
分子量のドーパントはど高くならないという欠点を有し
ていた 発明が解決しようとする課題 このように 低分子量ドーパントのみをドーパントとす
る場合には導電率を高くできるが直流成分電界によりド
ーパントが移動し 導電性高分子層の中に著しく大きな
導電率の不均一分布を生じることが欠点であっター太 
 バルキーなドーパントを用いた場合は導電率が大きく
ならないという欠点があっ九 また このような導電性
高分子が電解コンデンサに適用されたときに(よ これ
が大きな欠点となり誘電体層表面の多孔内を長期にわた
って低インピーダンス化できず、高周波特性に優れると
いう導電性高分子系電解コンデンサの大きな特徴が損な
われるという欠点があっf。
0kabayashi, J., Chem, Sci.
, Chem, Commun, p684 (198
3)) and Ibid 1985 edition, page 871 (N, B
ates etal, 1bid,, p871(19
85)). However, due to the bulky molecular structure of these dopants, the conductivity of low-molecular-weight dopants cannot be increased very much.The problem that the invention aims to solve is to use only low-molecular-weight dopants as dopants. In some cases, conductivity can be increased, but the disadvantage is that the dopant moves due to the DC component electric field, resulting in a significantly uneven distribution of conductivity within the conductive polymer layer.
When a bulky dopant is used, there is a drawback that the conductivity does not increase.Also, when such conductive polymers are applied to electrolytic capacitors (this is a major drawback, the pores on the surface of the dielectric layer may remain for a long time). The drawback is that the impedance cannot be reduced over a long period of time, and the major feature of conductive polymer electrolytic capacitors, which is excellent high frequency characteristics, is lost.

本発明はこれらの現象に鑑ム 直流成分電界下でも導電
率を著しく損なう事がなく、高い導電率を与える導電性
高分子を提供することを目的とすも また 導電性高分子を電解コンデンサに適用し陽極多孔
質表面を長期にわたって安定に低インピーダンス化され
 周波数特性と経時安定性に優れる電解コンデンサを提
供することを目的とすも課題を解決するための手段 固定性ドーパントと易動性ドーパントの両方がドーパン
トとして電子共役性高分子中にドープされている導電性
高分子を構威すも 作用 本発明に用いる固定性ドーパント(よ 分子量800以
上のイオン性重合体または少なくとも表面にイオン性基
が共有結合した0、01〜1μmのイオン性基結合粒子
よりなり、易動性ドーパント(友分子量200以下の低
分子量イオンまりなん固定性ドーパント(よ バルキー
なドーパントであるたぬ これ単独では高い導電率を与
えることができないが 電子共役性高分子集合体中の固
定ドーパント近傍にマイクロポアを生じる働きもするた
め低分子量ドーパントの微細組織への侵入はより容易に
なる。それ故、両者併せると従来にない高導電率を与え
ることが出来る。固定性ドーパントとしては 中でも0
.01〜1μmのイオン性基結合粒子が好ましくX。
In view of these phenomena, the present invention aims to provide a conductive polymer that does not significantly impair conductivity even under a DC component electric field and provides high conductivity. The purpose is to provide an electrolytic capacitor that has excellent frequency characteristics and stability over time by applying stable impedance to the porous surface of the anode over a long period of time. The fixed dopant used in the present invention is an ionic polymer with a molecular weight of 800 or more or at least an ionic group on the surface. It consists of covalently bonded ionic group-bonded particles of 0.01 to 1 μm, and is a mobile dopant (low molecular weight ion with a molecular weight of 200 or less). However, it also works to create micropores near the fixed dopants in the electron-conjugated polymer aggregate, making it easier for low molecular weight dopants to penetrate into the microstructure. As a fixed dopant, it can provide high conductivity.
.. X is preferably ionic group-bonded particles with a diameter of 01 to 1 μm.

