JPH03220720A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH03220720A
JPH03220720A JP1493290A JP1493290A JPH03220720A JP H03220720 A JPH03220720 A JP H03220720A JP 1493290 A JP1493290 A JP 1493290A JP 1493290 A JP1493290 A JP 1493290A JP H03220720 A JPH03220720 A JP H03220720A
Authority
JP
Japan
Prior art keywords
film
metal
gas
semiconductor device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1493290A
Other languages
Japanese (ja)
Inventor
Katsuhiko Mitani
三谷 克彦
Hiroshi Masuda
宏 増田
Kazuhiro Mochizuki
和浩 望月
Chushiro Kusano
忠四郎 草野
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1493290A priority Critical patent/JPH03220720A/en
Publication of JPH03220720A publication Critical patent/JPH03220720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce diffusion of a base metal by forming at least part to a WN film when a collector hole is buried by selective W-CVD. CONSTITUTION:A contact hole 13 is formed at an insulating film 12 on an Au electrode 11 formed on a semiconductor substrate 10 by a lifting-OFF method, and a W film 14 is selectively deposited on the electrode 11 by using a reduced pressure CVD unit. Then, N2 gas excited by a microwave is added to reaction gas in the reactor of the CVD unit to form a WN film 15, then flow of the N2 gas is stopped, a W film 16 is then deposited, and eventually an Al film 17 is so formed as to partly cover the film 16. In this case, the WN film has satisfactory barrier properties to the Au. Thus, the diffusion of a base electrode (Au) to the wiring material (Al) can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、G a A sデバイスのAu系オーミック
電極上のコンタクト埋め込み金属の構造とその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure of a contact buried metal on an Au-based ohmic electrode of a GaAs device and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

Siデバイスの高集積化が進むにつれ、配線技術として
、例えば、特開昭59−72132に記載されているよ
うに、金属の選択CVDを用いて、コンタクト孔を選択
的に埋め込む技術が必須になりつつある。選択CV D
に用いる金属として、W。
As the integration of Si devices progresses, a technology for selectively filling contact holes using metal selective CVD has become essential as a wiring technology, for example, as described in JP-A-59-72132. It's coming. Selection CV D
W as the metal used for.

(2) AQ、Cu等が検討されているが、なかでもWが最も実
用化に近い。
(2) AQ, Cu, etc. are being considered, but W is the closest to practical use among them.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術を用いて、第2図に示すように、半導体基板2
0上に具備されたA、 u系電極21上の絶縁膜22に
形成されたコンタクト孔23をW膜24で理め込み、該
W膜24上に、Sj ULSIの配線として最も実績の
あるAQ膜25を積層すると、Au系電極21中のAu
が、Wl]’fi24を通して、AQ膜25まで拡散し
、A u / A Qの合金反応が起こり、配線の信頼
性が低下するという問題が生じた。
Using the conventional technique, as shown in FIG.
The contact hole 23 formed in the insulating film 22 on the A, U-based electrode 21 provided on the 0 is insulated with a W film 24, and the AQ, which has the most proven track record as Sj ULSI wiring, is placed on the W film 24. When the film 25 is stacked, the Au in the Au-based electrode 21
However, it diffused to the AQ film 25 through the Wl]'fi 24, causing an alloy reaction of A u /A Q, resulting in a problem that the reliability of the wiring was reduced.

本発明の目的は、上述したような、選択WCVDによる
コンタクト孔埋め込み技術において、下地金属の拡散を
著しく低減させることである。
An object of the present invention is to significantly reduce the diffusion of underlying metal in the contact hole filling technique using selective WCVD as described above.

ciat題を解決するための手段〕 上記目的を遠戚するために本発明においては選択w−C
VDでコレクタ孔を埋め込む際に、少なくとも一部をW
N膜化する。
Means for solving the problem] In order to achieve the above object, in the present invention, the selection w-C
When filling the collector hole with VD, at least a portion is filled with W.
Forms into N film.