さらに 電解コンデンサ中の電解性導電体のよう服 表
面積の大きい誘電体層表面上に高導電率層を緻密に形成
する場合に(友 本発明の導電性高分子はきわめて有効
である。この電解性導電体である導電性高分子層の導電
率σは 多孔質アルミナ表面近傍の導電率と電解性導体
層中の導電率が共に高いのが好ましく、周波数特性が大
きく改善される。しかしコンデンサの容量はC=εS’
/d(So:有効表面積(大きい)、ε: 誘電層d:
 厚み)であるか板 導電性高分子層の導電率σζよσ
(誘電体表面)〉σ(バルク)であることも大切である
。本発明の導電性高分子を用いたこのような電解コンデ
ンサでは直流成分電界によって大表面積の誘電体層表面
に易動性ドーパントに富む高導電率層が形成される。一
方 直流成分電界によってドーパントが誘電層表面に移
動しても導電性高分子中には固定ドーパント(バルキー
ドーパント)が残るため導電性高分子層の導電率は大き
くは低下しな賎 それ故、導電性高分子全体として極め
て高抵抗の脱ドープ部分を持たないため優れた電解性導
電体となる。
Furthermore, the conductive polymer of the present invention is extremely effective when densely forming a high conductivity layer on the surface of a dielectric layer with a large surface area, such as an electrolytic conductor in an electrolytic capacitor. The conductivity σ of the conductive polymer layer, which is a conductor, is preferably such that both the conductivity near the porous alumina surface and the conductivity in the electrolytic conductor layer are high, and the frequency characteristics are greatly improved.However, the capacitance of the capacitor is C=εS'
/d(So: effective surface area (large), ε: dielectric layer d:
The conductivity of the conductive polymer layer is σζ and σ
It is also important that (dielectric surface)>σ (bulk). In such an electrolytic capacitor using the conductive polymer of the present invention, a highly conductive layer rich in mobile dopants is formed on the surface of the dielectric layer having a large surface area due to the DC component electric field. On the other hand, even if the dopant moves to the surface of the dielectric layer due to the DC component electric field, the fixed dopant (bulky dopant) remains in the conductive polymer, so the conductivity of the conductive polymer layer does not decrease significantly. The polymer as a whole does not have an extremely high-resistance dedoped portion, making it an excellent electrolytic conductor.

実施例 本発明41  固定性ドーパントと易動性ドーパントの
両方がドーパントとして電子共役性高分子中にドープさ
れてなる導電性高分子よりなも第1図に本発明の一例で
あるアニオン性基結合粒子と易動性ドーパントがドープ
された導電性高分子の構成を示す概念断面図を示し 第
2図に本発明に用いるイオン性基結合粒子の一例を示す
概念図を示す。
Example Invention 41 Figure 1 shows anionic group bonding, which is an example of the present invention, using a conductive polymer in which both a fixed dopant and a mobile dopant are doped into an electronically conjugated polymer. A conceptual cross-sectional view showing the structure of a conductive polymer doped with particles and a mobile dopant is shown. FIG. 2 is a conceptual diagram showing an example of the ionic group-bonded particles used in the present invention.

本発明に用いる固定性ドーパント6としてGEL分子量
800以上のイオン性重合体または少なくとも表面にイ
オン性基が共有結合した0、01〜1μmのイオン性基
結合粒子がある。イオン性重合体が電界によって移動し
ない固定性ドーパント6であるためには分子量800以
上が必要である。
The immobilizing dopant 6 used in the present invention is an ionic polymer having a GEL molecular weight of 800 or more, or ionic group-bonded particles having a size of 0.01 to 1 μm and having an ionic group covalently bonded to at least the surface thereof. In order for the ionic polymer to be a fixed dopant 6 that does not move due to an electric field, it needs to have a molecular weight of 800 or more.