〔作用〕[Effect]

(3) コンタクト孔を選択的に理め込んだW膜において、その
一部分をWN膜化した膜は、Au等に対するバリア特性
が良好であり、上述した例のように、下地電極材(Au
)が配線材(AQ)まで拡散することを箸しく低減でき
る。
(3) In a W film in which contact holes are selectively embedded, a film in which part of the WN film is formed has good barrier properties against Au, etc.
) can be significantly reduced from diffusing into the wiring material (AQ).

〔実施例〕〔Example〕

第1実施例 本発明の一実施例を第1図の工程概略間により説明する
First Embodiment An embodiment of the present invention will be explained with reference to the process outline shown in FIG.

半導体基板10 、、hにリフトオフ法により形成され
たAu系電極11上の絶縁膜12に、通常のりソグラフ
イ技術及びエツチング技術を用いてコンタクト孔13を
形成した(第1IM(a))。このとき、Au系電極1
1の最−h層には、ひき続き行うW−CVDの下地材料
となりうるpt (500λ厚図示略)を用いた。
A contact hole 13 was formed in the insulating film 12 on the Au-based electrode 11 formed on the semiconductor substrate 10, . At this time, Au-based electrode 1
For the h-most layer of No. 1, PT (500λ thickness, not shown), which can serve as a base material for the subsequent W-CVD, was used.

上記試料をコードルウオール型減圧CV I)装置を用
いて、前記Au系電極りに選択的にW膜(厚さ100O
A)14を堆積した(第1同(b))。
The above sample was selectively coated with a W film (thickness 100O
A) 14 was deposited (No. 1 (b)).

CVD条件は、全圧0.15Torr基板温度320(
4) ’C,W F、  10secm、 S i H46s
ecmである。ひき続き、上記CVD装置のリアクタに
2.45GHzのマイクロ波により励起されたN、ガス
50secmを前記反応ガスに加えた。これにより、第
1図(c)に示すように、WN膜(2000A厚)工5
を形成した。次に前記N2 ガスをリアクタへ流すのを
止めて、W膜(5000A厚)16を堆積した(第工図
(d))。
The CVD conditions were a total pressure of 0.15 Torr and a substrate temperature of 320 (
4) 'C, W F, 10sec, S i H46s
It is ecm. Subsequently, 50 seconds of N gas excited by a 2.45 GHz microwave was added to the reaction gas in the reactor of the CVD apparatus. As a result, as shown in FIG. 1(c), the WN film (2000A thickness)
was formed. Next, the flow of the N2 gas to the reactor was stopped, and a W film (5000A thick) 16 was deposited (FIG. (d)).

最後に、該W膜16の少なくとも一部を覆うようにAu
膜(7000入厚)17を形成した(第1図(e))。
Finally, Au is applied so as to cover at least a portion of the W film 16.
A film (7000 mm thick) 17 was formed (FIG. 1(e)).

ここでは、WN膜の形成をマイクロ波励起したN2 ガ
スの導入、しゃ断により、行ったが、N2ガスを常時導
入しておき、マイクロ波のON。
Here, the WN film was formed by introducing and shutting off N2 gas excited by microwaves, but N2 gas was constantly introduced and the microwave was turned on.

OFFにより、WN膜厚を制御できる。By turning it off, the WN film thickness can be controlled.

また、本実施例ではWN膜↓5をW膜14とW膜16の
間に介在させているが、W膜14及びW膜16をもWN
膜に置きかえることによりバリア特性を向上させること
が可能であることは言うまでもない。
Further, in this embodiment, the WN film ↓5 is interposed between the W film 14 and the W film 16, but the W film 14 and the W film 16 are also
It goes without saying that the barrier properties can be improved by replacing it with a film.

(5) また、本実施例においてWN膜15の成膜時に流したN
2流量は、50secmであるが、少なくともWF6ガ
スの数%以上を流せば、W N 11%の成膜は可能で
ある。一方、N2 の流量の上限は、 CVDの全ガス
圧が0 、5 Torrを超えると、CVDの選択性が
低下するので、0 、5 Torr以下にするのが好ま
しい。
(5) In addition, in this example, the N
2. The flow rate is 50 sec, but if at least several percent of the WF6 gas is flowed, it is possible to form a film with W N of 11%. On the other hand, the upper limit of the flow rate of N2 is preferably set to 0.5 Torr or less, since if the total gas pressure in CVD exceeds 0.5 Torr, the selectivity of CVD will decrease.