イオン性重合体としては トルエンスルフォン酸−アル
デヒド縮重合体 ベンゼンスルフォン酸−アルデヒド縮
重合体 ポリスチレンスルフォン酸、末端スルフォン化
(ポリフェニレンサルファイ隈 ポリスルフォンまたは
ポリフェニレンオキサイド)、p−オキシ安息香酸−ア
ルデヒド縮重合体 サリチル酸−アルデヒド縮重合体よ
り選ばれた少なくとも1種が用いられも イオン性基結合粒子として!′!、、)ルエンスルフォ
ン酸−アルデヒド縮重合恢 ベンゼンスルフォン酸−ア
ルデヒド縮重合体 ポリスチレンスルフォン魚 p−オ
キシ安息香酸−アルデヒド縮重合体 サリチル酸−アル
デヒド縮重合体 ポリビニルベンジルアンモニウム塩よ
り選ばれた少なくとも1種まりな本 表面にイオン性基
を有する球状粒子が好ましl、%  イオン性基1とし
てはアニオン基が好ましL〜 アニオン基として(′!
S スルフォン酸基 オキシ安息香酸基 4級アンモニ
ウム基のいずれかを用いも これらのイオン性基結合粒
子2 +i  樹脂の粉砕あるいは乳化重合などによっ
て容易に作ることができも 一方、本発明には易動性ドーパント5として、分子量2
00以下のイオンを用いも 具体的にはハロゲン、ルイ
ス敗 プロトン酸などよりなるアクセプタやアルカリ金
風 アルカリ土類金風 アンモニウムイオン、ホスフォ
ニウムイオンなどのドナーが用いられる。中でもBFn
−、AlCl4−1C1○4−などのアニオン、Li”
、Na”などのアルカリ金属が実際的であも 分子量2
00を越えるとイオンがバルキーになり、易動性が低下
すもヨウ素は11でドープされ分子量381と200以
上であるが移動時にはニーとしても挙動するため本発明
範囲に属す。
Examples of ionic polymers include: toluenesulfonic acid-aldehyde condensation polymer, benzenesulfonic acid-aldehyde condensation polymer, polystyrene sulfonic acid, terminal sulfonation (polyphenylene sulfone, polysulfone or polyphenylene oxide), p-oxybenzoic acid-aldehyde condensation polymer. Coalescence At least one selected from salicylic acid-aldehyde condensation polymers can be used as ionic group-bonded particles! ′! ,,) luenesulfonic acid-aldehyde condensation polymer benzenesulfonic acid-aldehyde condensation polymer polystyrene sulfone fish p-oxybenzoic acid-aldehyde condensation polymer salicylic acid-aldehyde condensation polymer At least one type selected from polyvinylbenzylammonium salt Spherical particles having an ionic group on the surface are preferable l,% The ionic group 1 is preferably an anionic group L~ As the anionic group ('!
S sulfonic acid group, oxybenzoic acid group, quaternary ammonium group These ionic group-bonded particles 2 As a sex dopant 5, molecular weight 2
Specifically, acceptors such as halogens, Lewis protonic acids, etc., and donors such as ammonium ions, phosphonium ions, alkaline metals, alkaline earth metals, etc., are used. Among them, BFn
-, anions such as AlCl4-1C1○4-, Li”
Although alkali metals such as Na” are practical, molecular weight 2
If it exceeds 00, the ion becomes bulky and its mobility decreases, but although iodine is doped with 11 and has a molecular weight of 381 or more than 200, it also behaves as a knee when moving, and therefore falls within the scope of the present invention.

本発明に用いる電子共役性高分子(よ 化学重合、また
は電解重合(陽極酸化重合、陰極還元重合)によって合
成されるもので、具体的にはボリフェニレン、ポリナフ
タレン、ポリビロー)5  ポリフェニレンサルファイ
ド、ポリチオフェン、ポリアニリン、もしくはこれらの
誘導体 共重合体より選ばれた1種が用いられも 陽極
酸化重合は 電子共役性モノマーの溶液中にアニオン基
結合粒子をコロイド状に分散させ、少なくとも一対の電
極による電場により、前記電子共役性モノマーを陽極上
に電解重合するもので、第1図のように前記アニオン性
基結合粒子2と低分子量イオン5とが各々固定性ドーパ
ント6、易動性ドーパント5としてドープされて戒る導
電性高分子4が得られる。
Electron-conjugated polymers used in the present invention (those synthesized by chemical polymerization or electrolytic polymerization (anodic oxidation polymerization, cathodic reduction polymerization), specifically polyphenylene, polynaphthalene, polybillow) 5 Polyphenylene sulfide, polythiophene , polyaniline, or a derivative copolymer thereof. In anodic oxidation polymerization, anionic group-bonded particles are dispersed in a colloidal form in a solution of an electron-conjugated monomer, and an electric field generated by at least one pair of electrodes is used. , the electronically conjugated monomer is electrolytically polymerized on an anode, and as shown in FIG. 1, the anionic group-bonded particles 2 and low molecular weight ions 5 are doped as a fixed dopant 6 and a mobile dopant 5, respectively. A conductive polymer 4 is obtained.

本発明の導電性高分子(よ 電子共役性モノマーと易動
性ドーパント5となる分子量200以下の塩を含む溶液
中に 固定性ドーパント6となる少なくとも表面にイオ
ン性基が共有結合した0、01〜1μmのアニオン基結
合粒子2をコロイド状に分散させ、少なくとも一対の電
極による電場により、前記電子共役性モノマーを陽極上
に電解重合することによって台底される豚 良質の導電
性高分子を得ることが出来も 電子共役性モノマー溶液
が非水溶液である場合には アニオン基結合粒子をカチ
オン界面活性剤によりコロイド状分散して電解重合させ
る。
The conductive polymer of the present invention (0,01) having an ionic group covalently bonded to at least the surface thereof, which becomes the fixed dopant 6, is placed in a solution containing an electronically conjugated monomer and a salt having a molecular weight of 200 or less, which becomes the mobile dopant 5. Anionic group-bonded particles 2 of ~1 μm are dispersed in a colloidal manner, and the electronically conjugated monomer is electrolytically polymerized on an anode using an electric field from at least one pair of electrodes to obtain a high-quality conductive polymer. When the electron-conjugated monomer solution is a non-aqueous solution, the anionic group-bonded particles are colloidally dispersed using a cationic surfactant and electropolymerized.