第2実施例 第1実施例において、WN膜15を形成する際に、マイ
クロ波で励起したN2 ガスを導入したが、本実施例で
は、13.56MHz  の高周波により励起したN2
ガスを導入した。
Second Embodiment In the first embodiment, N2 gas excited by microwaves was introduced when forming the WN film 15, but in this embodiment, N2 gas excited by a high frequency of 13.56 MHz was introduced.
introduced gas.

ここでは、高周波によるプラズマ励起を用いたが、光線
、熱線等のエネルギー線を用いて、N。
Here, plasma excitation by high frequency was used, but energy rays such as light rays and heat rays were used to excite N.

ガスを励起することが可能であることは言うまでもない
It goes without saying that it is possible to excite the gas.

第3実施例 第3図を用いて、本発明をG a A s F E T
のコンタクト孔埋め込みに適用した例を説明する。
Third Embodiment Using FIG. 3, the present invention will be described.
An example in which this method is applied to contact hole filling will be explained.

G a A a F E Tの基本構造は、半絶縁性G
 a A s基(6) 板30に、Siのイオン打込みにより形成した能動層3
1とゲート電極32及びソース、ドレイン電極33.3
4よりなる。ゲート電極32は、T i / P t 
/ A uのAu系電極或いは、WSi等の高融点金属
よりなる。また、ソース、ドレイン電極33,34は、
A u G e / N i / A uのAu系電極
よりなる。これらの各電極の最上層に、選択W−CVD
の下地金属、例えばpt(図示時)を具備させることに
より、絶縁膜35に形成したコンタクト孔36を選択的
にW膜37で埋め込むことができる。また、実施例1〜
2に記載した手法により、引き続きWN膜38及びW膜
39を堆積して、コンタクト孔36を設め込んだ。
The basic structure of G a A a F E T is a semi-insulating G
a A s group (6) Active layer 3 formed on the plate 30 by Si ion implantation
1 and gate electrode 32 and source and drain electrodes 33.3
Consists of 4. The gate electrode 32 has Ti/Pt
/ Au made of an Au-based electrode or a high melting point metal such as WSi. Further, the source and drain electrodes 33 and 34 are
It consists of an Au-based electrode of AuGe/Ni/Au. Selective W-CVD is applied to the top layer of each of these electrodes.
By providing a base metal such as PT (as shown), the contact hole 36 formed in the insulating film 35 can be selectively filled with the W film 37. In addition, Example 1~
2, a WN film 38 and a W film 39 were subsequently deposited to form a contact hole 36.

然る後に、各電極に対して、AQ配線310を形成した
After that, AQ wiring 310 was formed for each electrode.

本実施例によれば、Au系電極に対して、AQ配線を適
用することが可能である。従って、G a A s F
E TにおいてもS i U L S Iと同程度の集
積化が図れる。
According to this embodiment, it is possible to apply AQ wiring to Au-based electrodes. Therefore, G a A s F
ET can achieve the same level of integration as S i U L S I.

第4実施例 (7) 本発明をG a A s系へテロ接合バイポーラトラン
ジスタのコンタクト孔埋め込みに適用した例を第4同の
素子断面図を用いて説明する。素子の基板構造は、半絶
縁性G a A s基板40上にn生型G a A s
サブコレクタ層41.n−型G a A sコレクタ層
42.P+型G a A sベース層43.n型A Q
 G a A sエミッタ層44.n生型G a A 
sサブエミッタ層45が積層され、サブコレクタ層41
、ベース層43.サブエミツタ層45上に各各A u 
G e系のコレクタ電極46.AuZu系のベース電極
47.AuGe系のエミッタ電極48を具備している。
Fourth Embodiment (7) An example in which the present invention is applied to filling a contact hole of a GaAs-based heterojunction bipolar transistor will be described using a fourth cross-sectional view of the same device. The substrate structure of the device is an n-type GaAs substrate on a semi-insulating GaAs substrate 40.
Sub-collector layer 41. n-type GaAs collector layer 42. P+ type GaAs base layer 43. n-type A Q
GaAs emitter layer 44. n live type G a A
s sub-emitter layer 45 is laminated, and sub-collector layer 41
, base layer 43. Each A u on the sub-emitter layer 45
Ge-based collector electrode 46. AuZu-based base electrode 47. An AuGe-based emitter electrode 48 is provided.