ところで本発明に用いるイオン性結合粒子2の粒径は0
.01〜1μmが望ましい。0.01μm以下では粒子
形成が難しいとともに分子としての特性に近ずいてしま
う。一方 1μm以上では大きすぎ伝導キャリヤ数を稼
げないとともに重合溶液中でコロイドにならず沈降を生
じも 従ってこの大きさのイオン性基結合粒子2は分子鎖に比
べて遥かに大きいたべ 粒子から離れた部分の電子共役
性高分子の結晶性や配向などにはあまり影響を与えず、
良質の導電性高分子4を与えるという特徴があも このイオン性基結合粒子2の表面には第2図(a)に示
したようなスルフォン酸基の他オキシ安息香酸基 アン
モニウム基が共有結合しており、粒子表面のこれらの基
が電子共役性高分子のドーパントとして働き、導電率の
向上(キャリヤ数の増加)に大きく寄与する。0.01
〜1μmの太きさのイオン性基結合粒子2は重合溶液中
でコロイド状に分散され均一な反応液組成を与えるとと
もに生成した導電性高分子4中にも均一に分散されるこ
とにも大きな特徴を有している。
By the way, the particle size of the ionic bond particles 2 used in the present invention is 0.
.. 01 to 1 μm is desirable. If the particle diameter is 0.01 μm or less, it is difficult to form particles and the properties approach those of molecules. On the other hand, if it is 1 μm or more, it is too large and the number of conductive carriers cannot be obtained, and it does not turn into a colloid in the polymerization solution, but sedimentation occurs. It does not have much effect on the crystallinity or orientation of the electronically conjugated polymer in the part,
The characteristic of providing a high-quality conductive polymer 4 is that on the surface of the ionic group-bonded particles 2, in addition to sulfonic acid groups, oxybenzoic acid groups and ammonium groups are covalently bonded as shown in Figure 2 (a). These groups on the particle surface act as dopants for the electron-conjugated polymer and greatly contribute to improving the electrical conductivity (increasing the number of carriers). 0.01
The ionic group-bonded particles 2 with a diameter of ~1 μm are colloidally dispersed in the polymerization solution to provide a uniform reaction solution composition, and are also very effective in being uniformly dispersed in the generated conductive polymer 4. It has characteristics.

また イオン性基結合粒子を多孔質粒子にして、その粒
子のバルク中より易動性ドーパントイオンを供給してこ
の機能をもたせることも可能である。
It is also possible to provide this function by making the ionic group-bonded particles into porous particles and supplying mobile dopant ions from the bulk of the particles.

このようにして得られたイオン性ドーパントを含む導電
性高分子は イオン性ドーパントが親水性であるた吹 
導電性が湿度依存性を受ける場合があも この場合には
例えば不溶性塩を生じる金属イオン(例えばB a”、
Pb”など)によって処理することによって耐水化する
ことができる。
The conductive polymer containing the ionic dopant obtained in this way is
The conductivity may be humidity dependent. In this case, for example, metal ions (e.g. B a,
It can be made water resistant by treatment with Pb'' etc.).

本発明Cヨ  前記のように金属陽極 酸化物誘電層、
 電解性導電体 陰極よりなる電解コンデンサの前記電
解性導電体として用いる時、最も特徴を発揮すも 次に実施例を用いて本発明を説明すも 実施例1 200mlのセパラブルフラスコ中に 4gのピロール
と1gの過塩素酸テトラブチルアンモニウム塩 および
カチオン界面活性剤で処理した2gのトルエンスルフォ
ン酸−ホルムアルデヒド縮重合体粒子(平均粒径0.0
3μm)及び100m1のアセトニトリルを入れて、コ
ロイド溶液を得九 この溶液にインジウム−スズ酸化物(IT○)を陽極と
り、Pt板を陰極として窒素気流中で通電し 陽極上に
約35μmのポリピロール膜を得tも この膜を電極よりはがし 銀ペイントを塗布し導電率を
測定したとこ7:x  300 S/0m (25℃)
であった この膜を膜方向に電極を取り、室温で直流電
圧0.3vを印加しその電流値の経時変化を測定したと
ころ第3図のような変化を示した本実施例の膜の特性7
は 単独のドーパントによる焦 すなわちトルエンスル
フォン酸−ホルムアルデヒド縮重合体粒子によるM8に
比べ導電率が高く、過塩素酸による膜9に比べ経時変化
が小さく変化後も導電率が高かった さらに この膜80℃炉中にセットし直流電場を印加し
 電流の経時変化を測定したとこ水 300時間後の変
化は15%であった この安定性は従来の低分子ドーパ
ントの場合の特性に比べ著しく安定した特性であった 実施例2 200mlのセパラブルフラスコ中に 5gの3−メチ
ルチオフェンと1gの過塩素酸テトラブチルアンモニウ
ム塩 およびカチオン界面活性剤で処理した3gのポリ
スチレンスルフオン酸重合体粒子(平均粒径0.04μ
m)および150m1のニトロベンゼンを入れて、コロ
イド溶液を得たこの溶液にインジウム−スズ酸化物(I
 To)を陽極とL  Pt板を陰極として窒素気流中
で通電し 陽極上に約35μmのポリ (3−メチルチ
オフェン)!を得タ  この膜を電極よりはがし銀ペイ
ントを塗布し 導電率を測定したとこム20 OS/c
m (25℃)であッl”−0さらに この膜80℃炉
中にセットし直流電場を印加し 電流の経時変化を測定
したとこム 300時間後の変化は8%であっ九 この
安定性は従来の低分子ドーパントの場合の特性に比べ著
しく安定した特性であっtも 実施例3 0.03mm厚の粗面化処理したアルミニウムフィルム
にまず酸化物誘電層を形成したの板 導電核を形成し 
ついで導電性高分子形戒糟を通して実施例1と同じ反応
溶液組成にて導電性高分子膜を形成しtも ついでそれを折り畳んだ後銀ペイントで陰極を形成して
、リード線を取出しそれに外装樹脂を被覆し九 こうして得た固体電解コンデンサは低分子ドーパントを
用いた同じ型の積層形コンデンサとほぼ同じ静電容量を
示しtも これの周波数特性並びに経時安定性を測定したとこム 
周波数特性は低分子ドーパントのものより高周波まで改
善され 経時安定性も125℃2000時間以上の寿命
を示しtも 発明の効果 本発明による導電性高分子は 高導電率で高信頼性であ
り、電解コンデンサ中の電解性導電体のよう服 大きな
表面積を持つ誘電体層表面上に高導電率層を緻密に形成
する場合にはきわめて有効である。またこのイオン基結
合粒子は重合溶液中でコロイド状に分散され均一な反応
液組成を与えるとともに生成した導電性高分子中にも均
一に分散されることにも大きな特徴を有し 良質の導電
性高分子膜を生威すも
According to the present invention, as described above, a metal anode, an oxide dielectric layer,
Electrolytic Conductor When used as the electrolytic conductor of an electrolytic capacitor consisting of a cathode, the present invention exhibits the most characteristics.Example 1: In a 200ml separable flask, 4g 2 g of toluenesulfonic acid-formaldehyde condensation polymer particles (average particle size 0.0
3 μm) and 100 ml of acetonitrile to obtain a colloidal solution.In this solution, indium-tin oxide (IT○) was placed as an anode, a Pt plate was used as a cathode, and electricity was applied in a nitrogen stream to form a polypyrrole film of about 35 μm on the anode. This film was removed from the electrode, silver paint was applied, and the conductivity was measured: 7: x 300 S/0m (25°C)
When we applied a DC voltage of 0.3 V to this film at room temperature with an electrode in the film direction and measured the change in current value over time, the characteristics of the film of this example showed changes as shown in Figure 3. 7
The conductivity was higher than that of M8, which was made of a single dopant, that is, toluenesulfonic acid-formaldehyde condensation polymer particles, and the conductivity was higher even after changing, with less change over time than film 9 made of perchloric acid. When the water was set in a furnace and a DC electric field was applied to measure the change in current over time, the change after 300 hours was 15%.This stability is significantly more stable than that of conventional low-molecular-weight dopants. Example 2 In a 200 ml separable flask, 5 g of 3-methylthiophene, 1 g of tetrabutylammonium perchlorate and 3 g of polystyrene sulfonic acid polymer particles treated with a cationic surfactant (average particle size 0 .04μ
m) and 150 ml of nitrobenzene to obtain a colloidal solution.Indium-tin oxide (I
Electricity is applied in a nitrogen stream using the L Pt plate as the anode and the L Pt plate as the cathode, and about 35 μm of poly(3-methylthiophene) is placed on the anode. This film was peeled off from the electrode, silver paint was applied, and the conductivity was measured.
Furthermore, this film was set in a furnace at 80°C, a DC electric field was applied, and the change in current over time was measured.The change after 300 hours was 8%.9 This stability is The properties were significantly more stable than those of conventional low-molecular-weight dopants.
Next, a conductive polymer film was formed using the same reaction solution composition as in Example 1 through a conductive polymer film, and after folding it, a cathode was formed with silver paint, and the lead wire was taken out and wrapped. The solid electrolytic capacitor coated with a resin thus obtained had almost the same capacitance as a multilayer capacitor of the same type using a low-molecular-weight dopant, and the frequency characteristics and stability over time were measured.
The frequency characteristics are improved to higher frequencies than those using low-molecular dopants, and the stability over time also shows a lifespan of more than 2,000 hours at 125°C.Effects of the inventionThe conductive polymer according to the invention has high conductivity and high reliability, and is suitable for electrolysis. As an electrolytic conductor in a capacitor, it is extremely effective when forming a high conductivity layer densely on the surface of a dielectric layer with a large surface area. In addition, these ionic group-bonded particles are dispersed in a colloidal manner in the polymerization solution, giving a uniform reaction solution composition, and are also uniformly dispersed in the generated conductive polymer, which is a major feature of high-quality conductivity. Even if you use polymer membranes