全ての電極の最上層は、H22膜の起こりやすい金属膜
、例えばPt、Mo、W膜を堆積しである。上記素子を
絶縁膜49で被覆した後、各電極上にコンタクト孔を形
成し、然る後に、実施例1〜2に述べた本発明により、
前記コンタクト孔を選択的にW410/WN411/W
412膜で埋め込んである。WNN膜上11下地のAu
系電極46,47,48からのAuの拡散を抑制できる
ので、配線材料としてAQ配線(8) 413が適用できる。これにより、G a A s系へ
テロ接合バイポーラトランジスタの高集積化が可能にな
る。
The top layer of all electrodes is a deposited metal film, such as a Pt, Mo, or W film, which is likely to form an H22 film. After covering the above element with an insulating film 49, contact holes are formed on each electrode, and then, according to the present invention described in Examples 1 and 2,
Selectively fill the contact hole with W410/WN411/W.
412 membrane. 11 Au underlayer on WNN film
Since diffusion of Au from the system electrodes 46, 47, and 48 can be suppressed, AQ wiring (8) 413 can be used as the wiring material. This enables highly integrated GaAs-based heterojunction bipolar transistors.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Au系電極上のコンタクト孔を選択的
に埋め込んだ金属により、前記Au系電極からのAu拡
散を低減できるので、金属を埋め込んだコンタクト孔上
に直接AQ配線を適用できる。AQ配線は、微細加工性
及び加工精度に優れており、Au系電極を有するG a
 A sデバイスの高集積化が可能になる。
According to the present invention, since the metal selectively filling the contact hole on the Au-based electrode can reduce Au diffusion from the Au-based electrode, AQ wiring can be applied directly over the contact hole filled with metal. AQ wiring has excellent microfabricability and processing accuracy, and has Ga
High integration of As devices becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の半導体装置の製造工程の
概略を示す断面図、第2図は従来法の電極構造を示す断
面図、第3図は本発明の第3実施例の半導体装置の断面
図、第4図は本発明の第4実施例の半導体装置の断面図
。 10・・・半導体基板、11・・・Au系電極、12・
・・絶縁膜、13・・・コンタクト孔、14・・・W膜
、15・・・WN膜、工6・・・W膜、17・・・Au
膜。 (9) 118−
FIG. 1 is a cross-sectional view showing an outline of the manufacturing process of a semiconductor device according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view showing an electrode structure of a conventional method, and FIG. FIG. 4 is a cross-sectional view of a semiconductor device according to a fourth embodiment of the present invention. DESCRIPTION OF SYMBOLS 10... Semiconductor substrate, 11... Au-based electrode, 12.
...Insulating film, 13...Contact hole, 14...W film, 15...WN film, 6...W film, 17...Au
film. (9) 118-

Claims (1)