【図面の簡単な説明】[Brief explanation of drawings]

第1図(よ 本発明の導電性高分子におけるイオン性基
結合粒子と易動性ドーパントがドープされた導電性高分
子の構成を示す概念断面は 第2図(a)は本発明にお
けるイオン性基結合粒子の一例を示す概念阻 同図(b
)はカチオン活性剤によって処理されたアニオン基結合
粒子を示す概念匁 第3図は本発明の一実施例における
導電性高分子に直流電界を印加したときの電流の経時変
化を示すグラフであも 2・・・イオン性基結合粒子、 4・・・導電性高分子
、5・・・易動性ドーパント、 6・・・固定性ドーパ
ント。
Figure 1 (a) is a conceptual cross section showing the structure of a conductive polymer doped with ionic group-bonded particles and a mobile dopant in the conductive polymer of the present invention. Conceptual diagram showing an example of group-bonded particles (b
) is a conceptual diagram showing anionic group-bonded particles treated with a cationic activator. Figure 3 is a graph showing the change in current over time when a DC electric field is applied to a conductive polymer in one embodiment of the present invention. 2... Ionic group-bonded particles, 4... Conductive polymer, 5... Mobile dopant, 6... Fixed dopant.

Claims (10)

【特許請求の範囲】[Claims] (1) 固定性ドーパントと易動性ドーパントの両方が
ドーパントとして電子共役性高分子中にドープされてい
ることを特徴とする導電性高分子。
(1) A conductive polymer characterized in that both a fixed dopant and a mobile dopant are doped into an electronically conjugated polymer.
(2) 固定性ドーパントが分子量800以上のイオン
性重合体、または少なくとも表面にイオン性基が共有結
合した0.01〜1μmのイオン性基結合粒子よりなる
ことを特徴とする請求項1に記載の導電性高分子。
(2) The fixing dopant is made of an ionic polymer having a molecular weight of 800 or more, or ionic group-bonded particles having a size of 0.01 to 1 μm and having an ionic group covalently bonded to at least the surface thereof. conductive polymer.
(3) イオン性重合体が、トルエンスルフォン酸−ア
ルデヒド縮重合体、ベンゼンスルフォン酸−アルデヒド
縮重合体、ポリスチレンスルフォン酸、末端スルフォン
化(ポリフェニレンサルファイド、ポリスルフォンまた
はポリフェニレンオキサイド)、p−オキシ安息香酸−
アルデヒド縮重合体サリチル酸−アルデヒド縮重合体よ
り選ばれた少なくとも1種である請求項2に記載の導電
性高分子。
(3) The ionic polymer is a toluenesulfonic acid-aldehyde condensation polymer, a benzenesulfonic acid-aldehyde condensation polymer, polystyrene sulfonic acid, terminal sulfonation (polyphenylene sulfide, polysulfone or polyphenylene oxide), p-oxybenzoic acid −
The conductive polymer according to claim 2, which is at least one selected from aldehyde condensation polymers and salicylic acid-aldehyde condensation polymers.
(4) イオン性基結合粒子が、トルエンスルフォン酸
−アルデヒド縮重合体、ベンゼンスルフォン酸−アルデ
ヒド縮重合体、ポリスチレンスルフォン酸、p−オキシ
安息香酸−アルデヒド縮重合体、サリチル酸−アルデヒ
ド縮重合体、ポリビニルベンジルアンモニウム塩より選
ばれた少なくとも1種よりなる球状粒子であることを特
徴とする請求項2に記載の導電性高分子。
(4) The ionic group-bonded particles are toluenesulfonic acid-aldehyde condensation polymer, benzenesulfonic acid-aldehyde condensation polymer, polystyrene sulfonic acid, p-oxybenzoic acid-aldehyde condensation polymer, salicylic acid-aldehyde condensation polymer, 3. The conductive polymer according to claim 2, wherein the conductive polymer is a spherical particle made of at least one selected from polyvinylbenzylammonium salts.
(5) 易動性ドーパントが、分子量200以下のイオ
ンよりなることを特徴とする請求項1に記載の導電性高
分子。
(5) The conductive polymer according to claim 1, wherein the mobile dopant is composed of ions having a molecular weight of 200 or less.
(6) 電子共役性高分子が、ポリフェニレン、ポリナ
フタレン、ポリピロール、ポリフェニレンサルファイド
、ポリチオフェン、ポリアニリン、もしくはこれらの誘
導体、共重合体より選ばれた1種であることを特徴とす
る請求項1に記載の導電性高分子。
(6) The electron-conjugated polymer is one selected from polyphenylene, polynaphthalene, polypyrrole, polyphenylene sulfide, polythiophene, polyaniline, or derivatives or copolymers thereof. conductive polymer.
(7) 電子共役性モノマーと易動性ドーパントとなる
分子量200以下の塩を含む溶液中に固定性ドーパント
となる少なくとも表面にイオン性基が共有結合した0.
01〜1μmのアニオン基結合粒子をコロイド状に分散
させ、少なくとも一対の電極による電場により、前記電
子共役性モノマーを陽極上に電解重合することを特徴と
する導電性高分子の製造方法。
(7) In a solution containing an electronically conjugated monomer and a salt with a molecular weight of 200 or less, which becomes a mobile dopant, an ionic group is covalently bonded to at least the surface, which becomes a fixed dopant.
1. A method for producing a conductive polymer, comprising dispersing anionic group-bonded particles of 0.01 to 1 μm in colloidal form, and electrolytically polymerizing the electronically conjugated monomer on an anode using an electric field generated by at least a pair of electrodes.
(8) 電子共役性モノマー溶液が非水溶液であり、ア
ニオン基結合粒子がカチオン界面活性剤によりコロイド
状分散されることを特徴とする請求項7に記載の導電性
高分子の製造方法。
(8) The method for producing a conductive polymer according to claim 7, wherein the electron-conjugated monomer solution is a non-aqueous solution, and the anionic group-bonded particles are colloidally dispersed with a cationic surfactant.
(9) 電子共役性モノマーが、ベンゼン、ナフタレン
、アントラセン、ピロール、チオフェン、ジフェニルア
ミンより選ばれた少なくとも一種であることを特徴とす
る請求項7に記載の導電性高分子の製造方法。
(9) The method for producing a conductive polymer according to claim 7, wherein the electronically conjugated monomer is at least one selected from benzene, naphthalene, anthracene, pyrrole, thiophene, and diphenylamine.
(10) 金属陽極、酸化物誘電層、電解性導電体、陰
極よりなる電解コンデンサにおいて、前記電解性導電体
として、固定性ドーパントと易動性ドーパントの両方が
ドーパントとして電子共役性高分子中にドープされてい
る導電性高分子を用いることを特徴とする電解コンデン
サ。
(10) In an electrolytic capacitor consisting of a metal anode, an oxide dielectric layer, an electrolytic conductor, and a cathode, both a fixed dopant and a mobile dopant are incorporated as dopants into an electronically conjugated polymer as the electrolytic conductor. An electrolytic capacitor characterized by using a doped conductive polymer.
JP1830990A 1989-07-19 1990-01-29 Conductive polymer, method for producing the same, and electrolytic capacitor using the same Expired - Lifetime JPH0668926B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1830990A JPH0668926B2 (en) 1990-01-29 1990-01-29 Conductive polymer, method for producing the same, and electrolytic capacitor using the same
EP19900113540 EP0409124A3 (en) 1989-07-19 1990-07-14 Electrically conducting polymer, method for preparing the same and electrolytic capacitor comprising the same
US07/758,196 US5130886A (en) 1989-07-19 1991-09-11 Electrically conducting polymer, method for preparing the same and electrolytic capacitor comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1830990A JPH0668926B2 (en) 1990-01-29 1990-01-29 Conductive polymer, method for producing the same, and electrolytic capacitor using the same

Publications (2)

Publication Number Publication Date
JPH03222207A true JPH03222207A (en) 1991-10-01
JPH0668926B2 JPH0668926B2 (en) 1994-08-31