【特許請求の範囲】 1、半導体基板と、該基板上の第1の金属上と、該第1
の金属面の少なくとも一部が露出するように開孔部が形
成された絶縁膜と、該開孔部に埋め込まれたWを主成分
とする金属を有してなり、且つ上記Wを主成分とする金
属の少なくとも一部に窒素元素を含む金属層が存在する
ことを特徴とする半導体装置。 2、上述した少なくとも一部に窒素元素を含む金属層を
有するWを主成分とする金属膜の製法が、Wのハロゲン
化ガス、還元性ガスNを含むガス、を用いた化学気相成
長法であることを特徴とする請求項1に記載した半導体
装置の製造方法。 3、上記Nを含むガスが、N_2ガスであり、電磁場に
より励起して、化学気相成長法により、前記窒素元素を
含む金属層を形成することを特徴とする請求項2に記載
した半導体装置の製造方法。 4、上記Wのハロゲン化ガスがWF_6であり、還元性
ガスが、H_2、SiH_4、Si_3H_6等の水素
化合物であることを特徴とする請求項2乃至3のいずれ
かに記載した半導体装置の製造方法。 5、上記半導体層が、GaAs等の化合物半導体であり
、上記第1の金属が、Pt、W、Mo、Ge等のH_2
の吸着しやすい金属であることを特徴とする請求項1記
載の半導体装置。
[Claims] 1. A semiconductor substrate, a first metal on the substrate, and a first metal on the substrate;
an insulating film in which an opening is formed so that at least a part of the metal surface of the insulating film is exposed; and a metal containing W as a main component embedded in the opening; A semiconductor device characterized in that a metal layer containing a nitrogen element exists in at least a part of the metal. 2. The above-mentioned method for producing a metal film mainly composed of W and having a metal layer containing nitrogen element at least in part is a chemical vapor deposition method using a halogenated W gas and a gas containing a reducing gas N. 2. The method of manufacturing a semiconductor device according to claim 1. 3. The semiconductor device according to claim 2, wherein the gas containing N is N_2 gas, and the metal layer containing the nitrogen element is formed by chemical vapor deposition by exciting it with an electromagnetic field. manufacturing method. 4. The method for manufacturing a semiconductor device according to any one of claims 2 to 3, wherein the halogenated gas of W is WF_6, and the reducing gas is a hydrogen compound such as H_2, SiH_4, Si_3H_6. . 5. The semiconductor layer is a compound semiconductor such as GaAs, and the first metal is H_2 such as Pt, W, Mo, Ge, etc.
2. The semiconductor device according to claim 1, wherein the semiconductor device is made of a metal that is easily adsorbed.
JP1493290A 1990-01-26 1990-01-26 Semiconductor device and manufacture thereof Pending JPH03220720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1493290A JPH03220720A (en) 1990-01-26 1990-01-26 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1493290A JPH03220720A (en) 1990-01-26 1990-01-26 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03220720A true JPH03220720A (en) 1991-09-27

Family

ID=11874741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1493290A Pending JPH03220720A (en) 1990-01-26 1990-01-26 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03220720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841690A1 (en) * 1996-11-12 1998-05-13 Samsung Electronics Co., Ltd. Tungsten nitride (WNx) layer manufacturing method and metal wiring manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841690A1 (en) * 1996-11-12 1998-05-13 Samsung Electronics Co., Ltd. Tungsten nitride (WNx) layer manufacturing method and metal wiring manufacturing method
US6087257A (en) * 1996-11-12 2000-07-11 Samsung Electronics Co., Ltd. Methods of fabricating a selectively deposited tungsten nitride layer and metal wiring using a tungsten nitride layer

Similar Documents

Publication Publication Date Title
US4733283A (en) GaAs semiconductor device
US6503822B2 (en) Methods for insitu plasma pre-deposition wafer treatment in chemical vapor deposition technology for semiconductor integrated circuit applications
TW334597B (en) Manufacture method of semiconductor device with suppressed impurity diffusion from gate electrode
JPH09121024A (en) Semiconductor device and manufacture thereof
US6509607B1 (en) Semiconductor device with reduced source diffusion distance and method of making same
US6858499B2 (en) Method for fabrication of MOSFET with buried gate
WO2004023544A1 (en) Semiconductor device and method for manufacturing semiconductor device
JPH03220720A (en) Semiconductor device and manufacture thereof
US5701029A (en) Semiconductor having polycrystalline silicon sandwiched by semiconductor substrate and metal silicide
US4377900A (en) Method of manufacturing semiconductor device
JPH0195564A (en) Manufacture of semiconductor device
JPH03239322A (en) Semiconductor device and its manufacture
JPH027528A (en) Semiconductor device
JPH08191053A (en) Semiconductor device and manufacture thereof
JPH01110737A (en) Semiconductor device
JPH0547797A (en) Fabrication of field effect transistor
JPH0352238A (en) Manufacture of compound semiconductor device
JPH0369157A (en) Manufacture of semiconductor device
JPS6459858A (en) Manufacture of semiconductor device
JPH0324733A (en) Semiconductor device and manufacture thereof
KR970030654A (en) Metal wire manufacturing method of semiconductor device
JPH0661271A (en) Semiconductor integrated circuit device
JPH03265132A (en) Semiconductor device
JPS633415A (en) Manufacture of semiconductor device
JPH03225821A (en) Manufacture of semiconductor device