Family

ID=11968016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1830990A Expired - Lifetime JPH0668926B2 (en) 1989-07-19 1990-01-29 Conductive polymer, method for producing the same, and electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JPH0668926B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041032A1 (en) * 2004-10-08 2006-04-20 Shin-Etsu Polymer Co., Ltd. Conductive composition and process for producing the same, antistatic paint, antistatic coating and antistatic film, optical filter, optical information recording medium, and capacitor and process for producing the same
WO2006095595A1 (en) * 2005-03-11 2006-09-14 Shin-Etsu Polymer Co., Ltd. Conductive-polymer solution, antistatic coating material, antistatic hard coating layer, optical filter, conductive coating film, antistatic pressure-sensitive adhesive, antistatic pressure-sensitive adhesive layer, protective material, and process for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041032A1 (en) * 2004-10-08 2006-04-20 Shin-Etsu Polymer Co., Ltd. Conductive composition and process for producing the same, antistatic paint, antistatic coating and antistatic film, optical filter, optical information recording medium, and capacitor and process for producing the same
US7842196B2 (en) 2004-10-08 2010-11-30 Shin-Etsu Polymer Co., Ltd. Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
US8021579B2 (en) 2004-10-08 2011-09-20 Shin-Etsu Polymer Co., Ltd. Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
US8035952B2 (en) 2004-10-08 2011-10-11 Shin-Etsu Polymer Co., Ltd. Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
WO2006095595A1 (en) * 2005-03-11 2006-09-14 Shin-Etsu Polymer Co., Ltd. Conductive-polymer solution, antistatic coating material, antistatic hard coating layer, optical filter, conductive coating film, antistatic pressure-sensitive adhesive, antistatic pressure-sensitive adhesive layer, protective material, and process for producing the same
US7618559B2 (en) 2005-03-11 2009-11-17 Shin-Etsu Polymer Co., Ltd. Conductive polymer solution, antistatic coating material, antistatic hard coat layer, optical filter, conductive coating film, antistatic tacky adhesive, antistatic tacky adhesive layer, protective material, and method for producing the same
US8414801B2 (en) 2005-03-11 2013-04-09 Shin-Etsu Polymer Co., Ltd. Conductive polymer solution, antistatic coating material, antistatic hard coat layer, optical filter, conductive coating film, antistatic tacky adhesive, antistatic tacky adhesive layer, protective material, and method for producing the same

Also Published As

Publication number Publication date
JPH0668926B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
JP3694038B2 (en) Solid electrolytic capacitor
US4501686A (en) Anion-doped polymers of five-membered oxygen family heterocyclic compounds and method for producing same
Li et al. Interfacial synthesis and widely controllable conductivity of polythiophene microparticles
Ghosh et al. Self-assembly of a conducting polymer nanostructure by physical crosslinking: applications to conducting blends and modified electrodes
Innis et al. Electrochemical formation of chiral polyaniline colloids codoped with (+)-or (−)-10-camphorsulfonic acid and polystyrene sulfonate
JP5191171B2 (en) Dispersant and dopant for conductive polymer synthesis, conductive polymer synthesized using the same, conductive composition containing the conductive polymer, dispersion of the conductive polymer or conductive composition, and the above Application of conductive polymer or conductive composition
US5130886A (en) Electrically conducting polymer, method for preparing the same and electrolytic capacitor comprising the same
JP4315038B2 (en) Solid electrolytic capacitor
JP2002524868A (en) Method of manufacturing solid electrolytic capacitor containing conductive polymer counter electrode
Higgins et al. Grafting and electrochemical characterisation of poly-(3, 4-ethylenedioxythiophene) films, on Nafion and on radiation-grafted polystyrenesulfonate–polyvinylidene fluoride composite surfaces
US4505841A (en) Fused 6,6,6-membered heterocyclic electroactive polymers
US4663001A (en) Electroconductive polymers derived from heterocycles polycyclic monomers and process for their manufacture
De Paoli et al. Poly (aniline)/cellulose acetate composites: Conductivity and electrochromic properties
JPH03222207A (en) Conductive high-molecule, its manufacture and electrolytic capacitor using same
KR100548919B1 (en) Conductive polymer, solid electrolytic capacitor, and processes for producing these
WO2017143737A1 (en) Aluminum electrolytic capacitor and manufacturing method thereof
JP2001240742A (en) Polyanilines and its preparation process
JP2907131B2 (en) Conductive polymer, solid electrolytic capacitor using the same, and method of manufacturing the same
Kim et al. Facile fabrication of polyaniline films with hierarchical porous networks for enhanced electrochemical activity
JPH0352920A (en) Electroconductive polymer, production thereof and electrolytic capacitor using same polymer
Ghosh et al. Polyaniline in the conducting state in neutral medium
JP3451176B2 (en) Capacitor and manufacturing method thereof
KR100548045B1 (en) Conductive polymer film and method for preparing the same
JP3649526B2 (en) Conductive polyaniline composition and solid electrolytic capacitor using the same as solid electrolyte
Han et al. A novel thermosensitive soluble polypyrrole composite